JPH0213829A - Particle measuring apparatus - Google Patents

Particle measuring apparatus

Info

Publication number
JPH0213829A
JPH0213829A JP63164650A JP16465088A JPH0213829A JP H0213829 A JPH0213829 A JP H0213829A JP 63164650 A JP63164650 A JP 63164650A JP 16465088 A JP16465088 A JP 16465088A JP H0213829 A JPH0213829 A JP H0213829A
Authority
JP
Japan
Prior art keywords
light
wavelength
particle
optical member
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63164650A
Other languages
Japanese (ja)
Inventor
Moritoshi Miyamoto
守敏 宮本
Kazuo Yoshinaga
和夫 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63164650A priority Critical patent/JPH0213829A/en
Publication of JPH0213829A publication Critical patent/JPH0213829A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To calculate a correct diameter of a sample particle by arranging a non-linear optical member matched in phase with an irradiation light within an optical path of a photometry optical system. CONSTITUTION:A laser light with a wavelength lambda emitted from a laser light source 1 forms an image with a lens 8 at a position to be inspected at a passage section 3 within a flow cell 2. At the passage section 3, sample particles flow in sequentially one at a time and scattered light by the sample particles is condensed with a lens 4. A non-linear optical member 5 is matched in phase with an irradiation laser light, and if ever contacting the sample particles, part of the irradiation light passes through the non-linear optical member as intact with the wavelength lambda, undergoing no wavelength conversion. Here, light with the wavelength other than lambda/2 is cut off with a filter 6 and hence, light with the wavelength of lambda/2 alone is detected with a photo detector 7. Thus, a correct diameter of the sample particle can be determined from an output of the photo detector 7.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は粒子測定装置に関し、特にフローセル内を通過
する被検粒子にレーザ光等を照射し、該被検粒子から発
する散乱光または蛍光を検出して被検粒子の性質、構造
等を解析する、いわゆるフローサイトメータに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a particle measuring device, and in particular, to a particle measuring device that irradiates a laser beam or the like to test particles passing through a flow cell, and detects scattered light or fluorescence emitted from the test particles. This invention relates to a so-called flow cytometer that detects and analyzes the properties, structure, etc. of test particles.

[従来の技術] 従来の粒子測定装置、例えばフローサイトメータでは、
フローセルの中央部の例えば200μm×200μmの
微小な矩形断面を有する流通部内をシース液に包まれて
通過する血球細胞等のサンプル液に照射光を照射し、そ
の結果生ずる前方散乱光及び側方散乱光、更には蛍光に
より被検粒子の形状、大きさ、屈折率等の粒子的性質を
得ることで粒子測定を行なう。
[Prior Art] In conventional particle measuring devices, such as flow cytometers,
Irradiation light is irradiated onto a sample liquid such as blood cells that is wrapped in a sheath liquid and passes through a flow section having a minute rectangular cross section of, for example, 200 μm x 200 μm in the center of the flow cell, and the resulting forward scattered light and side scattered light are Particle measurements are performed by obtaining particle properties such as the shape, size, and refractive index of the target particles using light or even fluorescence.

第3図は従来の粒子解析装置の一例を示し、図中、フロ
ーセル2の中央部の紙面に垂直な流通部3内に被検粒子
Sが通過し、その流れと直交する方向にレーザ光源1が
配置されている。このレーザ光源1から出射されたレー
ザ光を2個のシリンドリカルレンズを直交させてなる結
像レンズ系8により被検粒子Sに対して収斂照射する。
FIG. 3 shows an example of a conventional particle analysis device. In the figure, test particles S pass through a flow section 3 in the center of a flow cell 2 perpendicular to the paper surface, and a laser light source 1 passes in a direction perpendicular to the flow. is located. Laser light emitted from this laser light source 1 is convergently irradiated onto the test particles S by an imaging lens system 8 made up of two cylindrical lenses orthogonal to each other.

