JPH0442621B2 - - Google Patents

Info

Publication number
JPH0442621B2
JPH0442621B2 JP59016577A JP1657784A JPH0442621B2 JP H0442621 B2 JPH0442621 B2 JP H0442621B2 JP 59016577 A JP59016577 A JP 59016577A JP 1657784 A JP1657784 A JP 1657784A JP H0442621 B2 JPH0442621 B2 JP H0442621B2
Authority
JP
Japan
Prior art keywords
scattered light
microparticulate
flowing
light
flow cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59016577A
Other languages
Japanese (ja)
Other versions
JPS60161548A (en
Inventor
Bunro Kawaguchi
Juji Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59016577A priority Critical patent/JPS60161548A/en
Publication of JPS60161548A publication Critical patent/JPS60161548A/en
Publication of JPH0442621B2 publication Critical patent/JPH0442621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke

Description

【発明の詳細な説明】 本発明は、高速で流れる微小粒子状物体浮遊溶
液へ光を照射し、その散乱光より微小粒子状物
体、例えば細胞の形状等を解析する流動微小粒子
状物体の散乱光測定装置の改良に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to scattering of flowing microparticulate objects, in which light is irradiated to a solution in which microparticles are floating at high speed, and the shape of microparticles, such as cells, is analyzed from the scattered light. This invention relates to improvements in optical measurement devices.

第1〜2図に従来の装置を示す。1はレーザ光
Aを発するレーザ、2はレンズ、3は中心部に流
路を有するフローセルで、該流路内を流動微小粒
子状物体4を含んだ微小粒子状物体浮遊溶液Bが
矢印方向に流れる。尚、第2図図示の装置ではフ
ローセル3の代わりにフローチユーブ5が用いら
れている。6,7は流動微小粒子状物体4からの
散乱光を集光する集光レンズで、集光レンズ6は
フローセル3(フローチユーブ5)を挟んでレー
ザ光Aの放射方向に配置され、集光レンズ7はレ
ーザ光Aの放射方向及び微小粒子状物体浮遊溶液
Bの流れ方向に対して直角方向に配置される。
8,9は各々集光レンズ6,7で集光された散乱
光を検出する検出器である。
A conventional device is shown in FIGS. 1 and 2. 1 is a laser that emits laser light A, 2 is a lens, and 3 is a flow cell having a channel in the center, in which a microparticulate matter suspended solution B containing microparticulate objects 4 flows in the direction of the arrow. flows. In the apparatus shown in FIG. 2, a flow tube 5 is used instead of the flow cell 3. 6 and 7 are condenser lenses that condense the scattered light from the flowing microparticulate matter 4. The condenser lens 6 is arranged in the radiation direction of the laser beam A across the flow cell 3 (flow tube 5), and condenses the light. The lens 7 is arranged in a direction perpendicular to the radiation direction of the laser beam A and the flow direction of the microparticle suspended solution B.
Detectors 8 and 9 detect scattered light collected by condensing lenses 6 and 7, respectively.

レーザ1から発せられたレーザ光Aはレンズ2
を通過し、フローセル3(フローチユーブ5)内
を流れる流動微小粒子状物体浮遊溶液B中に含ま
れる流動微小粒子状物体4を照射する。すると、
流動微小粒子状物体4から散乱光が放出され、こ
の散乱光の一部は集光レンズ6,7によつて光検
出器8,9上へ集光され、光検出器8,9にて電
気信号に変換される。光検出器8,9から出力さ
れる電気信号は不図示の信号処理回路によつて解
析される。このようにして流動微小粒子状物体4
からの散乱光を解析することにより、流動微小粒
子状物体4の形状等が明らかになる。
Laser light A emitted from laser 1 passes through lens 2
, and irradiates the fluid microparticulate matter 4 contained in the fluid microparticulate matter suspension solution B flowing through the flow cell 3 (flow tube 5). Then,
Scattered light is emitted from the flowing microparticulate object 4, and a part of this scattered light is focused onto photodetectors 8 and 9 by condensing lenses 6 and 7, and is converted into electricity by the photodetectors 8 and 9. converted into a signal. The electrical signals output from the photodetectors 8 and 9 are analyzed by a signal processing circuit (not shown). In this way, the flowing fine particulate matter 4
By analyzing the scattered light from the flow, the shape etc. of the flowing microparticulate object 4 becomes clear.

