JPH01239434A - Optical detecting device - Google Patents

Optical detecting device

Info

Publication number
JPH01239434A
JPH01239434A JP63065704A JP6570488A JPH01239434A JP H01239434 A JPH01239434 A JP H01239434A JP 63065704 A JP63065704 A JP 63065704A JP 6570488 A JP6570488 A JP 6570488A JP H01239434 A JPH01239434 A JP H01239434A
Authority
JP
Japan
Prior art keywords
sample
light
sample surface
lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63065704A
Other languages
Japanese (ja)
Other versions
JP2776823B2 (en
Inventor
Kenji Mitani
三谷 健司
Toshio Masuda
俊夫 増田
Nobuo Hamano
浜野 亘男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63065704A priority Critical patent/JP2776823B2/en
Publication of JPH01239434A publication Critical patent/JPH01239434A/en
Application granted granted Critical
Publication of JP2776823B2 publication Critical patent/JP2776823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1433

Abstract

PURPOSE:To improve the resolution of sample detection and to accurately measure the intensity distribution by converging scattered light which is passed through a sample by a photodetection lens and forming an image on an image element, and performing comparative arithmetic as to the photodetection position and photodetection intensity. CONSTITUTION:The light beam 11 from a laser 1 becomes a parallel light beam 13 with width through cylindrical lenses 2 and 3, and this parallel light beam crosses a sample surface 4 and is scattered by samples A and B. Scattered light beams 201 and 202 are converged by a stop 5 and a converging lens 6 to form its image on the image element 9. Here, light which is scattered in fine-angle directions around the optical axis and an unscattered light component are converged by the converging lens 6 and cut off by a shield plate 7 provided at the focus position. Then the scattered light which forms the image on the element 9 indicates the intensity distribution corresponding to the kind of the samples and a density distribution. Consequently, the resolution of the sample detection is improved and the intensity distribution is accurately measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はある直線上を通過する試料の通過位置の検出技
術に係り、 vfIC試料位置の測定に好適な光学検出
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a technique for detecting the passing position of a sample passing on a certain straight line, and relates to an optical detection device suitable for measuring the position of a vfIC sample.

〔従来の技術〕[Conventional technology]

従来の測光装置は、例えば特開昭60−196647号
公報に記載されているように、光ビームが試R面上の1
点を照射して29.試料面t1″透過した二次光が分光
器に送られてい友。この時、試料面は振動制御を受けな
がら一定周期で2久元的に振動し、試料面上での試料の
位置検出は、試料面の振動制御信号と同期したサンプリ
ングパルスにより分光器からの出力を1定時間積分する
ことにより行っていた。
Conventional photometry devices, for example, as described in Japanese Patent Application Laid-Open No. 60-196647, have a light beam that measures one point on the test R surface.
Irradiate the point 29. The secondary light that has passed through the sample surface t1'' is sent to the spectrometer.At this time, the sample surface is subjected to vibration control and oscillates at a constant cycle for 2 hours, and the position of the sample on the sample surface cannot be detected. This was done by integrating the output from the spectrometer over a fixed period of time using a sampling pulse synchronized with the sample surface vibration control signal.

また、流れの中の粒子検出に対する70−サイムメータ
や光による粒子検出装置は、例えは特開昭61−270
659号公報、特開昭62−25256号公報、特開昭
62−25237号公報に記載されているように、フロ
ーセルを流れる流束の中心に粒子を流下させ、流れの中
の一点にレーザー光を照射し、この散乱光を経時的に測
定することによシ粒子の通路を検出していた。fFVc
、特開昭61−270639号公報では、0°方向と9
0°方向とに発した散乱光及び蛍光を検出していた。こ
の時、各装置では、受光手段に1接通過したレーザー光
線が入射しないように、遮蔽板を設置するか、受光手段
をレーザー光線の光軸から数度の傾斜角をつけて設置し
ていた。
In addition, the 70-cymemeter and optical particle detection device for detecting particles in a flow are disclosed in Japanese Patent Application Laid-open No. 61-270, for example.
As described in JP-A No. 659, JP-A No. 62-25256, and JP-A No. 62-25237, particles are made to flow down to the center of a flux flowing through a flow cell, and a laser beam is applied to a point in the flow. The path of the particles was detected by irradiating the particles with light and measuring the scattered light over time. fFVc
, in Japanese Patent Application Laid-Open No. 61-270639, 0° direction and 9
Scattered light and fluorescence emitted in the 0° direction were detected. At this time, in each device, a shielding plate was installed or the light receiving means was installed at an inclination angle of several degrees from the optical axis of the laser beam so that the laser beam that passed directly through the light receiving means did not enter the light receiving means.

