JPH0277636A - Particle measuring device - Google Patents

Particle measuring device

Info

Publication number
JPH0277636A
JPH0277636A JP63229566A JP22956688A JPH0277636A JP H0277636 A JPH0277636 A JP H0277636A JP 63229566 A JP63229566 A JP 63229566A JP 22956688 A JP22956688 A JP 22956688A JP H0277636 A JPH0277636 A JP H0277636A
Authority
JP
Japan
Prior art keywords
light
aperture
particle
detected
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63229566A
Other languages
Japanese (ja)
Inventor
Moritoshi Miyamoto
守敏 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63229566A priority Critical patent/JPH0277636A/en
Publication of JPH0277636A publication Critical patent/JPH0277636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To measure correct size of a particle by providing an aperture equipped with an opening portion of a predetermined shape in front of a measuring unit to be detected. CONSTITUTION:When a measuring particle passes a measuring unit to be detected, the light projected to the measuring particle is radiated to be scattered. Among the scattering light, components of a predetermined angle radiated by an aperture 6 in the forward direction of an optical path pass the aperture and the remainder is shut off. The strength of the light passing the aperture 6 and condensed by a condensing lens 7 is detected by a photodetector 8. The particle size is calculated in an operation circuit based on an output of the detector 8. There is provided a photometric optical system for lateral scattering light and fluorescent light in a lateral direction of a flow cell 1. An output of the flow cell 1 is also inputted to the operation circuit where an analysis of the particle is operated. The strength of the front scattering light detected by the photodetector 8 is linearly related to the particle size of the measuring particle, thereby achieving a correct measurement of the particle size.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は例えばフローセル内を通過する検体粒子にレー
ザ光等を照射し、該検体粒子によって放射される散乱光
や透過光、又は蛍光を検出して検体粒子の性質、構造等
を解析したり、免疫検査等を行なう粒子測定装置に関す
る。
Detailed Description of the Invention [Industrial Application Field] The present invention is directed to, for example, irradiating sample particles passing through a flow cell with a laser beam or the like, and detecting scattered light, transmitted light, or fluorescence emitted by the sample particles. The present invention relates to a particle measuring device for analyzing the properties, structure, etc. of sample particles, and for performing immunological tests.

[従来の技術] 従来の粒子解析装置、例えばフローサイトメータでは、
フローセルの中央部の200μmx200μm程度の微
小な矩形断面を有する流通部内をシース液に包まれて通
過する血球細胞や感作ラテツクス粒子等のサンプル液に
照射光を照射し、その結果束ずる前方散乱光及び側方散
乱光、更には蛍光により粒子解析を行なう。前方散乱光
からは粒子サイズを表わす情報が得られ、側方散乱光か
らは粒子の構造的な情報が得られ、蛍光からはDNAや
RNA量等の粒子の化学的性質が得られる。従来、前方
散乱光の検出強度は検体粒子の粒子径と1対1で対応す
ると考えられ、該前方散乱光の検出強度により粒子径を
演算していた。
[Conventional technology] Conventional particle analysis devices, such as flow cytometers,
Irradiation light is irradiated onto sample liquids such as blood cells and sensitized latex particles that are wrapped in sheath liquid and pass through a flow section with a minute rectangular cross section of about 200 μm x 200 μm in the center of the flow cell, and as a result, forward scattered light is bundled. Particle analysis is performed using side scattered light and fluorescence. Information representing the particle size can be obtained from the forward scattered light, structural information about the particle can be obtained from the side scattered light, and chemical properties of the particle such as the amount of DNA and RNA can be obtained from the fluorescence. Conventionally, it has been thought that the detected intensity of forward scattered light has a one-to-one correspondence with the particle diameter of sample particles, and the particle diameter has been calculated based on the detected intensity of forward scattered light.

[発明が解決しようとしている問題点]しかしながら、
従来のように照射光にレーザ光等の単色光を用いたもの
は、検体粒子が透光性である場合、第6図に示す如く散
乱光検出強度と粒子径の関数は単調増加関数とならず、
ある粒子径付近ではりニアリテイが崩れてしまい、その
付近の粒子径が算出できないという問題点があった。
[Problem that the invention seeks to solve] However,
In conventional methods that use monochromatic light such as a laser beam as the irradiation light, if the sample particles are translucent, the function of the detected scattered light intensity and particle diameter becomes a monotonically increasing function, as shown in Figure 6. figure,
There is a problem in that the linearity collapses around a certain particle size, making it impossible to calculate the particle size around that area.

