JPH04142410A - Shape recognizing device - Google Patents

Shape recognizing device

Info

Publication number
JPH04142410A
JPH04142410A JP2263827A JP26382790A JPH04142410A JP H04142410 A JPH04142410 A JP H04142410A JP 2263827 A JP2263827 A JP 2263827A JP 26382790 A JP26382790 A JP 26382790A JP H04142410 A JPH04142410 A JP H04142410A
Authority
JP
Japan
Prior art keywords
optical component
light
illumination
measured
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2263827A
Other languages
Japanese (ja)
Other versions
JP2633718B2 (en
Inventor
Shinichi Uno
宇野 伸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2263827A priority Critical patent/JP2633718B2/en
Publication of JPH04142410A publication Critical patent/JPH04142410A/en
Application granted granted Critical
Publication of JP2633718B2 publication Critical patent/JP2633718B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To measure the shape with high precision by focusing the illumination light radiated from the illumination light source of an optical system with a focusing lens. CONSTITUTION:An illuminating optical component 13 and a detecting optical component 20 with fine lines 16, 23 are provided, an optical system 10 and a measured object 4 are relatively moved, the shape of the measured object 4 is obtained from the position where the light intensity detected by a light detector 21 becomes the minimum value, the focal point, i.e., the position of the measured body 4, can be easily detected by the detection of the lowest light intensity, and the three-dimensional shape of the measured object 4 can be recognized by further performing a scan. The illuminating optical component 13 and detecting optical component 20 with fine lines 16, 23 are used, even if the measured object 4 is an object with large forward reflected light, e.g., solder, metal or a mirror, to extremely increase the forward reflected light quantity, the three-dimensional shape can be precisely recognized when dark portions of the fine lines 16, 23 are overlapped, and the three-dimensional shape can be recognized even if copper Cu and aluminum Al are mixed on the surface and the reflection coefficient distribution on the surface differs.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は形状認識装置に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a shape recognition device.

(従来の技術) 形状を認識する方法として、2台のカメラを用いるステ
レオ法や複数の照明の散乱光強度から面の傾きを求める
照度差ステレオ法や、スリット光を投影し、その光切断
線から形状を認識する方法などがある。
(Prior art) Methods for recognizing shapes include a stereo method using two cameras, a photometric stereo method that calculates the inclination of a surface from the intensity of scattered light from multiple lights, and a method that projects a slit light and calculates its optical cutting line. There are ways to recognize shapes from

また、共焦点を利用して物体の形状を認識する代表的な
例として走査型レーザ顕微鏡がある。この走査型レーザ
顕微鏡は極めて焦点深度が浅い光学系を利用して、動植
物などの被測定物の断層透視を行うために開発されたも
のである。これは被測定物に微小な径のスポット光を照
射すると、スポット光が集光した位置以外では光量が低
下して暗くなるため、スポット光の焦点位置と、横比系
の焦点位置が合焦しなければ結像しないというものであ
った。このことを利用して表面粗さなど非常に微細な凹
凸の形状検出に用いられている。
Further, a scanning laser microscope is a typical example of recognizing the shape of an object using confocal light. This scanning laser microscope was developed to perform tomographic observation of objects to be measured, such as animals and plants, using an optical system with an extremely shallow depth of focus. This is because when a spot light with a minute diameter is irradiated onto the object to be measured, the light intensity decreases and becomes dark in areas other than the spot where the spot light is condensed, so the focal position of the spot light and the focal position of the aspect ratio system are in focus. Otherwise, the image would not form. This fact is used to detect the shape of very fine irregularities such as surface roughness.

(発明が解決しようとする課題) ステレオ法、照度差ステレオ法や光切断法による形状認
識は、カメラ同士の位置またはカメラと光源との位置関
係に精密さを要求される他、検出対象に限定がかかり、
画像処理の時間も膨大なものとなっている。また、測定
光を被測定体に照射しているので、被測定体が正反射の
大きなもの、例えば金属であれば、被測定体からの反射
光の強度が非常に大きくなって被測定体の形状が測定不
可能となる。
(Problems to be Solved by the Invention) Shape recognition using the stereo method, photometric stereo method, or optical section method requires precision in the position of the cameras or the positional relationship between the camera and the light source, and is limited to the detection target. It takes a while,
The time required for image processing is also enormous. In addition, since the measurement light is irradiated onto the object to be measured, if the object to be measured has a large specular reflection, for example a metal, the intensity of the reflected light from the object to be measured will be very large. The shape becomes unmeasurable.

走査型レーザ顕微鏡では微小スポットを用いるため、こ
れを走査しなけらばならず、広い範囲を検出しようとす
ると多大な時間を必要とすることとなった。また、上述
の他の測定検出方法と同様に測定光を被測定体に照射し
ているので、やはり金属のように正反射光か大きい被測
定体には、反射レーザ光の強度が非常に大きくなって被
測定体の形状が測定不可能だった。
Since a scanning laser microscope uses a minute spot, it must be scanned, and it takes a lot of time to detect a wide area. In addition, as in the other measurement detection methods mentioned above, the measurement light is irradiated onto the object to be measured, so the intensity of the reflected laser beam is extremely high for objects to be measured that have large specular reflections, such as metals. Therefore, the shape of the object to be measured could not be measured.

そこで本発明は、被測定体か正反射の大きなものでも高
精度に形状を測定でき、また検査時間の短縮を計れる形
状認識装置を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a shape recognition device that can measure the shape of an object to be measured with high precision even if it has a large specular reflection, and can shorten the inspection time.