また、第3図に示す如く、流動微小粒子状物体
4(微小粒子状物体浮遊溶液B)の流れに垂直
な、レーザ光Aの光軸を含む平面での、全方向
(360゜)の散乱光を検出する装置も従来ある。こ
の場合の流動微小粒子状物体4からの散乱光は楕
円型ミラー10で反射され、円環状に並んだ複数
(例えば32個)の光検出器群11によつて検出さ
れる。
In addition, as shown in FIG. 3, scattering occurs in all directions (360°) in a plane that includes the optical axis of the laser beam A, which is perpendicular to the flow of the flowing fine particulate matter 4 (fine particulate matter suspension solution B). There are also conventional devices that detect light. In this case, the scattered light from the flowing microparticle object 4 is reflected by the elliptical mirror 10 and detected by a plurality of (for example, 32) photodetector groups 11 arranged in an annular shape.

ところが、第1〜2図に示す様な装置において
は、散乱光を光検出器8,9へ集光するための光
学系(集光レンズ6,7)をフローセル3(フロ
ーチユーブ5)の外部に配置しなければならず、
第1〜2図の如く集光レンズ6,7を配置した場
合には、前方散乱光及び直角方向散乱光しか測定
することができない。第3図に示す装置において
は、全方向(360゜)に渡つて散乱光の測定が可能
であるため、第1〜2図図示の装置に比べて確実
な解析を行うことができるが、微小粒子状物体浮
遊溶液Bの流れ方向と楕円型ミラー10と光検出
器群11との配調整が困難であるといつた問題点
があつた。
However, in the apparatus shown in FIGS. 1 and 2, the optical system (condensing lenses 6 and 7) for condensing the scattered light onto the photodetectors 8 and 9 is installed outside the flow cell 3 (flow tube 5). must be placed in
When the condensing lenses 6 and 7 are arranged as shown in FIGS. 1 and 2, only forward scattered light and perpendicular scattered light can be measured. The device shown in Figure 3 can measure scattered light in all directions (360°), so it can perform more reliable analysis than the devices shown in Figures 1 and 2. There was a problem in that it was difficult to adjust the flow direction of the particulate matter suspension solution B and the arrangement of the elliptical mirror 10 and the photodetector group 11.

本発明の目的は、上述した問題点を解決し、配
置調整が容易であり、且つ全方向に渡る散乱光を
測定することができる流動微小粒子状物体の散乱
光測定装置を提供することである。
An object of the present invention is to provide a scattered light measuring device for a flowing microparticulate object that solves the above-mentioned problems, is easy to adjust the arrangement, and can measure scattered light in all directions. .

この目的を達成するために、本発明は、フロー
セルの流路の周りの経線方向において集光する作
用を有するレンズを備え、以て、流動微小粒子状
物体から放出される散乱光を、前記フローセルの
流路の周りで360゜に渡つて集光させるようにした
ことを特徴とする。
In order to achieve this object, the present invention includes a lens having the function of condensing light in the meridian direction around the flow path of the flow cell, thereby concentrating the scattered light emitted from the flowing microparticulate object into the flow cell. The feature is that the light is focused over 360° around the flow path.

以下、本発明を図示の実施例に基づいて詳細に
説明する。
Hereinafter, the present invention will be explained in detail based on illustrated embodiments.