〔発明が解決しようとする課題〕 上記従来技術の中で、測光装置では、測光位置決め手段
は、試料セルの低動に同期し℃サンプリングした分光器
の積分出力により判定するため。
[Problems to be Solved by the Invention] In the above-mentioned prior art, in the photometric device, the photometric positioning means makes a determination based on the integrated output of the spectrometer that performs temperature sampling in synchronization with the low movement of the sample cell.

試料が試料セルと同時に移動しなければならないという
点につい℃の配慮がされておらず、流体中の試料に対す
る適用性の問題があった。
The fact that the sample must move at the same time as the sample cell did not take temperature into consideration, and there was a problem with its applicability to samples in fluids.

また、上記位置決め手段には、機械的振動が伴うため1
1動速度及び移動距離には限界があるという点について
配慮がなされておらず、暢広い領域にわたりて精度良く
試料位置の検出を行うためには、長時間かかるという問
題点があった。
In addition, since the above-mentioned positioning means is accompanied by mechanical vibration,
No consideration was given to the fact that there are limits to the speed of one movement and the distance traveled, and there was a problem in that it took a long time to accurately detect the sample position over a wide area.

さらに、有限の幅を持つ光ビームの中を試料が通過する
ためには、光ビームの幅を試料の移動速度で割ジ算した
だけの時間がかかるという点についての配慮がなされて
3らず、位置分解能が制限されるという問題点があった
Furthermore, no consideration has been given to the fact that for a sample to pass through a light beam with a finite width, it takes time equal to the width of the light beam divided by the moving speed of the sample. However, there was a problem in that the positional resolution was limited.

一方、フローサイムメータや光による粒子検出装置は、
−点を通過する試料の数とその性質を検出するための装
置であるため1位置の変化に苅する検出方法という点が
配慮されておらず、ある幅金持りて泳れる流束中の試料
位置の検出には適さないという問題点があった。
On the other hand, flow cytometers and optical particle detection devices
- Since this is a device for detecting the number of samples passing through a point and their properties, it does not take into consideration the detection method that detects changes in one position, and samples in a flux that can swim with a certain width are not considered. There was a problem in that it was not suitable for position detection.

本発明の課題は、機械的手段を用いることなく。The object of the invention is to do so without using mechanical means.

精度良く流体中の粒子位i1ヲ検出する技術を供するこ
とにより、上記に述べたような従来技術の問題点を解決
することにある。
The object of the present invention is to solve the above-mentioned problems of the prior art by providing a technique for detecting the particle level i1 in a fluid with high accuracy.

〔課題を解決するだめの手段〕[Failure to solve the problem]

上記課題は、光源からの光を平行光線とする手段と、レ
ンズ及び試料の像位置に設置した1次元又は2久尤の画
鐵素子から成る受光部とを設置し。
The above-mentioned problem is achieved by installing a means for converting light from a light source into parallel light beams, and a light receiving section consisting of a lens and a one-dimensional or two-dimensional picture element placed at the image position of the sample.

試料によジ散乱された平行光線の散乱位置をレンズ及び
その微位置に設置した面識素子から成る受光部により検
出することにより達成される。
This is achieved by detecting the scattering position of the parallel light rays scattered by the sample using a light receiving section consisting of a lens and a surface recognition element placed at the very position of the lens.

ここで、試料により散乱された平行光線の散乱強度分布
は1等方的もしくは前方散乱が最も強いことが予想され
るため、受光部の光軸を光源から試料面への光路の延長
線上に設置することが効果的である。
Here, the scattering intensity distribution of parallel light rays scattered by the sample is expected to be monoisotropic or forward scattering is the strongest, so the optical axis of the light receiving section is set on the extension of the optical path from the light source to the sample surface. It is effective to do so.

これと同時に、レンズを透過した光源からの直接光によ
り試料からの散乱光が干渉されるのを防ぐために、M接
光成分が画@素子に入射しないようレンズの焦点位置に
遮蔽板を設置する。この時、散乱光の強度の低下を抑制
するため、遮蔽板は十分小さなものとする。
At the same time, in order to prevent the scattered light from the sample from being interfered with by the direct light from the light source that has passed through the lens, a shielding plate is installed at the focal point of the lens to prevent the M incidental light component from entering the image @ element. . At this time, the shielding plate is made sufficiently small in order to suppress a decrease in the intensity of the scattered light.

〔作用」 試料面に投光された平行光線は、試料面上の平行光線が
横切る面内の任意の位置VC分布する試料により散乱さ
れる。この時、散乱された平行光線は、試料の通過位置
、試料の濃度、試料の糧類。
[Operation] Parallel light beams projected onto the sample surface are scattered by the sample having a VC distribution at any position within the plane intersected by the parallel light beams on the sample surface. At this time, the scattered parallel light beams reflect the passing position of the sample, the concentration of the sample, and the food of the sample.