[発明の構成] (課題を解決するための手段) 本発明は、照明光源と、この照明光源から放射された照
明光を集束する集束レンズと、この集束レンズによる照
明光の集束位置に配置され、かつ一部に所定形状の遮光
部を有した照明用光学部品と、この照明用光学部品を通
過した光を被測定体に照射するとともにこの被測定体上
に映る照明用光学部品の遮光部の影の画像を撮像する撮
像レンズと、この撮像レンズにより撮像された照明用光
学部品の結像位置に配置され、かつ照明用光学部品の遮
光部と同形で光学的に共役の位置に遮光部が形成された
検出用光学部品と、この検出用光学部品を通過した光強
度を検出する光検出器とを有する光学系と、被測定体を
XYZ方向に移動可能な移動機構と、光学系及び移動機
構を相互に移動して光検出器により検出された光強度が
最小値となる位置から前記被測定体の形状を求める測定
手段とを具備した形状認識装置である。この場合、照明
用光学部品および検出用光学部品の遮光部は少なくとも
1本の細線で形成した構成である。
[Structure of the Invention] (Means for Solving the Problems) The present invention includes an illumination light source, a focusing lens that focuses illumination light emitted from the illumination light source, and a focusing lens arranged at a position where the illumination light is focused by the focusing lens. , and a part of the illumination optical component has a light shielding part of a predetermined shape, and a light shielding part of the illumination optical component that irradiates the object to be measured with the light that has passed through the illumination optical component and is reflected on the object to be measured. an imaging lens that captures an image of the shadow of an optical system having a detection optical component formed with a detection optical component, a photodetector that detects the intensity of light that has passed through the detection optical component, a moving mechanism capable of moving the object to be measured in the XYZ directions, an optical system and The shape recognition apparatus includes a measuring means for determining the shape of the object to be measured from a position where the light intensity detected by a photodetector is a minimum value by mutually moving a moving mechanism. In this case, the light shielding portions of the illumination optical component and the detection optical component are formed of at least one thin wire.

また、本発明は、照明光源と、この照明光源から放射さ
れた照明光を集束する集束レンズと、この集束レンズに
よる照明光の集束位置に配置され、かつ一部に所定形状
のスリットを有した照明用光学部品と、この照明用光学
部品を通過した光を被測定体に照射するとともにこの被
測定体上に映る照明用光学部品の遮光部の影の画像を撮
像する撮像レンズと、この撮像レンズにより撮像された
照明用光学部品の結像位置に配置され、かつ照明用光学
部品のスリットと同形で光学的に共役の位置にスリット
が形成された検出用光学部品と、この検出用光学部品を
通過した光強度を検出する光検出器とを有する光学系と
、被測定体をXYZ方向に移動可能な移動機構と、光学
系及び移動機構を相互に移動して光検出器により検出さ
れた光強度が最小値となる位置から被測定体の形状を求
める測定手段とを具備した形状認識装置である。この場
合、照明用光学部品および検出用光学部品のスリットは
少なくとも1本の細い直線形状で構成される。
The present invention also provides an illumination light source, a focusing lens that focuses the illumination light emitted from the illumination light source, and a slit that is disposed at a position where the illumination light is focused by the focusing lens and has a slit of a predetermined shape in a part. An illumination optical component, an imaging lens that irradiates the object to be measured with the light that has passed through the illumination optical component and captures an image of the shadow of the light-shielding portion of the illumination optical component reflected on the object to be measured, and the imaging lens. A detection optical component disposed at the image formation position of the illumination optical component captured by the lens and having a slit formed in the same shape and optically conjugate position as the slit of the illumination optical component; and this detection optical component. an optical system having a photodetector that detects the intensity of light that has passed through the object, a moving mechanism that can move the object to be measured in the XYZ directions, and a moving mechanism that moves the optical system and the moving mechanism mutually to detect the intensity of light that is detected by the photodetector. The present invention is a shape recognition device that includes a measuring means for determining the shape of an object to be measured from a position where the light intensity is at a minimum value. In this case, the slits of the illumination optical component and the detection optical component are configured with at least one thin linear shape.

(作用) このような手段を備えたことにより、光学系の照明光源
から放射された照明光は集束レンズにより集束され、照
明用光学部品を通って撮像レンズにより被測定体上に照
射され、この被測定体上に映る照明用光学部品の遮光部
またはスリットの画像は撮像レンズにより撮像されて検
出用光学部品を通過して光検出器により受光される。こ
のとき、光学系と被測定体とが相互に移動されて光検出
器により検出された光強度が最小値となる位置から被測
定体の形状が求らめる。
(Function) By providing such a means, the illumination light emitted from the illumination light source of the optical system is focused by the focusing lens, passes through the illumination optical component, and is irradiated onto the object to be measured by the imaging lens. An image of the light blocking portion or slit of the illumination optical component reflected on the object to be measured is captured by an imaging lens, passes through the detection optical component, and is received by a photodetector. At this time, the optical system and the object to be measured are moved relative to each other, and the shape of the object to be measured is determined from the position where the light intensity detected by the photodetector has a minimum value.

(実施例) 以下、本発明の第1実施例について図面を参照して説明
する。
(Example) Hereinafter, a first example of the present invention will be described with reference to the drawings.

第1図は形状認識装置の構成図である。XYZテーブル
1はXY子テーブル及びZテーブル3から構成されてお
り、Zテーブル3上には被測定体4が載置されている。
FIG. 1 is a block diagram of a shape recognition device. The XYZ table 1 is composed of an XY child table and a Z table 3, and a measured object 4 is placed on the Z table 3.