第4〜5図は本発明の一実施例を示すもので、
第4図は微小粒子状物体の散乱光測定装置の概略
を示す斜視図、第5図は第4図に示す光検出器群
の一部の詳細及び信号処理系を示す図である。第
1図と同じ部分は同一符号にて表す。12は中心
部に嵌合している管13内を流れる流動微小粒子
状物体4から放出される散乱光に対して集光作用
を持つレンズから成るフローセルで、フローセル
12のレンズ面は管13に対して回転対称とな
り、レンズ面の頂点を結ぶ平面は、当然管13に
対して垂直となる。レーザ1は、この平面にレー
ザ光Aの光軸が含まれるように位置する。14
は、管13に垂な、レーザ光Aを含む平面上で、
フローセル12に関して流動微小粒子状物体4と
ほぼ共役な円周上に配列される光検出器群、15
はレーザ光Aをフローセル12へ導くための穴
部、16は光検出器、17はフローセル12にて
集光された散乱光を光検出器16へ案内するライ
ガイドで、フアイバー群或いは屈折率分布型レン
ズから成る。光検出器群14は複数のライトガイ
ド17及び光検出器16から構成される。18は
光検出器群14にて得られる信号を処理(解析)
する信号処理回路である。
4 and 5 show an embodiment of the present invention,
FIG. 4 is a perspective view showing an outline of the apparatus for measuring scattered light of microparticulate objects, and FIG. 5 is a diagram showing details of a part of the photodetector group shown in FIG. 4 and a signal processing system. The same parts as in FIG. 1 are represented by the same symbols. Reference numeral 12 denotes a flow cell consisting of a lens that has a condensing effect on the scattered light emitted from the flowing microparticulate matter 4 flowing inside the tube 13 fitted in the center. On the other hand, it is rotationally symmetrical, and the plane connecting the vertices of the lens surface is naturally perpendicular to the tube 13. The laser 1 is positioned so that the optical axis of the laser beam A is included in this plane. 14
is on a plane perpendicular to the tube 13 and containing the laser beam A,
a group of photodetectors 15 arranged on a circumference substantially conjugate with the flowing microparticulate matter 4 with respect to the flow cell 12;
16 is a photodetector; 17 is a light guide that guides the scattered light collected in the flowcell 12 to the photodetector 16; Consists of type lenses. The photodetector group 14 includes a plurality of light guides 17 and photodetectors 16. 18 processes (analyzes) the signal obtained by the photodetector group 14
This is a signal processing circuit that performs

レーザ1から発せられたレーザ光Aはレンズ
2、穴部15を通過し、フローセル12の中心部
に嵌合した管13内を流れる微小粒子状物体浮遊
溶液B中に含まれる流動微小粒子状物体4を照射
する。すると、流動微小粒子状物体4から散乱光
が放出される。この散乱光のうち、管13に垂直
な、レーザ光Aを含む平面に対して、所定角度以
内の角度をなして放出される散乱光は、レンズか
ら成るフローセル12の集光作用により各ライト
ガイド17の入射面へ集光され、ライトガイド1
7に案内されて光検出器16へ入射する。光検出
器16は入射する散乱光を光電変換し、電気信号
として信号処理回路18へ出力する。このよう
に、光検出器群14にて得られた電気信号は全て
信号処理回路18へ送られ、信号処理回路18に
より解析が行われる。尚、各光検出器16からの
信号を信号処理回路18によつて各々独立に解析
することも可能である。また、従来の前方散乱光
及び直角方向の散乱光での測定は、第4図に示す
イ及びロの部分の光検出器16を用いることによ
り可能である。
The laser beam A emitted from the laser 1 passes through the lens 2 and the hole 15, and the flowing microparticulate matter contained in the microparticulate matter suspension solution B flowing through the tube 13 fitted in the center of the flow cell 12. Irradiate 4. Then, scattered light is emitted from the flowing microparticulate matter 4. Of this scattered light, the scattered light emitted at an angle within a predetermined angle with respect to the plane containing the laser beam A that is perpendicular to the tube 13 is collected by each light guide by the condensing action of the flow cell 12 consisting of a lens. The light is focused on the incident surface of light guide 1
7 and enters the photodetector 16. The photodetector 16 photoelectrically converts the incident scattered light and outputs it as an electrical signal to the signal processing circuit 18. In this way, all electrical signals obtained by the photodetector group 14 are sent to the signal processing circuit 18 and analyzed by the signal processing circuit 18. Note that it is also possible to independently analyze the signals from each photodetector 16 by the signal processing circuit 18. Further, conventional measurements using forward scattered light and perpendicular scattered light are possible by using the photodetector 16 shown in parts A and B shown in FIG.