形状及び穐類の数により、異なる散乱位置及び散乱強度
を作り出す。それにエフ、試料が通過した位置で散乱し
た光は受光レンズにより集光され、画@素子上の対応す
る位置に結像するため、11!11家素子上での受光位
置及び受光強度全データ処理回路1cEいて比較演算す
ることにより、試料の通過位置及び試料の濃度を検出す
ることができる。
The shape and number of pharyngeals create different scattering positions and scattering intensities. In addition, since the light scattered at the position where the sample passed is focused by the light receiving lens and formed into an image at the corresponding position on the image element, all data on the light receiving position and light receiving intensity on the 11!11 element are processed. By performing comparison calculations in the circuit 1cE, the passing position of the sample and the concentration of the sample can be detected.

ここで、レンズ及び1次元又は2次元の画gR索子から
なる受光部の光軸は、光源から試料面への光路の延長線
上に設置し、レンズの焦点位置に設置した微小な遮蔽板
が光源から試料面を透過した平行光線t′:iX断する
ことにより、試料からの削方散乱光のみを検出する。こ
れによジ5画gR素子に到達する試料からの散乱光は、
他の方向に光@を設置した場合の強度に比較し、同程度
もしくはそれ以上の強度となる。
Here, the optical axis of the light receiving section consisting of a lens and one-dimensional or two-dimensional image gratings is set on the extension of the optical path from the light source to the sample surface, and a minute shielding plate is set at the focal point of the lens. By cutting off the parallel light t':iX transmitted from the light source through the sample surface, only the cutting-scattered light from the sample is detected. As a result, the scattered light from the sample that reaches the 5-pixel gR element is
Compared to the intensity when the light is placed in other directions, the intensity is the same or higher.

また、遮蔽板により直接光が画gR素子に入射しないこ
とから、直接光が入射した画素からの電荷のしみ出しが
無くなり、受光感度を向上させることかできる。
Furthermore, since the shielding plate prevents direct light from entering the image gR element, there is no charge seepage from the pixel into which the direct light is incident, and the light-receiving sensitivity can be improved.

〔実施例〕〔Example〕

以下1図面を参照し℃本発明の一実施例について説明す
る。
An embodiment of the present invention will be described below with reference to one drawing.

第1図において、レーザー発振器1とその光軸上にある
シリンドリカルレンズ2.シリンドリカルレンズ3から
成る光源に対し、試料面4をはさんだ光軸上に集光レン
ズ6及び1次元の画像素子9を設置する。この時、集光
レンズ6に隣接してしほり5を設置すると同時に、光透
過性の材料で作った遮蔽板支持部8により支持された微
小な遮蔽板7を集光レンズ6の焦点位=VC設置し5焦
点位置を中心に微詞整ができるようにする。
In FIG. 1, a laser oscillator 1 and a cylindrical lens 2 located on its optical axis are shown. A condensing lens 6 and a one-dimensional image element 9 are placed on the optical axis of a light source consisting of a cylindrical lens 3, sandwiching a sample surface 4 therebetween. At this time, a shield 5 is installed adjacent to the condensing lens 6, and at the same time, a minute shielding plate 7 supported by a shielding plate support part 8 made of a light-transmitting material is placed at the focal point of the condensing lens 6 = VC. It is installed so that fine words can be adjusted around the five focal points.

第1図の中で、レーザー発振器1かも出たレーザー光線
11は、シリンドリカルレンズ2にLり、扇形のレーザ
ー光線12となり広げられ、十分な幅に広がった位置で
、シリンドリカルレンズ5VCよV暢を持った平行光線
となる。こうして得られた平行レーザー光線16に、散
乱位[21で試料面4と交叉する。この時試料が無い位
置に入射した平行レーザー光庫16は、平行状態全保ち
ながらしぼり5及び集光レンズ6に到達する。集光レン
ズ6では、平行レーザー光線16は、焦点位置に向かう
集光レーザー光線14になり、遮蔽板7に到達し、光路
を終了する。−万、試料面4の面内を流れる試料A、試
料B、・・・の位置に入射した平行V−ザー″”IQ艇
15の1部は、それぞれの試料により散乱を受けるため
、試料Aからの散乱光201.試料Bかもの散乱光20
2.・・・ となり、しぼり5によりしぼられ、集光レ
ンズ6により集光され、画#!素子9に到達する。
In Fig. 1, the laser beam 11 emitted from the laser oscillator 1 hits the cylindrical lens 2, becomes a fan-shaped laser beam 12, and spreads out, and at the position where it has spread to a sufficient width, the laser beam 11 reaches the cylindrical lens 5VC. Becomes parallel rays. The parallel laser beam 16 thus obtained intersects the sample surface 4 at the scattering position [21]. At this time, the parallel laser light chamber 16, which has entered a position where there is no sample, reaches the aperture 5 and the condenser lens 6 while maintaining its parallel state. In the condensing lens 6, the parallel laser beam 16 turns into a condensed laser beam 14 directed toward the focal position, reaches the shielding plate 7, and ends the optical path. - A part of the parallel V laser IQ boat 15 that is incident on the position of sample A, sample B, etc. flowing within the surface of the sample surface 4 is scattered by each sample, so sample A Scattered light from 201. Sample B scattering light 20
2. . . . Then, the light is squeezed by the aperture 5 and condensed by the condensing lens 6, resulting in image #! It reaches element 9.