この問題点を解決するための1手段として本願出願人が
先に出願した特願昭62−58301では、前方散乱光
の受光光学系の光路中に同心円状に透過率の異なる光学
フィルタを配置し、散乱角度毎に透過率を調節すること
によって、散乱光検出強度と粒子径との関係をリニアに
し、正確な粒子径を求める実施例を開示している。
As a means to solve this problem, in Japanese Patent Application No. 62-58301 previously filed by the applicant, optical filters with different transmittances are arranged concentrically in the optical path of the forward scattered light receiving optical system. discloses an example in which the relationship between the detected intensity of scattered light and the particle diameter is made linear by adjusting the transmittance for each scattering angle, and accurate particle diameters are determined.

本発明はより簡便な方法で、検体粒子のサイズに拘わら
ず正確な粒子径を求めることができる粒子解析装置の提
供を目的とする。
An object of the present invention is to provide a particle analyzer that can accurately determine particle diameters regardless of the size of sample particles using a simpler method.

[目的を達成するための手段] 上述した目的を達成するため、検体粒子に光ビームを照
射する照射系と、前記光ビームが検体粒子によって放射
される光を検出する検出系を備える粒子測定装置におい
て、前記検出系の光路内にアパーチャを備え、該アパー
チャは前記散乱光の検出強度が粒子径の単調関数となる
ように散乱角度に応じて開口面積の割合が異なる開口形
状を備える。
[Means for Achieving the Objective] In order to achieve the above-mentioned objective, a particle measuring device is provided that includes an irradiation system that irradiates a light beam onto sample particles, and a detection system that detects light emitted by the sample particle from the light beam. In this method, an aperture is provided in the optical path of the detection system, and the aperture has an opening shape with an opening area ratio that varies depending on the scattering angle so that the detected intensity of the scattered light becomes a monotonous function of the particle diameter.

[実施例] 以下、本発明の実施例を図面を用いて詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図(a)は実施例の構成図であり、レーザ光源3か
ら発射されたレーザ光りは、シリンドリカルレンズ等の
結像レンズ4によりフローセル1内の流通部2の被検部
に結像される。流通部2には、例えば血球細胞やラテッ
クス凝集体等の検体粒子Sがシースフロ一方式によって
図面垂直方向に1個あるいは1塊ずつ流される。
FIG. 1(a) is a configuration diagram of an embodiment, in which laser light emitted from a laser light source 3 is imaged onto a test part of a flow section 2 in a flow cell 1 by an imaging lens 4 such as a cylindrical lens. Ru. In the flow section 2, sample particles S such as blood cells or latex aggregates are flowed one by one or one lump at a time in a direction perpendicular to the drawing using a sheath flow system.

被検部を検体粒子が通過し、検体粒子への光照射によっ
て放射される散乱光の内、光吸収部材から成るアパーチ
ャ6によって、光路前方方向に放射される前方散乱光の
所定角度成分が通過し、それ以外は遮断される。アパー
チャ6を通過した光は集光レンズ7で集光されて光検出
器8にて光強度が検出され、光検出器8の出力を基に不
図示の演算回路にて粒子径の算出がなさ、れる。また図
示していないが、フローセル1の側方方向には側方散乱
光及び蛍光の測光光学系が配置され、これらの光の測光
出力も演算回路に入力されて粒子解析の演算がなされる
。ここで前記光検出器8で検出された前方散乱光強度は
、第5図に示すように検体粒子の粒子径とリニアな関係
にあるため正確な粒子径を求めることができる。理由に
ついで以下に説明する。
A predetermined angular component of the forward scattered light emitted in the forward direction of the optical path passes through the aperture 6 made of a light-absorbing member among the scattered light emitted by the analyte particles passing through the test part and irradiated with light to the sample particles. However, everything else is blocked. The light passing through the aperture 6 is focused by a condensing lens 7, and the light intensity is detected by a photodetector 8. Based on the output of the photodetector 8, a calculation circuit (not shown) calculates the particle diameter. , will be. Further, although not shown, a photometric optical system for side scattered light and fluorescence is arranged in the lateral direction of the flow cell 1, and the photometric output of these lights is also input to an arithmetic circuit to perform calculations for particle analysis. Here, the forward scattered light intensity detected by the photodetector 8 has a linear relationship with the particle diameter of the sample particles, as shown in FIG. 5, so that the accurate particle diameter can be determined. The reason will be explained below.