本実施例によれば、フローセル12を集光作用
のあるレンズにより形成したため、フローセル1
2を形成するレンズによつて決まる平面上に、レ
ーザ光Aの光軸と光検出器群14とを配置すれば
よいので、流動微小粒子状物体4の流れ方向とレ
ーザ1と光検出器群14との配置調整が容易であ
り、全方向(360゜)の散乱光の測定が可能となつ
た。また、各光検出器16にて得られる電気信号
を独立に信号処理することが可能であるため、精
度の高い測定が可能である。更に、従来例(第1
〜3図)の如く集光光学系を新たに配置する必要
がなくなるため、装置を小型化することができ
る。
According to this embodiment, since the flow cell 12 is formed of a lens with a light condensing function, the flow cell 12
The optical axis of the laser beam A and the photodetector group 14 can be placed on the plane determined by the lens forming the laser beam 2. It is easy to adjust the arrangement with 14, making it possible to measure scattered light in all directions (360 degrees). Further, since it is possible to independently process the electrical signals obtained by each photodetector 16, highly accurate measurement is possible. Furthermore, the conventional example (first
Since there is no need to newly arrange a condensing optical system as shown in Figures 1 to 3), the device can be downsized.

以上説明したように、本発明によれば、フロー
セルの流路の周りの経線方向において集光する作
用を有するレンズを備え、以て、流動微小粒子状
物体から放出される散乱光を、前記フローセルの
流路の周りで360゜に渡つて集光させるようにした
から、配置調整が容易であり、且つ全方向に渡る
散乱光を測定することができる。
As explained above, according to the present invention, the flow cell is provided with a lens having the function of condensing light in the meridian direction around the flow path, and thereby the scattered light emitted from the flowing microparticulate object is collected in the flow cell. Since the light is focused over 360 degrees around the flow path, it is easy to adjust the arrangement, and scattered light in all directions can be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の散乱光測定装置の一例を示す斜
視図、第2図は同じく従来の散乱光測定装置の他
の例を示す斜視図、第3図は同じく従来の散乱光
測定装置の別の例を示す斜視図、第4図は本発明
の一実施例を示す斜視図、第5図は第4図に示す
光検出器群の一部の詳細及び信号処理系を示す図
である。 1……レーザ、2……レンズ、4……流動微小
粒子状物体、12……フローセル、13……管、
14……光検出器群、15……穴部、16……光
検出器、17……ライトガイド、18……信号処
理回路、A……レーザ光、B……微小粒子状物体
浮遊溶液。
Fig. 1 is a perspective view showing an example of a conventional scattered light measuring device, Fig. 2 is a perspective view showing another example of the conventional scattered light measuring device, and Fig. 3 is another example of the conventional scattered light measuring device. 4 is a perspective view showing an example of the present invention, and FIG. 5 is a diagram showing details of a part of the photodetector group shown in FIG. 4 and a signal processing system. 1... Laser, 2... Lens, 4... Flowing microparticulate object, 12... Flow cell, 13... Tube,
14... Photodetector group, 15... Hole, 16... Photodetector, 17... Light guide, 18... Signal processing circuit, A... Laser light, B... Microparticulate matter suspension solution.

Claims (1)