また光軸上、被検粒子Sに対してレーザ光源1と反対側
にストッパ9、集光レンズ4、光検出器7が順次配列さ
れている。レーザ光源1から出射されたレーザ光は2個
のシリンドリカルレンズを直交させた結像レンズ系8に
より任意の長径、短径の結像ビームに成形され、流通部
3内を流れる被検粒子Sに照射される。被検粒子Sによ
って散乱されずに直進するレーザ光はストッパ9でカッ
トされて、被検粒子Sによって散乱された散乱光のうち
前方散乱光は集光レンズ4を介して光検出器7に集光さ
れ、前方散乱光強度が測定される。また側方散乱光及び
蛍光は集光レンズ4とは直交する方向に設けられた不図
示の光学系にて測光される。
Further, on the optical axis, a stopper 9, a condensing lens 4, and a photodetector 7 are arranged in this order on the opposite side of the laser light source 1 with respect to the particles S to be detected. The laser light emitted from the laser light source 1 is shaped into an imaging beam with arbitrary long and short diameters by an imaging lens system 8 made up of two cylindrical lenses orthogonal to each other. irradiated. The laser light traveling straight without being scattered by the test particles S is cut off by the stopper 9, and the forward scattered light among the scattered light scattered by the test particles S is focused on the photodetector 7 via the condenser lens 4. The forward scattered light intensity is measured. Further, the side scattered light and fluorescence are photometered by an optical system (not shown) provided in a direction orthogonal to the condenser lens 4.

従来は前方散乱光の検出強度は被検粒子の粒子径と1対
1で対応すると考えられて、前方散乱光の検出強度によ
り演算回路にて粒子径を演算していた。
Conventionally, it has been thought that the detected intensity of forward scattered light has a one-to-one correspondence with the particle diameter of the target particle, and the particle diameter has been calculated by a calculation circuit based on the detected intensity of forward scattered light.

[発明が解決しようとしている問題点]しかしながら、
実際には従来のように照射光にレーザ光等の単色光を用
いたものは、被検粒子が透光性である場合、第4図に示
す如く散乱光検出強度と粒子径の関数は単調増加関数と
ならず、ある粒子径付近ではリニアリティが崩れてしま
い、その付近の正確な粒子径が算出できないという問題
点があった。
[Problem that the invention seeks to solve] However,
In fact, in conventional methods that use monochromatic light such as laser light as the irradiation light, if the particles to be detected are translucent, the function of the detected scattered light intensity and particle diameter is monotonous, as shown in Figure 4. There is a problem in that the linearity does not become an increasing function and the linearity collapses around a certain particle size, making it impossible to calculate the accurate particle size around that area.

本発明は粒子径によらず、検体粒子の正確な粒子径を求
めることのできる粒子測定装置の提供を目的とする。
An object of the present invention is to provide a particle measuring device that can accurately determine the particle diameter of sample particles regardless of the particle diameter.

[問題点を解決するための手段コ 上記問題点を解決するため、検体粒子に照射光を照射し
、発生する散乱光を測光光学系にて測光して粒子測定を
行なう粒子測定装置において、前記測光光学系の光路内
に前記照射光に位相整合された非線形光学部材を配置す
る。
[Means for Solving the Problems] In order to solve the above problems, in a particle measuring apparatus that performs particle measurement by irradiating sample particles with irradiation light and measuring the generated scattered light with a photometric optical system, the above-mentioned method is used. A nonlinear optical member phase-matched to the irradiation light is disposed within the optical path of the photometric optical system.

[実施例] 以下、本発明の実施例を図面を用いて詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の実施例の構成図であり、レーザ光源1
から出射した波長λのレーザ光は、レンズ8でフローセ
ル2内の流通部3の被検位置に結像する。流通部3には
検体粒子が1粒子ずつ順次流れて被検位置を通過し、検
体粒子によって散乱された散乱光はレンズ4で集光され
る。照射されたレーザ光のうち、検体粒子に当らなかっ
た光は散乱されず′に光路を直進する。また被検部に検
体粒子がない時は、当然散乱光は発生せず照射されたレ
ーザ光が直接光路を直進する。
FIG. 1 is a configuration diagram of an embodiment of the present invention, in which a laser light source 1
A laser beam having a wavelength λ emitted from the flow cell 2 is imaged by a lens 8 at a test position in the flow section 3 in the flow cell 2 . Specimen particles flow into the flow section 3 one by one and pass through the test position, and the scattered light scattered by the specimen particles is focused by the lens 4. Of the irradiated laser light, the light that does not hit the sample particles is not scattered and travels straight along the optical path. Furthermore, when there are no specimen particles in the test area, naturally, no scattered light is generated and the irradiated laser light travels directly along the optical path.