このXYzテーブル1の上方には光学系10か配置され
ている。この光学系10には照明光源11が備えられて
いる。この照明光源11は半導体レーザから構成されて
いる。この照明光源11から放射された照明光、つまり
半導体レーザ光の光軸上には円筒レンズ12、照明用光
学部品13が配置されている。照明用光学部品13は集
束レンズ12の集束位置に配置されている。
An optical system 10 is arranged above the XYz table 1. This optical system 10 is equipped with an illumination light source 11. This illumination light source 11 is composed of a semiconductor laser. A cylindrical lens 12 and an illumination optical component 13 are arranged on the optical axis of the illumination light emitted from the illumination light source 11, that is, the semiconductor laser light. The illumination optical component 13 is arranged at the focusing position of the focusing lens 12.

この照明用光学部品13は第2図に示すように光学部品
板14に長方形の窓15を形成し、この窓15の長手方
向に細線16を張ったものである。
As shown in FIG. 2, this illumination optical component 13 has a rectangular window 15 formed on an optical component plate 14, and a thin wire 16 stretched in the longitudinal direction of the window 15.

なお、この照明用光学部品13は第3図に示すように複
数、例えば3本の細線17を平行に張っても良い。
Note that this illumination optical component 13 may include a plurality of thin wires 17, for example, three thin wires 17 stretched in parallel as shown in FIG.

前記照明光源11の光軸上にはハーフミラ−18か配置
されている。このハーフミラ−18の反射方向には撮像
レンズ19が配置され、かっこの反射方向とは逆方向に
は検出用光学部品2o及び光検出器21が配置されてい
る。
A half mirror 18 is arranged on the optical axis of the illumination light source 11. An imaging lens 19 is arranged in the reflection direction of the half mirror 18, and a detection optical component 2o and a photodetector 21 are arranged in a direction opposite to the reflection direction of the parentheses.

撮像レンズ19はハーフミラ−18により反射した光学
部品光を集束して被測定体4に照射するとともに、この
とき被測定体4上に映る照明用光学部品の画像を撮像し
て検出用光学部品20の配置側に結像するものである。
The imaging lens 19 focuses the optical component light reflected by the half mirror 18 and irradiates it onto the object to be measured 4 , and at the same time captures an image of the illumination optical component reflected on the object to be measured 4 and sends it to the detection optical component 20 . The image is formed on the side where the

検出用光学部品20は第4図に示すように光学部品板2
1に長方形の窓22を形成し、この窓22の長手方向に
細線23を張ったものである。
The detection optical component 20 is mounted on an optical component plate 2 as shown in FIG.
A rectangular window 22 is formed in 1, and a thin wire 23 is stretched in the longitudinal direction of this window 22.

なお、この検出用光学部品20は第5図に示すように複
数、例えば3本の細線24を平行に張っても良い。
Note that this detection optical component 20 may include a plurality of thin wires 24, for example, three thin wires 24 stretched in parallel as shown in FIG.

ところで、これら照明用光学部品13と検出用光学部品
14とは撮像レンズ19を介して共役位置に配置され、
かつこれら光学部品13.14の各細線16.23が重
なるように配置される。つまり、被測定体4上に照明用
光学部品13の画像が映り、この画像が撮像レンズ19
により撮像されて検出用光学部品20上に結像された際
、この結像画像の細線16と検出用光学部品20の細線
23とが重なり合う方向に照明用光学部品13と検出用
光学部品20とが配置されている。
By the way, the illumination optical component 13 and the detection optical component 14 are arranged at a conjugate position via the imaging lens 19,
In addition, these optical components 13, 14 are arranged so that each of the thin lines 16, 23 overlaps with each other. That is, an image of the illumination optical component 13 is reflected on the object to be measured 4, and this image is reflected on the imaging lens 19.
When the image is captured by and formed on the detection optical component 20, the illumination optical component 13 and the detection optical component 20 are moved in the direction in which the thin line 16 of this imaged image and the thin line 23 of the detection optical component 20 overlap. is located.

前記光検出器21は検出用光学部品20を通過した光を
受光してその受光強度に応じた電気信号を出力するもの
である。具体的にはCCD (固体撮像素子)のライン
センサ、エリアセンサ等から構成されている。
The photodetector 21 receives the light that has passed through the detection optical component 20 and outputs an electrical signal corresponding to the intensity of the received light. Specifically, it is composed of a CCD (solid-state image sensor) line sensor, area sensor, and the like.

この光検出器21から出力された電気信号は測定回路2
2に起こられている。この測定回路22はXYZテーブ
ル1に対して走査指令Sを発してXYZテーブル1を走
査移動、及び昇降指令Hを発してZテーブル3を昇降移
動させ、この状態に光検出器21により検出された受光
強度の最小値となる位置から被測定体4の3次元形状を
求める機能を有している。
The electrical signal output from this photodetector 21 is transmitted to the measuring circuit 2.
It's happening on 2. This measurement circuit 22 issues a scan command S to the XYZ table 1 to scan and move the XYZ table 1, and issues a lift command H to move the Z table 3 up and down, and this state is detected by the photodetector 21. It has a function of determining the three-dimensional shape of the object to be measured 4 from the position where the received light intensity is the minimum value.

次に上記の如く構成された装置の作用について説明する
Next, the operation of the apparatus configured as described above will be explained.

