JPS5867233A - Apparatus for measuring cornea shape - Google Patents

Apparatus for measuring cornea shape

Info

Publication number
JPS5867233A
JPS5867233A JP56165386A JP16538681A JPS5867233A JP S5867233 A JPS5867233 A JP S5867233A JP 56165386 A JP56165386 A JP 56165386A JP 16538681 A JP16538681 A JP 16538681A JP S5867233 A JPS5867233 A JP S5867233A
Authority
JP
Japan
Prior art keywords
corneal
measuring device
index
shape measuring
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56165386A
Other languages
Japanese (ja)
Inventor
小早川 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56165386A priority Critical patent/JPS5867233A/en
Publication of JPS5867233A publication Critical patent/JPS5867233A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は被検眼の角膜形状を光学的に測定する装置特に
測定元軸方向から指標を投影して被検眼の小領域におけ
る角膜曲率、乱視度、乱視軸方向を測定できる角膜形状
測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an apparatus for optically measuring the corneal shape of an eye to be examined, in particular, a device for measuring the corneal curvature, degree of astigmatism, and astigmatism axis direction in a small area of the eye to be examined by projecting an index from the direction of the measurement source axis. This article relates to a corneal topography measuring device that can be used.

角膜形状6111定装置は一般に角膜の曲率、乱視度、
乱視軸方向の三要素を測定するために用いられるが、コ
ンタクトレンズのペースカーブの検査等にも使用される
。従来、オフサルモメータあるいはケラトメータと呼ば
れる角膜形状測定装置dが知られているが、これは指標
を測だ光111ハに対(7て斜めに投影し、被検眼の比
較的大きな1・α域(直径4朋程度)の角膜層状を算出
するものである。しかし、この方法では測定元軸近傍の
角膜形状を測定することが不可能である。
Corneal shape 6111 determination devices generally measure corneal curvature, degree of astigmatism,
It is used to measure the three elements along the astigmatism axis, but it is also used to test the pace curve of contact lenses. Conventionally, a corneal shape measuring device called an ophthalmometer or a keratometer has been known, which projects an index obliquely onto the measuring light 111 (7) to measure the relatively large 1.alpha region of the eye to be examined. (about 4 mm in diameter). However, with this method, it is impossible to measure the corneal shape in the vicinity of the measurement source axis.

測定光軸近傍の角膜形状をスポット状に測定し、これを
異なる複数箇所で行なえば従来よりミクロな領域例えば
直径2朋程度の領域毎の角膜形状測定が可能となる。
By measuring the corneal shape in the vicinity of the measurement optical axis in a spot-like manner and performing this at a plurality of different locations, it becomes possible to measure the corneal shape in micro areas, for example, areas with a diameter of about 2 mm, compared to the conventional method.

本発明は如上の点に鑑み、被検眼の小領域における角膜
形状を測定できる新規な角膜形状測定装置を提供するこ
とを目的とする。
In view of the above points, an object of the present invention is to provide a novel corneal shape measuring device that can measure the corneal shape in a small region of an eye to be examined.

この目的は、指標を測定光軸方向から結像レンズによっ
て被検眼に投影し、指標、結像レンズの少なくとも一方
を光軸方向へ移動させて、角膜反射光を結像レンズの像
面上で観察し、ピントの合う2箇所の移動距離を測定し
、史には像面上に設けられる受光器の出力が極大となる
2箇所の移動距離を測定し、これより角膜曲率を算出す
ることによって達成される。
The purpose of this is to project the index onto the subject's eye from the direction of the measurement optical axis using an imaging lens, move at least one of the index and the imaging lens in the direction of the optical axis, and direct the corneal reflected light onto the image plane of the imaging lens. The corneal curvature is calculated by observing the object and measuring the moving distance of the two points that are in focus. achieved.