第2図には、受光部の元軸と試料面4が交叉する点を試
料Aが通過する場合の散乱光201の光路と、平板状の
平行レーザー光線13及び集光レーザ光線14の光路と
、しぼり5.集光レンズ6、光透過性の材料で作った遮
蔽板支持部8&′cより支持された遮蔽板7及び画yR
素子9の関係を示した横断面図を示す。この時、光軸ま
わりの微小角方向に散乱した散乱光及び散乱を受けなか
った部分は集光レンズ6にLり集光され、遮蔽板7によ
り遮断され、光路を終了する。このため、影領域301
の方向に入射した散乱光は画像素子91’(到達できな
い。このため、遮蔽板7はで性るだけ小さくする必要が
ある。また、平行レーザー光線13が、完全に平行な場
合には、集光レーザー光[14は、集光レンズの焦点位
置で無限小となるはずである。このことから、遮蔽板は
取付誤差及び加工精度の点から許容できる最小の大きさ
とすることにより影領域501ヲ小さくすることができ
る。このような影領域501は、試料による元の散乱が
散乱位置21のうちの受光部の元軸と交叉する位置の近
辺でのみ発生する。
FIG. 2 shows the optical path of the scattered light 201 when the sample A passes through the point where the original axis of the light receiving section and the sample surface 4 intersect, and the optical paths of the flat parallel laser beam 13 and the condensed laser beam 14, Squeeze 5. A condenser lens 6, a shielding plate 7 supported by a shielding plate support part 8&'c made of a light-transmitting material, and an image yR.
A cross-sectional view showing the relationship of elements 9 is shown. At this time, the scattered light scattered in small angle directions around the optical axis and the unscattered portion are condensed by the condenser lens 6, blocked by the shielding plate 7, and complete the optical path. Therefore, the shadow area 301
The scattered light incident in the direction of the image element 91' cannot reach the image element 91'. Therefore, the shielding plate 7 must be made as small as possible. Also, if the parallel laser beams 13 are completely parallel, the condensing light cannot reach the image element 91'. The laser beam [14] should become infinitely small at the focal point of the condensing lens. Therefore, the shadow area 501 can be made smaller by making the shielding plate the minimum size that is allowable in terms of installation error and processing accuracy. Such a shadow region 501 occurs only in the vicinity of the position where the original scattering by the sample intersects the original axis of the light receiving part in the scattering position 21.

ここで、各試料により散乱を受けた谷散乱光は各試料の
濃度分布及び特性に応じた散乱パターン金主じるため、
集光レンズ6により画m累子9&C集光された散乱光は
試料の種類及び濃度分布に応じた強度分布を示す。第5
図#Cは、試料の種類及び濃度分布の差異による画@素
子での強度分布を示す。
Here, since the valley scattered light scattered by each sample has a scattering pattern depending on the concentration distribution and characteristics of each sample,
The scattered light collected by the condenser lens 6 exhibits an intensity distribution depending on the type and concentration distribution of the sample. Fifth
Figure #C shows the intensity distribution in the image@element due to differences in sample type and concentration distribution.

第6図において、効率曲線401は、しぼり5゜集光レ
ンズ6及び遮蔽板7と、試料により生じる散乱位置21
上での元の散乱の発生位置との相対関係により変化する
受光効率を示す。また、受光強度分布501i4.試料
面上での試料の中心位置を集光レンズにより結歇させた
画@素子上の位1taoを中心として分布する。この時
の画像素子上の位置d0での受光強度を工。とじた場合
、受光強度が10/となる画像素子上での位置d0かも
の距離を半値幅W0とする。これらの各パラメータは、
試料の特性との間に以下の関係を持つ。
In FIG. 6, the efficiency curve 401 shows the scattering position 21 caused by the aperture 5° condenser lens 6 and shielding plate 7, and the sample.
This shows the light receiving efficiency that changes depending on the relative relationship with the original scattering occurrence position above. In addition, the received light intensity distribution 501i4. An image obtained by concentrating the center position of the sample on the sample surface with a condensing lens is distributed centered at position 1tao on the element. Calculate the received light intensity at position d0 on the image element at this time. When the sheets are closed, the distance from the position d0 on the image element where the received light intensity becomes 10/ is defined as the half width W0. Each of these parameters is
It has the following relationship with the characteristics of the sample.