レンズ4の光路後方には非線形光学部材5が配置され、
さらにその後方にはフィルタ6、光検出器7が配置され
ている。非線形光学部材とは入射光に対して波長変換さ
れた光を出射する性質を持つ部材であり、入射光の波長
λを半波長λ/2に波長変換するSHG効果が特に知ら
れている。またこの時、非線形光学部材と位相整合した
光のみを波長変換して、それ以外の位相の異なる光に対
しては著しく変換効率が落ちて殆ど波長変換せずに透過
させる性質を持っている。
A nonlinear optical member 5 is arranged behind the optical path of the lens 4,
Furthermore, a filter 6 and a photodetector 7 are arranged behind it. A nonlinear optical member is a member that has the property of emitting light that has been wavelength-converted with respect to incident light, and is particularly known for its SHG effect, which converts the wavelength λ of incident light to a half wavelength λ/2. In addition, at this time, it has the property of converting the wavelength of only the light that is phase-matched with the nonlinear optical member, and transmitting other light having a different phase with a significantly lower conversion efficiency with almost no wavelength conversion.

前記非線形光学部材5は照射レーザ光に位相整合されて
おり、検体粒子によって散乱された光、あるいは透光性
の検体粒子を透過した光は位相が乱されて非線形光学部
材5では波長変換されないことになる。すなわち・、照
射光のうち検体粒子に少しでも触れた光は非線形光学部
材によって波長変換されず波長λのまま非線形光学部材
を通過する。よって検体粒子で散乱や透過されない検体
粒子以外の部分を通過した照射光のみが非線形光学部材
の持つSHG効果により波長変換されてλ/2の波長の
光に変換される。ここでフィルタ6によってλ/2以外
の波長の光がカットされ、光検出器7ではλ/2の波長
の光のみが検出される。
The nonlinear optical member 5 is phase-matched to the irradiated laser beam, and the phase of the light scattered by the sample particles or the light transmitted through the transparent sample particles is disturbed and the wavelength is not converted by the nonlinear optical member 5. become. That is, out of the irradiated light, the light that even slightly touches the sample particles is not wavelength converted by the nonlinear optical member and passes through the nonlinear optical member with the wavelength λ unchanged. Therefore, only the irradiated light that is not scattered or transmitted by the sample particles and passes through the portion other than the sample particles is wavelength-converted by the SHG effect of the nonlinear optical member and converted into light with a wavelength of λ/2. Here, the filter 6 cuts off the light with wavelengths other than λ/2, and the photodetector 7 detects only the light with the wavelength of λ/2.

これにより、照射光に対する検体粒子の投影面積が大き
くなるほど検体粒子によって遮られる光量も大きくなり
、検出される波長λ/2の光検出強度が弱くなる反比例
の関係にあると考えられる。
As a result, it is thought that an inversely proportional relationship exists in which the larger the projected area of the analyte particles with respect to the irradiation light, the greater the amount of light blocked by the analyte particles, and the weaker the light detection intensity at the detected wavelength λ/2.

よって平均的な検体粒子形状を球形状と考えると前記検
出される値と検体粒子の粒子径とは第2図のようなl対
1の関係となる。この第2図の関係を用いて光検出器7
の出力から検体粒子の正確な粒子径を求めることができ
る。
Therefore, assuming that the average specimen particle shape is spherical, the detected value and the particle diameter of the specimen particle have a l:1 relationship as shown in FIG. Using the relationship shown in FIG. 2, the photodetector 7
The accurate particle size of the sample particles can be determined from the output.

なお本発明は上記フローサイトメータには限らず、ラテ
ックス免疫診断装置等にも適用可能である。
Note that the present invention is not limited to the above-mentioned flow cytometer, but is also applicable to latex immunodiagnosis devices and the like.