本願出願人は先の特願昭62−58301でも述べたよ
うに、第4図に示すごとく散乱角度成分に応じて散乱光
検出強度■と粒子径の関係が異なることを見出した。こ
れを前提に同心円状に光透過率の異なるフィルタを用い
て、角度θ工〜θ2の範囲では光量I(01〜θ2)を
半減させ、角度02〜θ、の範囲は100%の光量!(
02〜θ3)を透過させる。よって光検出器で検出され
る光量は34I (θl〜θ2)+I(02〜θ、)と
なり、これは第5図に示すように単調増加な関数となり
正確な粒子径を求めることが可能となった0本発明はフ
ィルタを用いる代りに、同心円状に各角度成分の開口の
大きさの割合が異なるアパーチャを用いてフィルタと同
様の効果を得るものである。
As stated in the previous Japanese Patent Application No. 62-58301, the applicant of the present invention has found that the relationship between the detected intensity of scattered light (2) and the particle diameter differs depending on the scattering angle component, as shown in FIG. Based on this assumption, by using concentric filters with different light transmittances, the light intensity I (01 to θ2) is halved in the range of angles θ to θ2, and the light intensity is 100% in the range of angles 02 to θ! (
02 to θ3). Therefore, the amount of light detected by the photodetector is 34I (θl ~ θ2) + I (02 ~ θ,), which is a monotonically increasing function as shown in Figure 5, making it possible to determine the accurate particle diameter. Instead of using a filter, the present invention uses concentric apertures having different aperture size ratios for each angular component to obtain the same effect as a filter.

第1図(b)はアパーチャ6の形状の一例を示すもので
あり、内側の遮光部と外側の遮光部が細い梁によって接
続されている。このアパーチャ6は検体粒子Sが通過す
る被検部から所定距離をもって配置され、検体粒子Sか
ら放射される散乱光は角度O〜θ、までの範囲は、全円
状の遮光部で100%遮断される。なおこの部分におい
ては、照射レーザ光の直接光を遮断するストッパの役割
も兼ねている。その周りの角度01〜θ、の範囲では半
円状の遮光部により50%の光を通過させる。さらにそ
の周りの角度02〜θ3の範囲は、梁の投影面積は非常
に微小であるので、はぼ100%の光を通過させる。0
3以上の角度はすべて通過しないように遮断される。本
実施例では、θ、は8度、θ2は13度、θ3は32度
であり、この数字はシミュレーションによって求められ
た値である。
FIG. 1(b) shows an example of the shape of the aperture 6, in which an inner light shielding part and an outer light shielding part are connected by a thin beam. This aperture 6 is placed at a predetermined distance from the test area through which the sample particles S pass, and the scattered light emitted from the sample particles S is 100% blocked in the range from angle O to θ by the circular light shielding part. be done. Note that this portion also serves as a stopper that blocks direct light from the irradiated laser beam. In the surrounding angle range of 01 to θ, 50% of the light passes through the semicircular light shielding portion. Further, in the range of angles 02 to θ3 around it, the projected area of the beam is very small, so almost 100% of the light passes through. 0
All angles greater than or equal to 3 are blocked from passing. In this example, θ is 8 degrees, θ2 is 13 degrees, and θ3 is 32 degrees, and these numbers are values determined by simulation.

アパーチャの形状が第1図(b)・の形状に限られるも
のではないことは言うまでもない。角度θ。
It goes without saying that the shape of the aperture is not limited to the shape shown in FIG. 1(b). Angle θ.

〜θ2の範囲の散乱光を50%通過させることができれ
ば、遮光部の形状はいとわない。例えば第2図(a)や
第2図(b)に示すような変形例も考えられる。第2図
(a)は角度01〜θ2の範囲の遮光部を4分の1の円
状の遮光部を2つ設けることにより50%の光を遮断さ
せる。また第2 F (c)では角度θ、〜θ2の範囲
を透過率50%のメツシュ状部材を用いて遮光する。
As long as 50% of the scattered light in the range of ~θ2 can pass through, the shape of the light shielding part is acceptable. For example, modifications as shown in FIG. 2(a) and FIG. 2(b) are also possible. In FIG. 2(a), 50% of the light is blocked by providing two 1/4 circular light blocking portions in the range of angles 01 to θ2. Further, in the second F (c), a mesh-like member having a transmittance of 50% is used to block light in the range of angle θ to θ2.