do工試料の中心位置 I(Ice(試料1個あたりの散乱強度)×(試料の中
心濃度) Wo−(試料の濃度分布) ここで、試料1個あたりの散乱強度は試料の特性を示す
電であり、注入した試料の種別があらかじめ分かつ℃い
れは決定できる。このため、上記のパラメータd。、工
。、 vr、を測定することにより試料の濃度分布及び
試料の位置を決定することができる。この時、試料面4
の上での濃度分布が異なる場合の画像素子上の強度分布
を受光強度分布502.505を示す。
Center position I of the do-engineered sample (Ice (scattered intensity per sample) x (center concentration of sample) Wo- (concentration distribution of sample) Since the type of sample injected is known in advance, the temperature can be determined.Therefore, by measuring the above parameters d., d., and vr, the concentration distribution of the sample and the position of the sample can be determined. At this time, sample surface 4
The received light intensity distributions 502 and 505 show the intensity distributions on the image element when the density distributions on the image elements are different.

頂た、他の試料が存在する場合、試料からの散乱光は、
受光強度分布に反映する。この時、他の試料の散乱光に
よる受光強度分布504は、受光強度分布501とは別
の位置に中心を持ち、受光強度分布5011C270算
される。この時、受光強度分布の重なりは、試料濃度分
布の重なりに等しい。この場合、データ処理部において
、信号処理を行うことにより、各試料での工。+ dO
e ”O#・・・全米めることができる。
If there is another sample at the top, the scattered light from the sample is
Reflected on the received light intensity distribution. At this time, the received light intensity distribution 504 due to the scattered light of other samples has its center at a different position from the received light intensity distribution 501, and the received light intensity distribution 5011C270 is calculated. At this time, the overlap of the received light intensity distributions is equal to the overlap of the sample concentration distributions. In this case, the data processing unit performs signal processing to improve the accuracy of each sample. +dO
e "O#...Can be used all over the United States.

さらに、試料が、試料面に垂直な方向に分布している場
合でも、しばり5の半径を十分小さく取ることにより、
散乱光201.散乱光202.・・・の焦点深度が深(
なる。これ[エフ画像素子上での試料の@による受光強
度分布501,502,503,504.・・・は。
Furthermore, even if the sample is distributed in a direction perpendicular to the sample surface, by making the radius of the tie 5 sufficiently small,
Scattered light 201. Scattered light 202. ... has a deep depth of focus (
Become. This [Received light intensity distribution 501, 502, 503, 504 by @ of the sample on the F image element. ···teeth.

焦点の不一致による濠の広がりが無くなり、試料面4の
上での幅方向の試料の#に腿分布を正確に受光強度分布
に反映することができる。
The widening of the moat due to focal mismatch is eliminated, and the width distribution of the sample in the width direction on the sample surface 4 can be accurately reflected in the received light intensity distribution.

以上のことから、工Os ”On ”Oe・・・等の情
報により、試料面上を流れる試料の中心位置、試料の中
心濃度及び試料の濃度分布をより精度良く推定すること
ができる。
From the above, the center position of the sample flowing on the sample surface, the center concentration of the sample, and the concentration distribution of the sample can be estimated with higher accuracy using the information such as "Os"On"Oe...".

本実施例によれば、受光レンズの焦点付近VcB蔽板装
置くことにより、光源からの直接光による散乱光への干
渉を軽減することができ、微弱な散乱光を高精度に測定
できるという効果がある。また、受光レンズ前にしぼり
を設置することにより、焦点の不一致による像の広がり
が無なくなることから、測定精度を向上するという効果
がある。また、5画像素子上での受光強度分布に対して
信号処理を行うことにより試料面上を流れる試料の位置
及び濃度分布を決定することから、データ処理を高効率
化するという効果がある。
According to this embodiment, by providing a VcB shielding plate device near the focal point of the light receiving lens, it is possible to reduce interference with scattered light caused by direct light from the light source, and the effect is that weak scattered light can be measured with high precision. There is. Furthermore, by installing the aperture in front of the light receiving lens, there is no spread of the image due to mismatch in focus, which has the effect of improving measurement accuracy. Further, since the position and concentration distribution of the sample flowing on the sample surface are determined by performing signal processing on the distribution of received light intensity on the five image elements, there is an effect of increasing the efficiency of data processing.

次に、平行光線が試料面上の有限領域全照射する1鴫で
、試料面上を走査する場合の実施例t−第4図に示す。
Next, Example t is shown in FIG. 4 in which the sample surface is scanned by a parallel beam of light that irradiates the entire limited area on the sample surface.