ここで受光器出力が極大となるのは光軸上、角膜表面位
置が指標と共役になる光学位置、角膜曲率中心位置が指
標と共役になる光学位置の2箇所である。なお指標位置
と受光位置は光学的に共役位置に設けられている。
Here, the optical receiver output becomes maximum at two positions on the optical axis: an optical position where the corneal surface position is conjugate with the index, and an optical position where the corneal curvature center position is conjugate with the index. Note that the index position and the light receiving position are provided at optically conjugate positions.

ところで角膜表面は一般にトーリック面とみなせるが、
如上の一経線方向の測定を他の経線方向とりわけ3経線
方向で行なえば角膜曲率の他、乱視度、乱視軸方向が求
まる。
By the way, the corneal surface can generally be considered a toric surface,
If the above measurement in one meridian direction is performed in other meridian directions, particularly in the three meridian directions, the corneal curvature, astigmatism degree, and astigmatism axis direction can be determined.

以下、添附する図面を用いて本発明の詳細な説明する。Hereinafter, the present invention will be described in detail using the accompanying drawings.

第1図は本発明装晴の実施例を示す。光源1は光軸上に
設けられる指標たるスリット板2を照明し、第2図に示
されるようなスリット板2のスリット開口からの光束は
光分割部材3を通過し、結像レンズ4により被検眼Eの
角膜Ecを照射する。
FIG. 1 shows an embodiment of the present invention. A light source 1 illuminates a slit plate 2 which serves as an index provided on the optical axis, and the light beam from the slit opening of the slit plate 2 as shown in FIG. 2 passes through a light splitting member 3 and is covered by an imaging lens 4. The cornea Ec of the optometrist E is irradiated.

角膜Ecからの反射光は結像レンズ4を再び通過し、光
分割部材3で反射され、光分割部材5゜6により3光束
に分割され、第3図tA) (B) Ic)に示される
ようなマスク板7.8.9を通して結像レンズ4の像面
上に設けられる受光素子10.11.12で受光される
。スリット板2のスリット開口とマスク板7.8.9の
マスク開口は各経線方向で対応し、各々測定経線方向に
狭い開口幅をもつ^ここで結像レンズ4を矢印の如く光
llll11方向に移動させると、スリット板2と角膜
Ecの頂点位置が共役となるレンズ位置で受光素子10
,11.12の出力はまず極大値を示す。結像レンズ4
を更に光軸方向に移動させると、スリット像が角膜曲率
半径の値だけ移動(7た位置すなわちスリット板2と角
膜曲率中心が共役となるレンズ位置で、再び受光素子1
0,11.12の出力が極大値を示す。
The reflected light from the cornea Ec passes through the imaging lens 4 again, is reflected by the light splitting member 3, and is split into three beams by the light splitting member 5°6, as shown in Figure 3 tA) (B) Ic) The light is received by the light receiving element 10.11.12 provided on the image plane of the imaging lens 4 through the mask plate 7.8.9. The slit openings of the slit plate 2 and the mask openings of the mask plate 7.8.9 correspond in each meridian direction, and each has a narrow opening width in the measurement meridian direction^Here, the imaging lens 4 is directed in the direction of the light 111 as shown by the arrow. When moved, the light receiving element 10 is located at a lens position where the apex positions of the slit plate 2 and the cornea Ec are conjugate.
, 11.12 first shows the maximum value. Imaging lens 4
When further moved in the optical axis direction, the slit image moves by the value of the radius of corneal curvature (7), that is, at the lens position where the slit plate 2 and the center of corneal curvature are conjugate, and the light receiving element 1 is moved again.
The outputs of 0, 11, and 12 show the maximum values.

従ってこの結像レンズ4の光軸方向の移動量は測定経線
方向の角膜曲率半径と一定の相関関係をもつ。乙の点に
ついては後に詳しく述べる。
Therefore, the amount of movement of the imaging lens 4 in the optical axis direction has a certain correlation with the corneal curvature radius in the measurement meridian direction. Point B will be discussed in detail later.

ところで一般に被検眼には乱視があり、角膜表面は球面
でなく、トーリック面とみなせる。
By the way, the eye to be examined generally has astigmatism, and the corneal surface can be regarded as a toric surface rather than a spherical surface.