さらに理論的には、角度01〜θ2範囲の通過光量が5
0%、角度θ、〜θ、が100%でなくとも、通過光量
が1対2の割合であれば同様の効果が得られる。よって
第2図(C)のような開口形状でも可能である。この例
においては、角度01〜θ、の範囲では33%透過、0
2〜θ3の範囲では66%透過となる。しかしながら、
粒子解析装置の測定感度を向上させるには、なるべく大
きな散乱光強度を検出できる形態の方が良く、光量ロス
の少ない前者の例の方が好ましいであろう。
Furthermore, theoretically, the amount of light passing through the angle range of 01 to θ2 is 5
Even if the angles θ and ˜θ are not 100%, the same effect can be obtained as long as the amount of passing light is at a ratio of 1:2. Therefore, an opening shape as shown in FIG. 2(C) is also possible. In this example, in the range of angle 01 to θ, 33% transmission, 0
In the range of 2 to θ3, the transmission is 66%. however,
In order to improve the measurement sensitivity of the particle analyzer, it is better to use a configuration that can detect as large a scattered light intensity as possible, and the former example with less light loss is preferable.

なお別の変形例としては、板ガレス等の透明部材に前述
と同一形状の光吸収性の遮光パターンを張り付けること
により、梁を用いて支える必要がなくなる。より拡張し
た変形例としては、板ガラスを用いずに、フローセル1
の前方散乱光の出射面や、集光レンズ7に直接遮光パタ
ーンを張り付けることも可能である。これらの場合、検
体粒子Sからの放射角度θ11θ2、θ、が変わらない
ように検体粒子Sからの距離に応じて、遮光パターンの
サイズを決定する。
As another modification, a light-absorbing light-shielding pattern having the same shape as described above is attached to a transparent member such as a glass plate, thereby eliminating the need for support using a beam. As a more extended variation, flow cell 1 can be constructed without using plate glass.
It is also possible to attach a light shielding pattern directly to the forward scattered light exit surface or the condenser lens 7. In these cases, the size of the light shielding pattern is determined according to the distance from the sample particle S so that the radiation angle θ11θ2, θ from the sample particle S does not change.

さらにはアパーチャの各角度成分の遮光部は同一平面内
にある必要はなく、被検部と光検出器8の間の光路中で
あれば分離して配置しても良い。
Furthermore, the light shielding portions of each angular component of the aperture do not need to be in the same plane, and may be placed separately as long as they are in the optical path between the subject and the photodetector 8.

この場合も放射角度成分を考慮して各アパーチャサイズ
を決定する。
In this case as well, each aperture size is determined in consideration of the radiation angle component.

[他の実施例] 第3図(a)は本発明の別の実施例の構成図であり、第
1図と同一の符号は同一の部材を表わす。
[Other Embodiments] FIG. 3(a) is a block diagram of another embodiment of the present invention, and the same reference numerals as in FIG. 1 represent the same members.

また第3図(b)は使用するアパーチャの形状である。Further, FIG. 3(b) shows the shape of the aperture used.

本実施例はアパーチャ9を光路直進方向に対して斜めに
傾けて配置したことを特徴とする。使用するアパーチャ
9の材質は光吸収性でなくても良い。また形状は、斜め
に傾けたときの投影形状が先の実施例の開ロバターンと
同一となるように楕円形状となっている。これにより光
路直進方向から見たアパーチャの開口形状は真円となる
This embodiment is characterized in that the aperture 9 is arranged obliquely with respect to the straight direction of the optical path. The material of the aperture 9 used does not have to be light absorbing. Further, the shape is an ellipse so that the projected shape when tilted obliquely is the same as the open pattern of the previous embodiment. As a result, the opening shape of the aperture when viewed from the direction in which the optical path advances becomes a perfect circle.

検体粒子Sから放射された前方散乱光は、斜めに傾けて
配置されたアパーチャ9によって、開口部では光路を直
進し、アパーチャの遮光部では光路から別の方向へ反射
される。反射された先には不図示の光吸収手段を設けで
ある。よって先の実施例のようにアパーチャに光吸収性
の部材を使う必要が無く同様の効果が得られる。
The forward scattered light emitted from the sample particles S travels straight along the optical path at the aperture portion of the aperture 9, which is arranged obliquely, and is reflected in a different direction from the optical path at the light-shielding portion of the aperture. A light absorbing means (not shown) is provided at the reflected end. Therefore, unlike the previous embodiment, there is no need to use a light-absorbing member for the aperture, and the same effect can be obtained.