第4図[Eける構成は、第1図における構成の中のシリ
ンドリカルレンズ2.シリンドリカルレンズ50組合せ
をスキャナ2人に置き換えている。
The configuration shown in FIG. 4 is the cylindrical lens 2. in the configuration shown in FIG. The combination of 50 cylindrical lenses is replaced with two scanners.

この時、スキャナ2人から発し次走査レーザー光線12
Aは、試料面上の散乱位!21上を走査する。
At this time, the next scanning laser beam 12 is emitted from the two scanners.
A is the scattering position on the sample surface! 21.

この内、試料が無い位置に入射した走査レーザー−/l
、線12Aは、しぼり5の位置に到達する。ここで。
Of these, the scanning laser incident on the position where there is no sample -/l
, line 12A reaches the position of the iris 5. here.

しぼりの穴位置に入射した走査レーザー光線12Aは、
集光レンズ6[到達し、焦点位置に向かう集光レーサー
光線14AKな9、遮蔽板7Vc到達し、光路を終了す
る。一方、試料面4の面内を流れる試料ム、試料B、・
・・の位tvc入射した走査レーザー光#12Aは、第
1図の実施例と同様に、散乱光201、散乱光2o2.
・・・となり、しぼジ5vcよりしぼられ、集光レンズ
6により画@素子9上に集光される。
The scanning laser beam 12A incident on the iris hole position is
The condensing laser beam 14AK reaches the condensing lens 6 and heads toward the focal position, and the condensed laser beam 14AK reaches the shielding plate 7Vc, completing the optical path. On the other hand, sample beams flowing within the plane of sample surface 4, sample B, ・
The scanning laser beam #12A incident on the tvC has a scattered light 201, a scattered light 2o2, .
. . , the light is squeezed by the squeezer 5vc and focused onto the image @element 9 by the condensing lens 6.

本実施例によれば、第1図に示す実施例に加えて、試料
面での平行光線の密度を高(することができることから
、散乱確率のより小さな試料に対しても適応できるとい
う効果がある。
According to this embodiment, in addition to the embodiment shown in FIG. 1, it is possible to increase the density of parallel rays on the sample surface, so that it can be applied even to samples with a smaller scattering probability. be.

また、第1図及び第4図では一次元的な試料の位置を検
出することを主体として記述した。
In addition, in FIGS. 1 and 4, the description is focused on detecting the one-dimensional position of the sample.

これらの実施例のうち、第1図においてシリンドリカル
レンズ2及びシリンドリカルレンズ5yk通常のレンズ
2′を レンズ6′に、また1画像素子9を2久元の画
像素子9′に置き換えることにより、試料面4の上の2
次元的な試料の分布を検出することができる。同様のこ
とは、第4図に2いて。
In these embodiments, the cylindrical lens 2 and the cylindrical lens 5y in FIG. 2 above 4
Dimensional sample distribution can be detected. The same thing is shown in Figure 4.

スキャナ2人のスキャン領域を試料面上の2次元的な領
域とし1画像素子9を2次元の画像素子9′に置き換え
ることにより達成できる。
This can be achieved by making the scanning area of the two scanners a two-dimensional area on the sample surface and replacing one image element 9 with a two-dimensional image element 9'.

本実施例によれば、前述の効果に加えて、試料の分布を
2人元的に検出することができると共に、経時的に信号
処理することにより、試料の2人元的な運動全解析する
ことができるという効果がある。
According to this embodiment, in addition to the above-mentioned effects, the distribution of the sample can be detected in a two-dimensional manner, and by performing signal processing over time, the entire motion of the sample can be analyzed in a two-dimensional manner. It has the effect of being able to

ま九、光源としては、一般のランプ、発光ダイオード等
が使えるが、特に1発光源をレーザー発振器とすること
により、平行光線を得るための光学的機構が簡略化され
ると共に、同じ強度の光束を得るための電力が軽減され
る。さらに、ガスレーザー又は半導体レーザーとレンズ
又は円柱レンズにより得られた平行光線は単色光である
ため。
9. General lamps, light emitting diodes, etc. can be used as light sources, but by using a laser oscillator as one light source, the optical mechanism for obtaining parallel light beams is simplified, and the same intensity of light beams can be obtained. The power required to obtain this is reduced. Furthermore, the parallel light beam obtained by a gas laser or semiconductor laser and a lens or cylindrical lens is monochromatic light.

受光部のレンズでの色収差を考慮する必要が無くなるこ
とから、受光部の機構が簡略化されると共に受光部全体
の重量が軽減される。
Since there is no need to consider chromatic aberration in the lens of the light receiving section, the mechanism of the light receiving section is simplified and the weight of the entire light receiving section is reduced.