これより受光素子10,11.12の出力が極大となる
結像レンズ4の光軸方向の移動iは一般に異なる。ここ
でトーリック面の経線方向による曲率半径の変化は正弦
波的に変化するので少なくとも3経線方向で求まれば角
膜形状を算出することが可能となる。すなわち、曲率半
径k Rs経線方向の角度をθとすると一般に R=Asin(2θ十a ) + B と表わされる。ここで3経線方向の角膜曲率測定により
未知数A、B、αが求まる。A、B、  。
From this, the movement i of the imaging lens 4 in the optical axis direction at which the output of the light receiving elements 10, 11, 12 becomes maximum is generally different. Here, since the change in the radius of curvature of the toric surface in the meridian direction changes sinusoidally, it is possible to calculate the corneal shape if it is determined in at least three meridian directions. That is, when the radius of curvature k Rs and the angle in the meridian direction are θ, it is generally expressed as R=A sin(2θ0a ) + B. Here, the unknown quantities A, B, and α are determined by measuring the corneal curvature in the three meridian directions. A, B, .

αは各々、乱視度、平均角膜曲率、乱視方向に相当する
α corresponds to the degree of astigmatism, the average corneal curvature, and the direction of astigmatism, respectively.

先ず第4図に示されるものは指標2が固定され、結像レ
ンズ4が光軸方向に移動するものである。スリット板2
と角膜ECが共役になる位置で、結像レンズ4と角膜E
cとの光軸長をa1結像レンズ4とスリット板2との光
軸長をboとし、角膜曲率半径をR1結像レンズ4の焦
点距離をfとするミー、+、た、1「S1象し/ズ4が
光軸方向にXだけ移動して、すなわち4′の位置で1拝
び受光器出力が極大値を示すとする。
First, in the one shown in FIG. 4, the index 2 is fixed and the imaging lens 4 is moved in the optical axis direction. Slit plate 2
and the cornea EC are conjugate, and the imaging lens 4 and the cornea E
c is the optical axis length of a1, the optical axis length of the imaging lens 4 and the slit plate 2 is bo, the corneal curvature radius is R1, the focal length of the imaging lens 4 is f, +, ta, 1'S1 Assume that the image/lens 4 is moved by X in the optical axis direction, that is, at the position 4', the photoreceiver output shows a maximum value.

結像関係の式より次の2式が明らかである。The following two equations are clear from the imaging-related equations.

a]−R−x ” bo+ x =了      (2
)ところです。は測定装置として予め所定量に定められ
ており、(1)式よりaも対応して定数として算出され
る。これより結像レンズの光軸方向移動量zを検出すれ
ば角膜曲率半径Rが求まることが理解される。
a]-R-x ”bo+x=end (2
)By the way. is set to a predetermined amount in advance by the measuring device, and a is also correspondingly calculated as a constant from equation (1). It is understood from this that the radius of corneal curvature R can be determined by detecting the amount of movement z of the imaging lens in the optical axis direction.

なお、スリット2と角jf!Ecが等倍で共役関係とな
る場合、すなわちす。= 2fと設定するとa=2fよ
り(3)式は次のように簡略化される。
In addition, slit 2 and angle jf! When Ec is the same size and has a conjugate relationship, that is. = 2f, equation (3) is simplified as follows from a=2f.

が 結像レンズ4の移動量xはエンコーダ等により精確に求
めることが可能である。
However, the amount of movement x of the imaging lens 4 can be determined accurately using an encoder or the like.

第5図は第4図の場合と逆に結像レンズ4が固定され、
指標2が光佃1方向に移動するものである。
In FIG. 5, the imaging lens 4 is fixed, contrary to the case in FIG.
The indicator 2 moves in the direction of the light beam 1.