なお、本実施例においても先の実施例と同様な数々の変
形例が考えられるのは言うまでもない。
It goes without saying that this embodiment can also be modified in many ways similar to the previous embodiments.

以上説明してきた本発明の実施例では、50%と100
%の透過率の2段階の角度成分の補正を行なったが、さ
らに多段階の角度成分を補正する形状のアパーチャを用
いて、より精度を向上させることも可能である。また、
測定する検体粒子の種類によって、例えばターレットを
回転させて、検体粒子の特性に応じた最適形状のアパー
チャを選択して光路中に配置する方法も、精度向上に効
果があるであろう。これらのアパーチャの形状の設計は
コンピュータシミュレーション等によって求めることが
できる。
In the embodiments of the present invention described above, 50% and 100%
Although the angular component of the % transmittance was corrected in two stages, it is also possible to further improve the accuracy by using an aperture shaped to correct the angular component in multiple stages. Also,
Depending on the type of sample particles to be measured, for example, a method of rotating the turret, selecting an optimally shaped aperture according to the characteristics of the sample particles, and arranging it in the optical path may also be effective in improving accuracy. The design of the shape of these apertures can be determined by computer simulation or the like.

[発明の効果] 以上本発明によれば、被検部の前方に所定形状の開口を
備えるアパーチャを配置することによって、検体粒子の
正確な粒子径を求めることが可能となる。
[Effects of the Invention] According to the present invention, by arranging an aperture having an opening of a predetermined shape in front of the test portion, it is possible to determine the accurate particle diameter of the sample particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の実施例の構成図、第1図(b)
はアパーチャの形状、 第2図(a) 、 (b) 、 (c)はアパーチャの
形状の変形例、 第3図(a)は別の実施例の構成図、 第3図(b)は別の実施例におけるアパーチャの形状、 第4図、第5図は本発明による散乱光強度■と粒子径の
関数を示す図、 第6図は従来例による散乱光検出強度■と粒子径の関数
を示す図、 であり、図中の主な符号は、 1・・・・フローセル、2・・・・tb il 部、3
・・・・レーザ光源、4・・・・結像レンズ、6.9・
・・・アパーチャ、7・・・・集光レンズ、8・・・・
光検出器、 幻1雁
FIG. 1(a) is a configuration diagram of an embodiment of the present invention, FIG. 1(b)
Figure 2 (a), (b), and (c) are examples of modified aperture shapes, Figure 3 (a) is a configuration diagram of another embodiment, and Figure 3 (b) is a different example. Figures 4 and 5 are diagrams showing the function of scattered light intensity ■ and particle diameter according to the present invention, and Figure 6 is a diagram showing the function of scattered light detection intensity ■ and particle diameter according to the conventional example. The main symbols in the figure are: 1...flow cell, 2...tb il part, 3
... Laser light source, 4... Imaging lens, 6.9.
...Aperture, 7...Condensing lens, 8...
Photodetector, phantom 1 wild goose

Claims (1)

【特許請求の範囲】 1、検体粒子に光ビームを照射する照射系と、前記光ビ
ームが検体粒子によって放射される光を検出する検出系
を備える粒子測定装置において、前記検出系の光路内に
アパーチャを備え、該アパーチャは前記散乱光の検出強
度が粒子径の単調関数となるように散乱角度に応じて開
口面積の割合が異なる開口形状を備えること特徴とする
粒子測定装置。 2、前記アパーチャの中心部は直接光除去用の遮光部で
ある請求項1記載の粒子測定装置。
[Scope of Claims] 1. In a particle measuring device comprising an irradiation system that irradiates a light beam onto sample particles, and a detection system that detects light emitted by the sample particles, the light beam is located within the optical path of the detection system. A particle measuring device comprising an aperture, the aperture having an aperture shape having an aperture area ratio that varies depending on the scattering angle so that the detected intensity of the scattered light becomes a monotonous function of the particle diameter. 2. The particle measuring device according to claim 1, wherein the center portion of the aperture is a light shielding portion for direct light removal.
JP63229566A 1988-09-13 1988-09-13 Particle measuring device Pending JPH0277636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63229566A JPH0277636A (en) 1988-09-13 1988-09-13 Particle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63229566A JPH0277636A (en) 1988-09-13 1988-09-13 Particle measuring device