もちろん、上記の実施例に2いて光源をレーザー発振器
としたが1通常のランプ、発光ダイオード等を用い九、
任意の平行光線を発生する手段としても良い。
Of course, in the above embodiment 2 the light source was a laser oscillator, but 1 a normal lamp, a light emitting diode, etc.
It may also be a means for generating arbitrary parallel light rays.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、機械的振動を行わず、電気的走査のみ
で試料面全幅を走査できるので、高速処理を行えるとい
う効果がある。
According to the present invention, since the entire width of the sample surface can be scanned only by electrical scanning without mechanical vibration, there is an effect that high-speed processing can be performed.

ま九、画像素子又は撮像管により散乱光を検出すること
から、画像素子又は撮潅管の分解能までは、試料検出の
分解能を向上できるという効果がある。
(9) Since the scattered light is detected by the image element or the image pickup tube, there is an effect that the resolution of sample detection can be improved up to the resolution of the image element or the image pickup tube.

さらに、平行光線’e使用し、集光レンズ及び遮蔽板の
組合せにより散乱光を画像素子上に結像させることから
、受光強度分布が明瞭となり、この受光強度分布を正確
に測定することができる。このため、試料の中心位置及
び試料の濃度分布が簡単な演算で処理できるため、デー
タ処理を高速化することがでなるという効果がある。
Furthermore, since the scattered light is imaged on the image element using parallel light beams and a combination of a condensing lens and a shielding plate, the received light intensity distribution becomes clear, and this received light intensity distribution can be measured accurately. . Therefore, the center position of the sample and the concentration distribution of the sample can be processed with simple calculations, which has the effect of speeding up data processing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による光学検出装置の光源、
試料面、集光レンズ、遮蔽板及び1陳素子の相対位置を
示す概観図、第2図は第1図の装置の試料からの散乱光
と直接光の関係を示す横断面図、第3図はある程度の濃
度分布を持つ数種類の試料による画m素子上での受光強
度分、lF5ヲ示す図、第4図は第1図の装置における
光源を走査平行光線に置き換えた揚合の概観図を示す。 1・・・レーザー発振器・ 2.3・・・シリンドリカルレンズ。 4・・・試料面、     5・・・しぼり。 6・・・集光レンズ、   7・・・遮蔽板。 9.9′・・・画像素子5 A、B、O・・・試料A 、 B 、 0゜501.5
02,505,504・・・受光強度分布。 2人・・・ス中ヤナ。 亘イ象 A(でトr−0づ立 1も
FIG. 1 shows a light source of an optical detection device according to an embodiment of the present invention;
Fig. 2 is a cross-sectional view showing the relationship between scattered light and direct light from the sample of the apparatus shown in Fig. 1; is a diagram showing the intensity of light received on the pixel m element by several types of samples with a certain degree of concentration distribution, IF5, and Figure 4 is an overview diagram of the device in Figure 1 when the light source is replaced with a scanning parallel beam. show. 1... Laser oscillator 2.3... Cylindrical lens. 4...Sample surface, 5...Squeezing. 6... Condenser lens, 7... Shielding plate. 9.9'... Image element 5 A, B, O... Sample A, B, 0°501.5
02,505,504...Received light intensity distribution. Two people...Suchu Yana. Wataru Elephant A

Claims (1)

【特許請求の範囲】 1、試料が移動する試料面と、試料面に光を投光する光
源と、試料面を通過した光を集光するレンズと、データ
処理回路とから成る光学検出装置において、上記光源か
らの光を平行光線とする手段と、上記レンズ及び試料の
像の位置に設置した1次元又は2次元の画像素子から成
る受光部とを有することを特徴とする光学検出装置。 2、請求項1において、試料面上の任意の位置にある試
料からの前方散乱光を検出するため、レンズ及び画像素
子を光源から試料面への光路の光軸上での延長線上に設
置したことを特徴とする光学検出装置。 3、請求項1又は2において、レンズを透過した光源か
らの直接光が画像素子に入射しないよう、レンズの光軸
上の焦点位置に遮蔽板を設置したことを特徴とする光学
検出装置。4、請求項14において、平行光線を試料面
の一点又は有限の領域を照射する幅とし、試料面を上記
平行光線が走査することにより試料面上の必要な領域を
照射することを特徴とする光学検出装置。 5、請求項1において、平行光線を試料面の十分広い領
域を照射できる幅とし、試料面を平行光線が走査するこ
となく試料面上の必要な領域を照射することを特徴とす
る光学検出装置。
[Claims] 1. In an optical detection device consisting of a sample surface on which the sample moves, a light source that projects light onto the sample surface, a lens that focuses the light that has passed through the sample surface, and a data processing circuit. An optical detection device comprising: means for converting the light from the light source into parallel light beams; and a light receiving section comprising a one-dimensional or two-dimensional image element installed at the position of the lens and the image of the sample. 2. In claim 1, in order to detect forward scattered light from a sample located at an arbitrary position on the sample surface, the lens and image element are installed on an extension line on the optical axis of the optical path from the light source to the sample surface. An optical detection device characterized by: 3. The optical detection device according to claim 1 or 2, characterized in that a shielding plate is installed at a focal point position on the optical axis of the lens so that direct light from the light source transmitted through the lens does not enter the image element. 4. Claim 14 is characterized in that the parallel light beam has a width that illuminates one point or a finite area on the sample surface, and by scanning the sample surface with the parallel light beam, a necessary area on the sample surface is irradiated. Optical detection device. 5. The optical detection device according to claim 1, characterized in that the parallel light beam has a width that can illuminate a sufficiently wide area of the sample surface, and the parallel light beam illuminates a necessary area on the sample surface without scanning the sample surface. .
JP63065704A 1988-03-22 1988-03-22 Optical detector Expired - Lifetime JP2776823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63065704A JP2776823B2 (en) 1988-03-22 1988-03-22 Optical detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63065704A JP2776823B2 (en) 1988-03-22 1988-03-22 Optical detector