角膜Ec上に指標像が結像される場合の被検眼Ecと結
像レンズ4の光軸長をa。、fi!7像レンズ4と指標
2の光軸長をす、受光器出力が極大となる指標2の移動
距離をyとすると、結像の式より次式が成立する。
When an index image is formed on the cornea Ec, the optical axis length of the eye Ec to be examined and the imaging lens 4 is a. ,fi! 7 If the optical axis length of the image lens 4 and the index 2 is equal to y, and the moving distance of the index 2 at which the light receiver output becomes maximum is y, then the following formula holds true from the image formation formula.

 11 ao+百−了             (5)1  
1 1 R+ ao+b  y =f        (6)こ
れより ところでこの方式では、被検眼Ecと結像レンズ4の光
軸長a。の測定は比較的困難であるが、例えばスリット
板2と角膜Ecが等倍で共役関係となることを検出して
11411定することが可11ヒである。
11 ao+hyaku-ryu (5)1
1 1 R+ ao+b y = f (6) Now, in this method, the optical axis length a of the eye Ec and the imaging lens 4. Although it is relatively difficult to measure, for example, it is possible to determine 11411 by detecting that the slit plate 2 and the cornea Ec have a conjugate relationship at the same magnification.

すなわち等倍系よりao=b=2fとなり(7)式は次
のようになる。
That is, from the same-magnification system, ao=b=2f, and equation (7) becomes as follows.

、fy さて、第4図、第5図に示される方式は結像レンズ4と
指標2の一方が固定され他方が光軸方向に移動されて像
面上の像の合ピン検出若しくは、光′成出力の極太検出
より角1漠曲率を求めるものであるが、(3)式若しく
は(7)式の換算が必要で比較的煩雑である。
. This method calculates the curvature of one corner by detecting the extremely large output power, but it requires conversion using equation (3) or equation (7), which is relatively complicated.

第6図に示される方式は、前述の煩雑さを解消した実用
的なものである。この方式は、結像レンズ4と指標2を
一体的に光軸方向に移動するものである。指標2の共役
位置が角膜LCH角膜曲率中心位置となる光軸方向の移
動距離を2とすると  11 1十百。=了          (9)これよりR=
Zとなり、移動距離の測定値がそのまま曲率半径となり
簡便となる。
The system shown in FIG. 6 is a practical system that eliminates the above-mentioned complications. In this method, the imaging lens 4 and the index 2 are moved integrally in the optical axis direction. If the moving distance in the optical axis direction at which the conjugate position of index 2 becomes the corneal LCH corneal curvature center position is 2, then 11 1100. = Completed (9) From now on R =
Z, and the measured value of the moving distance becomes the radius of curvature, which is convenient.

なお以上の原理説明で指標2と結像レンズ4との相対関
係のみ記載したが、結像面すなわち受光面の位置につい
ては指標2と等価な位置に常に設定される。すなわち第
5図、第6図に示される方式を採る場合第1図において
、破線で囲んだ部分が光分割部材3とともに一体的に光
軸方向に移動され、マスク板7.8.9とスリット板2
が常に光学的に共役関係に保たれる。
Although only the relative relationship between the index 2 and the imaging lens 4 has been described in the above principle explanation, the position of the imaging surface, that is, the light receiving surface is always set at a position equivalent to the index 2. That is, when adopting the method shown in FIGS. 5 and 6, the part surrounded by the broken line in FIG. Board 2
are always kept in an optically conjugate relationship.

第7図eよ本発明装置の第2の実施例を示す。FIG. 7e shows a second embodiment of the device of the present invention.

これは、光分割部材5,6を削除E〜、且つスリット長
手方向のぼけを拾わないようにしたものである。
This is done by eliminating the light splitting members 5 and 6, and also by preventing blurring in the longitudinal direction of the slit from being picked up.