Publications (1)

Publication Number Publication Date
JPH0277636A true JPH0277636A (en) 1990-03-16

Family

ID=16894182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63229566A Pending JPH0277636A (en) 1988-09-13 1988-09-13 Particle measuring device

Country Status (1)

Country Link
JP (1) JPH0277636A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156669A (en) * 2007-12-26 2009-07-16 Nippon Telegr & Teleph Corp <Ntt> Floating particulate substance measuring instrument
US9161958B2 (en) 2010-08-19 2015-10-20 Johnson & Johnson Consumer Inc. Methods of treating cellulite
US9173913B2 (en) 2010-08-19 2015-11-03 Johnson & Johnson Consumer Inc. Compositions comprising Paulownia tomentosa wood extracts and uses thereof
JP2016517526A (en) * 2013-03-15 2016-06-16 ベックマン コールター, インコーポレイテッド Synchrotron radiation filtering for flow cytometers
US9387349B2 (en) 2010-08-19 2016-07-12 Johnson & Johnson Consumer Inc. Compositions comprising Paulownia tomentosa wood extracts and uses thereof
EP2507639A4 (en) * 2009-12-04 2017-12-27 Life Technologies Corporation Apparatuses, systems, methods, and computer readable media for acoustic flow cytometry
WO2020021682A1 (en) * 2018-07-26 2020-01-30 株式会社島津製作所 Light scattering detection device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156669A (en) * 2007-12-26 2009-07-16 Nippon Telegr & Teleph Corp <Ntt> Floating particulate substance measuring instrument
EP2507639A4 (en) * 2009-12-04 2017-12-27 Life Technologies Corporation Apparatuses, systems, methods, and computer readable media for acoustic flow cytometry
US9161958B2 (en) 2010-08-19 2015-10-20 Johnson & Johnson Consumer Inc. Methods of treating cellulite
US9173913B2 (en) 2010-08-19 2015-11-03 Johnson & Johnson Consumer Inc. Compositions comprising Paulownia tomentosa wood extracts and uses thereof
US9387349B2 (en) 2010-08-19 2016-07-12 Johnson & Johnson Consumer Inc. Compositions comprising Paulownia tomentosa wood extracts and uses thereof
JP2016517526A (en) * 2013-03-15 2016-06-16 ベックマン コールター, インコーポレイテッド Synchrotron radiation filtering for flow cytometers
WO2020021682A1 (en) * 2018-07-26 2020-01-30 株式会社島津製作所 Light scattering detection device
CN112469985A (en) * 2018-07-26 2021-03-09 株式会社岛津制作所 Light scattering detection device
JPWO2020021682A1 (en) * 2018-07-26 2021-04-30 株式会社島津製作所 Light scattering detector

Similar Documents

Publication Publication Date Title
JP2825644B2 (en) Particle size analysis method and apparatus
US3851169A (en) Apparatus for measuring aerosol particles
JPH07503796A (en) Method and apparatus for molecular characterization
JPS61153546A (en) Particle analyzer
EP0225009A2 (en) Fibre size monitor
JPS62168033A (en) Particle analyzing device
JPH0277636A (en) Particle measuring device
US4351611A (en) Monitoring of a detection zone utilizing zero order radiation from a concave reflecting grating
JP4132692B2 (en) Particle size distribution measuring device
JP2000230901A (en) Optical unit
JP3151036B2 (en) Method and apparatus for detecting submicron particles
JPS6244650A (en) Particle analyzing device
JP2636051B2 (en) Particle measurement method and device
JPH03154850A (en) Specimen inspecting device
JPS63201554A (en) Particle analyzing device
JPS61294335A (en) Particle analyzer
JPS6244649A (en) Particle analyzing device
JP2720069B2 (en) Flow cell analyzer
JP4105888B2 (en) Particle size distribution measuring device
JP2001330551A (en) Particle measuring instrument
JPS6129738A (en) Particle analyzing instrument
JPS6314295B2 (en)
JP3258890B2 (en) Scattering type particle size distribution analyzer
JPS63309838A (en) Grain analyzing device
JPH0213829A (en) Particle measuring apparatus