照明光源11から放射された照明光は円筒レンズ12に
より集束されて照明用光学部品13を通り、光学部品光
としてハーフミラ−18に到達する。この光学部品光は
ハーフミラ−18で反射して撮像レンズ19により集束
されて被測定体4上に照射され、この被測定体4上に検
出用光学部品13の像が結像される。この検出用光学部
品13の像は撮像レンズ19及びハーフミラ−18を透
過して検出用光学部品20の位置で再び結像される。そ
して、検出用光学部品20を通過した光が光検出器21
により受光される。
The illumination light emitted from the illumination light source 11 is focused by the cylindrical lens 12, passes through the illumination optical component 13, and reaches the half mirror 18 as optical component light. This optical component light is reflected by the half mirror 18, focused by the imaging lens 19, and irradiated onto the object to be measured 4, and an image of the detection optical component 13 is formed on the object to be measured 4. The image of the detection optical component 13 passes through the imaging lens 19 and the half mirror 18 and is focused again at the position of the detection optical component 20 . The light that has passed through the detection optical component 20 is then detected by the photodetector 21.
The light is received by

ここで、第6図に示すように被測定体4と光学系10と
の相対位置のずれを示す各ラインaSb。
Here, as shown in FIG. 6, each line aSb indicates a deviation in relative position between the object to be measured 4 and the optical system 10.

Cを設定し、ラインbが焦点の合っている場合、残りの
各ラインa、Cが焦点の合っていない場合とする。
C is set, and when line b is in focus, the remaining lines a and C are out of focus.

ラインbで反射した光は撮像レンズ19及びハーフミラ
−18を通って検出用光学部品20に到達する。この場
合、焦点が合っているので、照明用光学部品13の像は
検出用光学部品20上で結像し、検出用光学部品13の
細線16と検出用光学部品20の細線23とが重なる。
The light reflected on line b passes through the imaging lens 19 and the half mirror 18 and reaches the detection optical component 20. In this case, since the focus is correct, the image of the illumination optical component 13 is formed on the detection optical component 20, and the thin line 16 of the detection optical component 13 and the thin line 23 of the detection optical component 20 overlap.

従って、光検出器21により受光される光強度は最も低
くなり、光検出器21から出力される電気信号のレベル
は最も低くなる。
Therefore, the intensity of the light received by the photodetector 21 is the lowest, and the level of the electrical signal output from the photodetector 21 is the lowest.

一方、ラインaで反射した光は検出用光学部品20の光
検出器21側で結像する。このため、検出用光学部品2
0の細線23を回りこんだ光が光検出器21に入射する
。従って、光検出器21で受光される光強度は高くなる
On the other hand, the light reflected from line a forms an image on the photodetector 21 side of the detection optical component 20. For this reason, the detection optical component 2
The light that has passed around the zero thin wire 23 is incident on the photodetector 21. Therefore, the intensity of light received by the photodetector 21 becomes high.

又、ラインCで反射した光は検出用光学部品20のハー
フレンズ18側で結像する。このため、ラインaの場合
と同様に検出用光学部品20の細線23を回りこんだ光
が光検出器21に入射する。
Further, the light reflected on the line C forms an image on the half lens 18 side of the detection optical component 20. Therefore, as in the case of line a, the light that has gone around the thin wire 23 of the detection optical component 20 is incident on the photodetector 21.

従って1.光検出器21で受光される光強度は高くなる
Therefore 1. The intensity of light received by the photodetector 21 increases.

しかるに、被測定体4及び光学系10の相対位置のずれ
と光検出器21の出力との関係は第7図こ示すように被
測定体4に対した撮像レンズ19が合焦点の場合に光検
出器21の出力レベルが最も低くなる。
However, the relationship between the relative positional deviation of the object to be measured 4 and the optical system 10 and the output of the photodetector 21 is as shown in FIG. The output level of the detector 21 becomes the lowest.

従って、被測定体4と光学系10との相対位置を変化さ
せる、例えば被測定体4をZテーブル3により昇降させ
ることにより光検出器21の出力が最も低くなる位置を
検出することによって合焦点位置が求められる。
Therefore, by changing the relative position between the object to be measured 4 and the optical system 10, for example by moving the object to be measured 4 up and down by the Z table 3, and by detecting the position where the output of the photodetector 21 is the lowest, the in-focus point can be determined. location is required.

次に上記説明した合焦点位置の検出方法を用いての形状
認怠の作用について説明する。
Next, the effect of shape recognition using the above-described in-focus point position detection method will be explained.

測定回路22はXYZテーブル1に対して移動指令を発
して被測定体4を位置決めする。すなわち、XY子テー
ブルはX及びY方向に移動し、被測定体4を光学系10
の下方に配置する。次にXY子テーブルは例えばY方向
に移動して光学系10の結像位置を第8図に示すように
被測定体4 a s 4 bの端点(イ)に位置決めす
る。次に測定回路22はZテーブル3に昇降指令Hを発
する。
The measurement circuit 22 issues a movement command to the XYZ table 1 to position the object 4 to be measured. That is, the XY child table moves in the X and Y directions, and the object to be measured 4 is moved into the optical system 10.
Place it below. Next, the XY child table is moved, for example, in the Y direction to position the imaging position of the optical system 10 at the end point (A) of the object to be measured 4a, 4b, as shown in FIG. Next, the measurement circuit 22 issues a lift command H to the Z table 3.

これにより、Zテーブル3は昇降する。As a result, the Z table 3 moves up and down.