スリット板2は第8四回に示されるように3経線方向例
えば円周方向120°毎にスリット開]」第8図CB)
に示されるよフなマスク板13を設ける。マスク板13
のマスク開口は、スリット板2′のスリット開口より長
手方向が難くなっていて、スリット長手方向のぼけを拾
わないようになっている。これは、スリット投影による
被検眼のレンズ収嘔〕を考慮したものである。マスク板
13の各マスク開L1からのft、、 ICEライトガ
イド14.15.16によりその端面に設けられた受光
素子10.11.12に向けられる。
The slit plate 2 opens slits in three meridian directions, for example, every 120° in the circumferential direction, as shown in Figure 8 CB).
A flat mask plate 13 shown in FIG. Mask board 13
The mask opening is made more difficult in the longitudinal direction than the slit opening in the slit plate 2', so that blurring in the longitudinal direction of the slit is not picked up. This is done in consideration of lens vomiting in the eye to be examined due to slit projection. ft from each mask opening L1 of the mask plate 13, is directed by the ICE light guide 14, 15, 16 to the light receiving element 10, 11, 12 provided on the end face thereof.

第9図は本発明装置の第3の実施例を示す。FIG. 9 shows a third embodiment of the device of the present invention.

LED等の光源17から出た光はレンズ18.光分割部
材19を通り可動レンズ20により光源17の像を被検
眼Eの角膜Ecの頂点に結ぶ。角膜Ecで反射された光
は光分割部材19で反射され光分割部材21.22を通
り、シリンドリカルレンズ23,24.25によりその
母線方向に細長い開口を持つマスク板26,27.28
を通って各々受光素子29.30.31に入る。
Light emitted from a light source 17 such as an LED is passed through a lens 18. The image of the light source 17 is focused by the movable lens 20 through the light splitting member 19 onto the vertex of the cornea Ec of the eye E to be examined. The light reflected by the cornea Ec is reflected by the light splitting member 19, passes through the light splitting member 21.22, and is passed through the mask plate 26, 27.28 having an elongated opening in the generatrix direction by cylindrical lenses 23, 24.25.
and enter the light receiving elements 29, 30, and 31, respectively.

マスク板26,27.28は指標たる光源17と共役な
位置に設けられ、光軸方向から見てマスク板26、27
.28の開口長手方向は円周方同各12σの角度を為す
The mask plates 26, 27, and 28 are provided at positions conjugate with the light source 17 serving as an index, and are viewed from the optical axis direction.
.. The longitudinal direction of the opening of No. 28 forms an angle of 12σ with the circumferential direction.

可動レンズ20を光軸方向に移動させると、光源17の
共役位置が角膜表面位置になったとき受光素子29,3
0.31で出力が極大となり更に可動レンズ20を移動
し、20′の位置になって、光電17の共役位置が角膜
曲率中心位置となるとき再び出力が極大となる。
When the movable lens 20 is moved in the optical axis direction, when the conjugate position of the light source 17 reaches the corneal surface position, the light receiving elements 29 and 3
The output reaches a maximum at 0.31, and when the movable lens 20 is further moved to a position of 20' and the conjugate position of the photoconductor 17 becomes the center of corneal curvature, the output reaches a maximum again.

この可動レンズ20の移動距離より角膜曲率が算出され
る。捷だ既述したように3経線方向で角膜曲率が求捷れ
ば、これより乱視度、乱視’I11方向が算出される。
The corneal curvature is calculated from the moving distance of the movable lens 20. As described above, if the corneal curvature is determined in the three meridian directions, the degree of astigmatism and the astigmatism 'I11 direction can be calculated from this.

ところで本発明を光電的に検出することを中心に述べて
きたが、光学的に検出するととすなわち角膜反射による
指標像のピント状態を肉眼。
By the way, the present invention has been mainly described with reference to photoelectric detection, but optical detection means detecting the focus state of the target image by corneal reflection with the naked eye.

顕微鏡等で観察し検出しても良いことを明記しておく。It should be clearly stated that it may be observed and detected using a microscope, etc.