Publications (2)

Publication Number Publication Date
JPH01239434A true JPH01239434A (en) 1989-09-25
JP2776823B2 JP2776823B2 (en) 1998-07-16

Family

ID=13294674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63065704A Expired - Lifetime JP2776823B2 (en) 1988-03-22 1988-03-22 Optical detector

Country Status (1)

Country Link
JP (1) JP2776823B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505297A (en) * 2003-09-12 2007-03-08 オー−プン・アンパルトセルスカブ System and method for locating radiation scattering / reflecting elements
JP2019506622A (en) * 2016-01-25 2019-03-07 プレアー ソシエテ・アノニム Method and apparatus for detection and / or structural analysis of individual flowing particles in a fluid
KR20230072854A (en) * 2021-11-18 2023-05-25 이화여자대학교 산학협력단 A system for measuring microplastics based on dynamic image analysis

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122290A (en) * 1974-02-27 1975-09-25
JPS61288139A (en) * 1985-06-17 1986-12-18 Fuji Electric Co Ltd Fine particle detecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122290A (en) * 1974-02-27 1975-09-25
JPS61288139A (en) * 1985-06-17 1986-12-18 Fuji Electric Co Ltd Fine particle detecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505297A (en) * 2003-09-12 2007-03-08 オー−プン・アンパルトセルスカブ System and method for locating radiation scattering / reflecting elements
JP4859053B2 (en) * 2003-09-12 2012-01-18 フラットフロッグ・ラボラトリーズ・アクチボラゲット System and method for locating radiation scattering / reflecting elements
JP2019506622A (en) * 2016-01-25 2019-03-07 プレアー ソシエテ・アノニム Method and apparatus for detection and / or structural analysis of individual flowing particles in a fluid
KR20230072854A (en) * 2021-11-18 2023-05-25 이화여자대학교 산학협력단 A system for measuring microplastics based on dynamic image analysis

Also Published As

Publication number Publication date
JP2776823B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
US5717485A (en) Foreign substance inspection apparatus
US4669875A (en) Foreign particle detecting method and apparatus
KR100322326B1 (en) Inspection system with in-lens off-axis illuminator
US6428171B1 (en) Height measuring apparatus
US5270794A (en) Fine structure evaluation apparatus and method
US5576831A (en) Wafer alignment sensor
US20080013084A1 (en) Surface Inspection Method and Surface Inspection Apparatus
JPH0329318B2 (en)
US4748333A (en) Surface displacement sensor with opening angle control
US7548309B2 (en) Inspection apparatus, inspection method, and manufacturing method of pattern substrate
USRE33991E (en) Foreign particle detecting method and apparatus
JP2003017536A (en) Pattern inspection method and inspection apparatus
JPH05198476A (en) Projection lens evaluation apparatus and evaluation thereof
JPH01239434A (en) Optical detecting device
JPS63140904A (en) Scattered light measuring instrument
JPH0616480B2 (en) Reduction projection type alignment method and apparatus
JP3040131B2 (en) Spherical surface scratch inspection device
JPH04142410A (en) Shape recognizing device
JPH0661115A (en) Gap detection and setting device
JPH0725618Y2 (en) Displacement measuring device
JPH05215515A (en) Displacement detecting apparatus
US20030184750A1 (en) Ellipsometer or reflectometer with elliptical aperture
JPH0715366B2 (en) Object position detection optical device
JP2565274B2 (en) Height measuring device
JPH0442621B2 (en)