この状態に照明光源11から放射された照明光は円筒レ
ンズ12により集束され、照明用光学部品13を通って
ハーフミラ−18に到達し、このハーフミラ−18で反
射し撮像レンズ19で集束されて被測定体4に照射され
る。そして、被測定体4からの反射光は再び撮像レンズ
19及びノ1−フミラー18を通って検出用光学部品2
0に到達する。そして、被測定体4の昇降により合焦点
になると、光検出器21の出力レベルは最も低くなる。
In this state, the illumination light emitted from the illumination light source 11 is focused by the cylindrical lens 12, passes through the illumination optical component 13, reaches the half mirror 18, is reflected by the half mirror 18, is focused by the imaging lens 19, and is focused by the imaging lens 19. The measurement object 4 is irradiated. Then, the reflected light from the object to be measured 4 passes through the imaging lens 19 and the nozzle mirror 18 again, and then passes through the detection optical component 2.
Reach 0. Then, when the object to be measured 4 moves up and down to reach a focused point, the output level of the photodetector 21 becomes the lowest.

そうして、測定回路22はXY子テーブルに対してX方
向の走査指令Sを発する。しかして、被測定体4がX方
向に移動する際に測定回路22はZテーブル3を昇降さ
せながら光検出器21の出力が最も小さくなる位置を求
める。この結果、測定回路22は第9図に示すように端
点(イ)における形状を認識する。
Then, the measurement circuit 22 issues a scanning command S in the X direction to the XY child table. Thus, when the object to be measured 4 moves in the X direction, the measurement circuit 22 moves the Z table 3 up and down to find the position where the output of the photodetector 21 is the smallest. As a result, the measuring circuit 22 recognizes the shape at the end point (a) as shown in FIG.

次に測定回路22はXY子テーブルをY方向に定ピツチ
移動して位置(ロ)に位置決めする。次に測定回路22
は2テーブル3に昇降指令Hを発する。これにより、Z
テーブル3は昇降する。
Next, the measuring circuit 22 moves the XY child table by a fixed pitch in the Y direction and positions it at position (B). Next, the measurement circuit 22
issues a lift command H to the second table 3. This allows Z
Table 3 moves up and down.

しかるに、上記端点(イ)の場合の作用と同様に被測定
体4は昇降し、合焦点になると、光検出器21の出力レ
ベルは最も低くなる。そうして、測定回路22はXY子
テーブルに対してX方向の走査指令Sを発する。しかし
て、被測定体4がX方向に移動する際に測定回路22は
2テーブル3を昇降させながら光検出器21の出力が最
も小さくなる位置を求める。この結果、測定回路22は
第10図に示すように位置(ロ)における形状を認識す
る。
However, the object to be measured 4 moves up and down in the same way as in the case of the above-mentioned end point (a), and when it comes to a focused point, the output level of the photodetector 21 becomes the lowest. Then, the measurement circuit 22 issues a scanning command S in the X direction to the XY child table. Thus, when the object to be measured 4 moves in the X direction, the measuring circuit 22 moves the two tables 3 up and down to find the position where the output of the photodetector 21 is the smallest. As a result, the measuring circuit 22 recognizes the shape at position (b) as shown in FIG.

次に測定回路22はXY子テーブルをY方向に定ピツチ
移動して位置(ハ)に位貧決めし、上記端点(ロ)の場
合の作用と同様にして測定回路22は第11図に示すよ
うに位!(ハ)における形状を認識する。
Next, the measuring circuit 22 moves the XY child table a fixed pitch in the Y direction to determine the position (C), and the measuring circuit 22 operates in the same manner as in the case of the above-mentioned end point (B) as shown in FIG. Yonii place! Recognize the shape in (c).

かくして、測定回路22は各被測定体4a。Thus, the measurement circuit 22 is connected to each measured object 4a.

4bの3次元形状を認識する。Recognize the three-dimensional shape of 4b.

このように上記第1実施例においては、細線16.23
を有する照明用光学部品13及び検出用光学部品20を
設け、光学系1oと被測定体4とを相互に移動して光検
出器21により検出された光強度が最小値となる位置か
ら被測定体4の形状を求めるようにしたので、最も低い
光強度の検出により容易に合焦点、つまり被測定体4の
位置が容易に検出でき、さらに走査を行うことによって
被測定体4の3次元形状を認識できる。又、細線16.
23を有する照明用光学部品13及び検出用光学部品2
0を用いるので、被測定体4か正反射光の大きなもの、
例えばハンダ、金属、鏡面で正反射光量が非常に大きく
なっても細線16.23の暗い部分を重ね合わせること
によって高精度に3次元形状を認識でき、そのうえ表面
に銅Cuやアルミニウム19が混在して表面の反射率分
布が異なっていても3次元形状を認まできる。
In this way, in the first embodiment, the thin wire 16.23
An illumination optical component 13 and a detection optical component 20 are provided, and the optical system 1o and the object to be measured 4 are moved relative to each other, and the object to be measured is moved from the position where the light intensity detected by the photodetector 21 is the minimum value. Since the shape of the object 4 is determined, the focused point, that is, the position of the object 4 to be measured, can be easily detected by detecting the lowest light intensity, and by further scanning, the three-dimensional shape of the object 4 to be measured can be determined. can be recognized. Also, thin line 16.
An illumination optical component 13 and a detection optical component 2 having 23
Since 0 is used, the object to be measured 4 or one with large specular reflection light,
For example, even if the amount of specularly reflected light is extremely large on solder, metal, or mirror surfaces, three-dimensional shapes can be recognized with high precision by overlapping the dark parts of thin lines 16. A three-dimensional shape can be recognized even if the surface reflectance distribution is different.