以上、本発明によれば、測定光軸方向から指標を投影(
7て、被検眼の小領域における角膜曲率、乱イ兄就、乱
視軸方向等の角膜形状を測定でき、測定の自動化も可能
な角膜形状測定装置を提供できる。
As described above, according to the present invention, the index is projected from the measurement optical axis direction (
7) It is possible to provide a corneal shape measuring device that can measure corneal shapes such as corneal curvature, curvature, and astigmatism axis direction in a small area of the eye to be examined, and can also automate the measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置aの実施例の図、第2図はスリット
板の説明図、第3図(A) ()3) (C)は各マス
ク板の図、第4図乃至第6図は本発明の原理説明図、第
7図は本発明装置のg2の実施例の図、r′l”: 8
四回181は各々スリット板、マスク板の図、第9図は
本発明装置の第3の実施例(1)図。図中Eは被検眼、
Ecfd:角膜、lFi光源、2.2′はスリット板、
3.5.6 u、光分割部材、4は結像レンズ、7、8
.9.13はマスク板、10.11.12は受光素子、
14、15.16はライトガイド、23.24.25は
シリンドリカルレンズである。
Fig. 1 is a diagram of an embodiment of the present invention device a, Fig. 2 is an explanatory diagram of a slit plate, Fig. 3 (A) () 3) (C) is a diagram of each mask plate, and Figs. The figure is a diagram explaining the principle of the present invention, and Figure 7 is a diagram of an embodiment of g2 of the device of the present invention, r'l'': 8
4 181 is a diagram of a slit plate and a mask plate, respectively, and FIG. 9 is a diagram of a third embodiment (1) of the apparatus of the present invention. E in the figure is the eye to be examined.
Ecfd: cornea, lFi light source, 2.2' is slit plate,
3.5.6 u, light splitting member, 4 is imaging lens, 7, 8
.. 9.13 is a mask plate, 10.11.12 is a light receiving element,
14, 15, and 16 are light guides, and 23, 24, and 25 are cylindrical lenses.

Claims (1)

【特許請求の範囲】 1、指標を被検眼角膜に投影し、角膜反射光を用いて角
膜形状を測定する装置において、前記指標を被検眼に投
影する結像光学系を有し、該結像光学系と前記指標の少
なくとも一方が光軸方向に移動可能であり、前記結像光
学系による前記指標の共役位置が角膜表面となる第1の
位置と、角膜曲率中心となる第2の位置との移動距離感
より角膜形状を測定することを特徴とする角膜形状測定
装置。 2、前記結像光学系の像面位置に受光素子が設けられる
特許請求の範囲第1項記載の角膜形状測定装置。 3、 前記結像光学系が光軸方向に移動可能であり、前
記指標が固定される特許請求の範囲第1項若しくは第2
項記載の角膜形状測定装置。 4、 前記結像光学系が固定され、前記指標が光軸方向
に移動可能である特許請求の範囲第1項若[7〈は第2
項記載の角膜形状測定装置。 5、 前記結像光学系及び指標が一体的に光軸方向に移
動可能である特許請求の範囲第1項若しくは第2項記載
の角膜形状測定装置。 6、 前記指標が光軸上にあって測定経線方向に狭い開
[1幅を有するスリットである特許請求の範囲第3墳若
しくは第4項若しくは第5項記載の角膜形状測定装置。 7、光路中、前記結像光学系の像面位置の手前に測定経
線方向に狭い開口幅を有するマスクが設けられる特許請
求の範囲第6項記載の角−膜形状測定装置0 8、前記指標が3経線方向に設けられる特許請求の範囲
第6項記載の角膜形状測定装置。 9、 前記3経線方向に応じて光分割部材により光路が
3箇に分割される特許請求の範囲第6項記載の角膜形状
測定装置。 10、前記マスクの開口長手方向が前記スリットの長手
方向より短い特許請求の範囲第7項記載の角膜形状測定
装置。 11.  前記マスクと前記受光素子との間にライトガ
イドが設けられる特許請求の範囲第7項記載の角膜形状
測定装置1イ。
[Scope of Claims] 1. An apparatus for projecting an index onto the cornea of an eye to be examined and measuring the shape of the cornea using corneal reflected light, comprising an imaging optical system for projecting the index onto the eye to be examined; At least one of the optical system and the indicator is movable in the optical axis direction, and a conjugate position of the indicator by the imaging optical system is a first position at the corneal surface and a second position at the center of corneal curvature. A corneal shape measuring device characterized by measuring the shape of the cornea based on the sense of distance traveled. 2. The corneal shape measuring device according to claim 1, wherein a light receiving element is provided at an image plane position of the imaging optical system. 3. Claim 1 or 2, wherein the imaging optical system is movable in the optical axis direction and the index is fixed.
The corneal topography measuring device described in Section 1. 4. The imaging optical system is fixed, and the index is movable in the optical axis direction.
The corneal topography measuring device described in Section 1. 5. The corneal shape measuring device according to claim 1 or 2, wherein the imaging optical system and the index are movable integrally in the optical axis direction. 6. The corneal shape measuring device according to claim 3, 4, or 5, wherein the index is a slit that is located on the optical axis and has a narrow opening width of 1 in the measurement meridian direction. 7. The corneal shape measuring device according to claim 6, wherein a mask having a narrow aperture width in the measurement meridian direction is provided in the optical path in front of the image plane position of the imaging optical system. The corneal shape measuring device according to claim 6, wherein the corneal shape measuring device is provided in three meridian directions. 9. The corneal shape measuring device according to claim 6, wherein the optical path is divided into three by a light splitting member according to the three meridian directions. 10. The corneal shape measuring device according to claim 7, wherein the longitudinal direction of the opening of the mask is shorter than the longitudinal direction of the slit. 11. The corneal shape measuring device 1a according to claim 7, wherein a light guide is provided between the mask and the light receiving element.
JP56165386A 1981-10-15 1981-10-15 Apparatus for measuring cornea shape Pending JPS5867233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56165386A JPS5867233A (en) 1981-10-15 1981-10-15 Apparatus for measuring cornea shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56165386A JPS5867233A (en) 1981-10-15 1981-10-15 Apparatus for measuring cornea shape