[発明の効果] 以上本発明によれば、粒子測定装置の受光光学系に非線
形′光学部材を配置するという簡単な構成にて、検体粒
子の正確な粒子径算出に大きな効果を発揮する。
[Effects of the Invention] As described above, according to the present invention, a simple configuration in which a nonlinear optical member is disposed in the light receiving optical system of a particle measuring device exhibits a great effect in accurately calculating the particle diameter of sample particles.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図、 第2図は実施例における検出強度と粒子径との。 関係のグラフ、 第3図は従来例の構成図、 第4図は従来例における散乱光検出強度と粒子径との関
係のグラフ、 である。図中、 1・・・レーザ光源、2・・・フローセル、3・・・流
通部、5・・・非線形光学部材、6・・・フィルタ、7
・・・光検出器
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 shows detection intensity and particle diameter in the embodiment. FIG. 3 is a diagram of the configuration of the conventional example, and FIG. 4 is a graph of the relationship between scattered light detection intensity and particle diameter in the conventional example. In the figure, 1... Laser light source, 2... Flow cell, 3... Flow section, 5... Nonlinear optical member, 6... Filter, 7
...photodetector

Claims (1)

【特許請求の範囲】[Claims] 1、被検粒子に照射光を照射し、発生する散乱光を測光
光学系にて測光して粒子測定を行なう粒子測定装置にお
いて、前記測光光学系の光路内に前記照射光に位相整合
された非線形光学部材を配置したことを特徴とする粒子
測定装置。
1. In a particle measuring device that performs particle measurement by irradiating irradiation light onto test particles and measuring the generated scattered light with a photometric optical system, a particle that is phase-matched to the irradiated light is placed in the optical path of the photometric optical system. A particle measuring device characterized by disposing a nonlinear optical member.
JP63164650A 1988-06-30 1988-06-30 Particle measuring apparatus Pending JPH0213829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63164650A JPH0213829A (en) 1988-06-30 1988-06-30 Particle measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63164650A JPH0213829A (en) 1988-06-30 1988-06-30 Particle measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0213829A true JPH0213829A (en) 1990-01-18

Family

ID=15797211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63164650A Pending JPH0213829A (en) 1988-06-30 1988-06-30 Particle measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0213829A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026600A1 (en) * 2010-08-27 2012-03-01 アイステーシス株式会社 Particle diameter measurement device, and particle diameter measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026600A1 (en) * 2010-08-27 2012-03-01 アイステーシス株式会社 Particle diameter measurement device, and particle diameter measurement method
JP2012047648A (en) * 2010-08-27 2012-03-08 Aisthesis Corp Particle size measurement instrument and particle size measurement method
CN103069265A (en) * 2010-08-27 2013-04-24 艾斯特希斯株式会社 Particle diameter measurement device, and particle diameter measurement method

Similar Documents

Publication Publication Date Title
JPS61153546A (en) Particle analyzer
JPH10253624A (en) Particle measuring device
JPS62168033A (en) Particle analyzing device
US4893929A (en) Particle analyzing apparatus
JPH0843292A (en) Detector for measuring luminous intensity of scattered lightwith thin film of colloid-state medium
JPH0224535A (en) Particle analyzing apparatus
JPH0277636A (en) Particle measuring device
JP2021503608A (en) Optical flow cytometer for epifluorescence measurement
JPH0213829A (en) Particle measuring apparatus
JPH03154850A (en) Specimen inspecting device
JPH0486546A (en) Specimen inspection device
JPH03214038A (en) Instrument for measuring aerosol, dust and the like spreaded in the air
JP3144687B2 (en) Particle measurement device
US6446020B1 (en) Method of calibrating the sample height in a sample analyzer
JPS6129738A (en) Particle analyzing instrument
JPH02245638A (en) Specimen testing apparatus
JPH01224642A (en) Particle analyzing device
JPH05281130A (en) Foreign-matter inspection apparatus
JPS6244649A (en) Particle analyzing device
JPH01240839A (en) Particle analyser
JPS61294334A (en) Particle analyzer
JPS62245942A (en) Particle analyzer
JPS6135335A (en) Particle analyzing device
SU708207A1 (en) Device for measuring demensions of particles
JPH0274845A (en) Particle measuring apparatus