次に本発明の第2実施例について第12図に示す形状認
識装置の構成図を参照して説明する。なお、第1図と同
一部分には同一符号を付してその詳しい説明は省略する
Next, a second embodiment of the present invention will be described with reference to a configuration diagram of a shape recognition device shown in FIG. Note that the same parts as in FIG. 1 are given the same reference numerals, and detailed explanation thereof will be omitted.

照明光源11の光軸上には光学レンズ30、円筒レンズ
31及び照明用光学部品13か配置され、さらに照明用
光学部品13を通過した光の光路上に光学スキャナ32
が配置されている。この光学スキャナ32は矢印(ニ)
方向に回動して照明光を被測定体4の表面上に走査させ
るものである。
An optical lens 30, a cylindrical lens 31, and an illumination optical component 13 are arranged on the optical axis of the illumination light source 11, and an optical scanner 32 is placed on the optical path of the light that has passed through the illumination optical component 13.
is located. This optical scanner 32 is indicated by the arrow (d)
The illumination light is rotated in the direction to scan the surface of the object 4 to be measured.

又、ハーフミラ−18の反射光路上には光学スキャナ3
3か配置され、この光学スキャナ33の反射光路上に検
出用光学部品2o及び光検出器34が配置されている。
Further, an optical scanner 3 is installed on the reflected optical path of the half mirror 18.
3 are arranged, and a detection optical component 2o and a photodetector 34 are arranged on the reflected optical path of this optical scanner 33.

光学スキャナ33は光学スキャナ32と同期して矢印(
ポ)方向に回動するものとなっている。光検出器34は
CCDの1次元センサとなっている。
The optical scanner 33 synchronizes with the optical scanner 32 and moves the arrow (
It is designed to rotate in the (po) direction. The photodetector 34 is a one-dimensional CCD sensor.

かかる構成であれば、照明光源11がら放射された照明
光は光学レンズ、円筒レンズ及び照明用光学部品13を
通過して光学部品光として光学スキャナ32に到達し、
この光学スキャナ32によりスキャンされる。このスキ
ャンされた光学部品光はハーフミラ−18を透過し、撮
像レンズ19により集束されて被測定体4に照射される
。この被測定体4からの反射光はハーフミラ−18で反
射し、光学スキャナ33によりスキャンされる。
With such a configuration, the illumination light emitted from the illumination light source 11 passes through the optical lens, the cylindrical lens, and the illumination optical component 13, and reaches the optical scanner 32 as optical component light,
This optical scanner 32 scans. This scanned optical component light passes through the half mirror 18, is focused by the imaging lens 19, and is irradiated onto the object 4 to be measured. This reflected light from the object to be measured 4 is reflected by the half mirror 18 and scanned by the optical scanner 33.

そして、このスキャンされた光が光検出器34に入射す
る。一方、光学部品光のスキャンとともに被測定体4は
昇降される。従って、光検出器34の出力が最小となる
位置を検出することにより被測定体4の3次元形状が求
められる。
This scanned light then enters the photodetector 34. On the other hand, the object to be measured 4 is raised and lowered as the optical component light scans. Therefore, the three-dimensional shape of the object to be measured 4 can be determined by detecting the position where the output of the photodetector 34 is minimum.

このように上記第2実施例によれば、形状認識の高速化
がはかれる。
In this way, according to the second embodiment, shape recognition can be speeded up.

なお、本発明は上記各実施例に限定されるものでなくそ
の主旨を逸脱しない範囲で変形しても良い。例えば、照
明光源11は半導体レーザに限らすレーザダイオードを
用いても良い。又、形状を認識する場合、被測定体4を
zj5r8に昇降するのに限らず光学系10を昇降させ
ても良い。
Note that the present invention is not limited to the above embodiments, and may be modified without departing from the spirit thereof. For example, the illumination light source 11 may be a laser diode instead of a semiconductor laser. Further, when recognizing the shape, the object to be measured 4 is not limited to being raised and lowered to zz5r8, but the optical system 10 may be raised and lowered.

また、以下に第3実施例を示す。装置の構成は第1図と
同様なので省略する。第3実施例と第1実施例の違いは
、照明用光学部品13と検出用光学部品20の構成にあ
る。第1実施例が両光学部品に遮光部を設けていたのに
対して、第3実施例では、これに代えて第13図及び第
14図のようにそれぞれスリットを設けている。これに
よる作用は、画像の明暗が反転するのみて第1実施例と
同様な効果が得られるものである。もちろん、第15図
及び第16図のようにスリットを複数も受けるようにし
ても良いものである。
Further, a third embodiment will be shown below. The configuration of the device is the same as that shown in FIG. 1, so a description thereof will be omitted. The difference between the third embodiment and the first embodiment lies in the configurations of the illumination optical component 13 and the detection optical component 20. While in the first embodiment both optical components were provided with light shielding parts, in the third embodiment, slits were provided in each of them as shown in FIGS. 13 and 14 instead. This effect is similar to that of the first embodiment except that the brightness and darkness of the image is reversed. Of course, a plurality of slits may be provided as shown in FIGS. 15 and 16.