Publications (1)

Publication Number Publication Date
JPS5867233A true JPS5867233A (en) 1983-04-21

Family

ID=15811398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56165386A Pending JPS5867233A (en) 1981-10-15 1981-10-15 Apparatus for measuring cornea shape

Country Status (1)

Country Link
JP (1) JPS5867233A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142410A (en) * 1990-10-03 1992-05-15 Toshiba Corp Shape recognizing device
JP2007057344A (en) * 2005-08-24 2007-03-08 Lasertec Corp Inspecting apparatus, inspecting method and method for manufacturing cylinder block by using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142410A (en) * 1990-10-03 1992-05-15 Toshiba Corp Shape recognizing device
JP2007057344A (en) * 2005-08-24 2007-03-08 Lasertec Corp Inspecting apparatus, inspecting method and method for manufacturing cylinder block by using the same

Similar Documents

Publication Publication Date Title
US4710003A (en) Cornea shape measuring apparatus
US4764016A (en) Instrument for measuring the topography of a surface
US4984883A (en) Translation insensitive keratometer using moire deflectometry
JP2002071513A (en) Interferometer for immersion microscope objective and evaluation method of the immersion microscope objective
JPS61234837A (en) Apparatus for measuring eye refraction
JPS6130570B2 (en)
JPH02161332A (en) Device and method for measuring radius of curvature
US5212507A (en) Apparatus for measuring cornea shape
JPS5867233A (en) Apparatus for measuring cornea shape
JPH0355125B2 (en)
JPH0360260B2 (en)
JPH04151502A (en) Photosensor device
JPS5975035A (en) Apparatus for measuring cornea shape
JPS6150450B2 (en)
JPS61249432A (en) Apparatus for measuring shape of cornea
JPS6242327Y2 (en)
JPH0154055B2 (en)
JPS6322822B2 (en)
JP3061653B2 (en) Aspherical surface measuring method and measuring device
JPS628170B2 (en)
JPH08166209A (en) Polygon mirror evaluating device
JPS5814602B2 (en) KeijiyousokuteiSouchiyoukougakukei
JPS624969B2 (en)
JPH03249517A (en) Optical ring type noncontact length measuring sensor
JPH0118369B2 (en)