【特許請求の範囲】 1 微小粒子状物体を含んだ微小粒子状物体浮遊
流体が流れる流路を中心部に有するフローセル
と、該フローセルの流路に向けてレーザ光を照射
する照射光学系と、レーザ光が照射される微小粒
子状物体からの散乱光を測光する測光光学系を備
えた流動微小粒子状物体の散乱光測定装置におい
て、 前記フローセルの流路の周りの経線方向におい
て集光する作用を有するレンズを備えることを特
徴とする流動微小粒子状物体の散乱光測定装置。 2 前記測光光学系は前記レンズ周囲の全周に渡
つて配置された光検出手段を有する特許請求の範
囲第1項記載の流動微小粒子状物体の散乱光測定
装置。
[Scope of Claims] 1. A flow cell having a flow channel in the center through which a micro-particle suspended fluid containing micro-particle objects flows, and an irradiation optical system that irradiates laser light toward the flow channel of the flow cell; In an apparatus for measuring scattered light of a flowing microparticulate object that is equipped with a photometric optical system that measures scattered light from a microparticulate object that is irradiated with a laser beam, the action of condensing light in the meridian direction around the flow path of the flow cell is provided. 1. An apparatus for measuring scattered light of a flowing microparticulate object, comprising a lens having the following characteristics. 2. The apparatus for measuring scattered light of a flowing microparticulate object according to claim 1, wherein the photometric optical system includes a light detection means arranged all around the lens.
JP59016577A 1984-01-31 1984-01-31 Apparatus for measuring scattered light of flowing fine particulate material Granted JPS60161548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59016577A JPS60161548A (en) 1984-01-31 1984-01-31 Apparatus for measuring scattered light of flowing fine particulate material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59016577A JPS60161548A (en) 1984-01-31 1984-01-31 Apparatus for measuring scattered light of flowing fine particulate material

Publications (2)

Publication Number Publication Date
JPS60161548A JPS60161548A (en) 1985-08-23
JPH0442621B2 true JPH0442621B2 (en) 1992-07-14

Family

ID=11920140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59016577A Granted JPS60161548A (en) 1984-01-31 1984-01-31 Apparatus for measuring scattered light of flowing fine particulate material

Country Status (1)

Country Link
JP (1) JPS60161548A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718788B2 (en) * 1988-11-08 1995-03-06 富士電機株式会社 Optical particle measuring device
US7982875B2 (en) * 2009-06-15 2011-07-19 Wyatt Technology Corporation Method and apparatus for measuring the scattered light signals from a liquid sample
EP3183555B1 (en) * 2014-08-20 2021-08-04 Research Triangle Institute Devices, systems and methods for detecting particles
ES2607633A1 (en) * 2015-10-01 2017-04-03 Universidad Carlos Iii De Madrid Multiple loading device for flat laser beam microscope (Machine-translation by Google Translate, not legally binding)

Also Published As

Publication number Publication date
JPS60161548A (en) 1985-08-23

Similar Documents

Publication Publication Date Title
EP0416067B1 (en) Method and apparatus for particle size analysis
US4273443A (en) Method and apparatus for measurement of reradiation in particle flow cell systems
EP0369654B1 (en) Particle measurement apparatus
CN108956402B (en) High-sensitivity dust concentration detection method with composite multi-photosensitive-area structure
CA1135971A (en) Radiant energy reradiating flow cell system and method
JP2003515738A (en) Apparatus for measuring the size of substantially spherical particles, such as opaque droplets, by diffraction
CN112903547B (en) High-concentration cloud and mist particle concentration measuring device based on double light sources
JP4050748B2 (en) Particle measuring device
JPH0442621B2 (en)
JPS63140904A (en) Scattered light measuring instrument
JPH05172732A (en) Method and apparatus for detecting particle in liquid
JPS5970944A (en) Apparatus for measuring particle diameter
JPH05215664A (en) Method and device for detecting submicron particle
GB2041516A (en) Methods and apparatus for measurement of reradiation in particle flow cell systems
JPH0277636A (en) Particle measuring device
CN112730180A (en) High-sensitivity dust particle counting sensor with double detectors
JPH02193041A (en) Particle size distribution apparatus
JPS62151742A (en) Analyzing and selecting device for corpuscle
JPH0534259A (en) Device for measuring particle size distribution
JPS6225237A (en) Particles detecting device using light
JPS6244649A (en) Particle analyzing device
JPS6093944A (en) Light-scattering particle measuring apparatus
JPH0498145A (en) Counting device for particulates in fluid
SU535485A1 (en) Device for measuring the average Sauter diameter of aerosol particles
SU1395994A1 (en) Photoelectric spectrometer of microparticles