[発明の効果] 以上詳記したように本発明によれば、被測定体が正反射
の大きなものでも高精度に形状を測定できる形状認識装
置を提供できる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a shape recognition device that can measure the shape of an object with high precision even if the object to be measured has a large specular reflection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第11図は本発明に係わる形状認識装置の第
1実施例を説明するための図であって、第1図は構成図
、第2図及び第3図は照明用光学部品の構成図、第4図
及び第5図は検出用光学部品の構成図、第6図は合焦点
を示す模式図、第7図は光検出器の8力を示す図、第8
図乃至第11図は形状認識の作用を説明するための図、
第12図は本発明の第2実施例を示す構成図、第13図
乃至第16図はスリットの外観図である。 1・・・XYZテーブル、4・被測定体、10光学系、
11・・・照明光源、12・・・円筒レンズ、13・・
・照明用光学部品、15・・・窓、16・・・細線、1
8・・・ハーフミラ−19・・・撮像レンズ、20・・
検出用光学部品、21・・・光検出器、22・・・測定
回路。
1 to 11 are diagrams for explaining a first embodiment of a shape recognition device according to the present invention, in which FIG. 1 is a configuration diagram, and FIGS. 2 and 3 are diagrams of illumination optical components. 4 and 5 are configuration diagrams of the detection optical components, FIG. 6 is a schematic diagram showing the focusing point, FIG. 7 is a diagram showing the 8 forces of the photodetector, and FIG.
Figures to Figures 11 are diagrams for explaining the effect of shape recognition,
FIG. 12 is a configuration diagram showing a second embodiment of the present invention, and FIGS. 13 to 16 are external views of the slit. 1...XYZ table, 4. Object to be measured, 10 optical system,
11... Illumination light source, 12... Cylindrical lens, 13...
・Optical components for illumination, 15...window, 16...thin wire, 1
8...Half mirror-19...Imaging lens, 20...
Detection optical component, 21... photodetector, 22... measurement circuit.

Claims (4)

【特許請求の範囲】[Claims] (1)照明光源と、この照明光源から放射された照明光
を集束する集束レンズと、この集束レンズによる照明光
の集束位置に配置され、かつ一部に所定形状の遮光部を
有した照明用光学部品と、この照明用光学部品を通過し
た光を被測定体に照射するとともにこの被測定体上に映
る前記照明用光学部品の遮光部の影の画像を撮像する撮
像レンズと、この撮像レンズにより撮像された前記照明
用光学部品の結像位置に配置され、かつ前記照明用光学
部品の遮光部と同形で光学的に共役の位置に遮光部が形
成された検出用光学部品と、この検出用光学部品を通過
した光強度を検出する光検出器とを有する光学系と、前
記被測定体をXYZ方向に移動可能な移動機構と、前記
光学系及び前記移動機構を相互に移動して前記光検出器
により検出された光強度が最小値となる位置から前記被
測定体の形状を求める測定手段とを具備したことを特徴
とする形状認識装置。
(1) An illumination light source, a focusing lens that focuses the illumination light emitted from the illumination light source, and an illumination device that is arranged at a position where the illumination light is focused by the focusing lens, and that has a light shielding part of a predetermined shape in part. an optical component, an imaging lens that irradiates the object to be measured with the light that has passed through the illumination optical component and captures an image of the shadow of the light-blocking portion of the illumination optical component that is reflected on the object; and the imaging lens. a detection optical component disposed at the imaging position of the illumination optical component imaged by the illumination optical component, and having a light shielding portion formed at a position that is the same shape and optically conjugate as the light shielding portion of the illumination optical component; an optical system having a photodetector that detects the intensity of light that has passed through an optical component; a moving mechanism capable of moving the object to be measured in the XYZ directions; A shape recognition device comprising: a measuring means for determining the shape of the object to be measured from a position where the light intensity detected by a photodetector has a minimum value.
(2)照明用光学部品および検出用光学部品の遮光部は
少なくとも1本の細線で形成された構成である請求項(
1)記載の形状認識装置。
(2) Claim (2) wherein the light shielding portions of the illumination optical component and the detection optical component are formed of at least one thin wire.
1) The shape recognition device described above.
(3)照明光源と、この照明光源から放射された照明光
を集束する集束レンズと、この集束レンズによる照明光
の集束位置に配置され、かつ一部に所定形状のスリット
を有した照明用光学部品と、この照明用光学部品を通過
した光を被測定体に照射するとともにこの被測定体上に
映る前記照明用光学部品の遮光部の影の画像を撮像する
撮像レンズと、この撮像レンズにより撮像された前記照
明用光学部品の結像位置に配置され、かつ前記照明用光
学部品のスリットと同形で光学的に共役の位置にスリッ
トが形成された検出用光学部品と、この検出用光学部品
を通過した光強度を検出する光検出器とを有する光学系
と、前記被測定体をXYZ方向に移動可能な移動機構と
、前記光学系及び前記移動機構を相互に移動して前記光
検出器により検出された光強度が最小値となる位置から
前記被測定体の形状を求める測定手段とを具備したこと
を特徴とする形状認識装置。
(3) An illumination light source, a focusing lens that focuses the illumination light emitted from the illumination light source, and an illumination optical system that is disposed at a position where the illumination light is focused by the focusing lens and that has a slit of a predetermined shape in a part. an imaging lens that irradiates the object to be measured with the light that has passed through the illumination optical component and captures an image of the shadow of the light-shielding portion of the illumination optical component that is reflected on the object; a detection optical component disposed at the imaging position of the imaged illumination optical component and having a slit formed in the same shape and optically conjugate position as the slit of the illumination optical component; and this detection optical component an optical system having a photodetector that detects the intensity of light passing through the object; a moving mechanism capable of moving the object to be measured in XYZ directions; and a moving mechanism that moves the optical system and the moving mechanism mutually to detect the photodetector. A shape recognition device comprising: measuring means for determining the shape of the object to be measured from a position where the light intensity detected by the method has a minimum value.
(4)照明用光学部品および検出用光学部品のスリット
は少なくとも1つ以上の細い直線形である請求項(3)
記載の形状認識装置。
(4) Claim (3) wherein the illumination optical component and the detection optical component have at least one narrow linear slit.
The shape recognition device described.
JP2263827A 1990-10-03 1990-10-03 Shape recognition device Expired - Lifetime JP2633718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2263827A JP2633718B2 (en) 1990-10-03 1990-10-03 Shape recognition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2263827A JP2633718B2 (en) 1990-10-03 1990-10-03 Shape recognition device

Publications (2)

Publication Number Publication Date
JPH04142410A true JPH04142410A (en) 1992-05-15
JP2633718B2 JP2633718B2 (en) 1997-07-23

Family

ID=17394779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2263827A Expired - Lifetime JP2633718B2 (en) 1990-10-03 1990-10-03 Shape recognition device

Country Status (1)

Country Link
JP (1) JP2633718B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517742A (en) * 1998-06-05 2002-06-18 デンタルマティック テクノロジーズ インコーポレーテッド Method and apparatus for obtaining photoelectric of a shape by axial illumination
JP2008152011A (en) * 2006-12-18 2008-07-03 Lasertec Corp Confocal microscope and method for picking up confocal image
JP2010216880A (en) * 2009-03-13 2010-09-30 Omron Corp Displacement sensor
JP2018527607A (en) * 2015-07-17 2018-09-20 ザ トラスティース オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク System and method for three-dimensional imaging
US10831014B2 (en) 2014-01-17 2020-11-10 The Trustees Of Columbia University In The City Of New York Systems and methods for three dimensional imaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101152A (en) * 1972-04-04 1973-12-20
JPS5366255A (en) * 1976-11-26 1978-06-13 Hitachi Ltd Minute dimension measuring method and its apparatus
JPS5867233A (en) * 1981-10-15 1983-04-21 キヤノン株式会社 Apparatus for measuring cornea shape
JPH01113605A (en) * 1987-10-28 1989-05-02 Kowa Co Apparatus for measuring three-dimensional shape

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101152A (en) * 1972-04-04 1973-12-20
JPS5366255A (en) * 1976-11-26 1978-06-13 Hitachi Ltd Minute dimension measuring method and its apparatus
JPS5867233A (en) * 1981-10-15 1983-04-21 キヤノン株式会社 Apparatus for measuring cornea shape
JPH01113605A (en) * 1987-10-28 1989-05-02 Kowa Co Apparatus for measuring three-dimensional shape

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002517742A (en) * 1998-06-05 2002-06-18 デンタルマティック テクノロジーズ インコーポレーテッド Method and apparatus for obtaining photoelectric of a shape by axial illumination
JP2008152011A (en) * 2006-12-18 2008-07-03 Lasertec Corp Confocal microscope and method for picking up confocal image
JP2010216880A (en) * 2009-03-13 2010-09-30 Omron Corp Displacement sensor
US10831014B2 (en) 2014-01-17 2020-11-10 The Trustees Of Columbia University In The City Of New York Systems and methods for three dimensional imaging
US11460685B2 (en) 2014-01-17 2022-10-04 The Trusteees Of Columbia University In The City Of New York Systems and methods for three-dimensional imaging
JP2018527607A (en) * 2015-07-17 2018-09-20 ザ トラスティース オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク System and method for three-dimensional imaging
JP2021113987A (en) * 2015-07-17 2021-08-05 ザ トラスティース オブ コロンビア ユニバーシティ イン ザ シティ オブ ニューヨーク Systems and methods for three-dimensional imaging

Also Published As

Publication number Publication date
JP2633718B2 (en) 1997-07-23

Similar Documents

Publication Publication Date Title
US8975582B2 (en) Method and apparatus for reviewing defects
US7907270B2 (en) Inspection apparatus and method, and production method for pattern substrates
EP0501683A2 (en) Technique for enhanced two-dimensional imaging
US5774224A (en) Linear-scanning, oblique-viewing optical apparatus
KR20120087680A (en) The measurement method of PCB bump height by using three dimensional shape detector using optical triangulation method
KR940002356B1 (en) Method and apparatus for noncontact automatic focusing
KR102182571B1 (en) An optical device that is using infrared right for sample inspection and an optical device that is using infrared right for auto focusing on of the wafers
JPS6352696B2 (en)
JP6387381B2 (en) Autofocus system, method and image inspection apparatus
JPH10161195A (en) Autofocusing method and device
JP2008058248A (en) Diffracted light detector and inspection system
JP5208896B2 (en) Defect inspection apparatus and method
JP2633718B2 (en) Shape recognition device
JP3135063B2 (en) Comparative inspection method and apparatus
US4812664A (en) Apparatus for scanning a flat surface to detect defects
US7760928B2 (en) Focus error correction system and method
JP3251276B2 (en) Appearance inspection method and apparatus
JP3341739B2 (en) Bump apex detection method and bump height measurement method and apparatus using the same
JP2000002664A (en) Method and apparatus for inspection of defect
JPH07208917A (en) Automatic focusing method and device
JPS6243129A (en) Pattern measuring apparatus
JP3141470B2 (en) Three-dimensional shape detection method and apparatus
JP2009042128A (en) Height measuring device
JPS63184045A (en) Flaw detection sensor
JP2000131241A (en) Inspection device and inspecting method for optical element