JPS6135335A - Particle analyzing device - Google Patents

Particle analyzing device

Info

Publication number
JPS6135335A
JPS6135335A JP15851684A JP15851684A JPS6135335A JP S6135335 A JPS6135335 A JP S6135335A JP 15851684 A JP15851684 A JP 15851684A JP 15851684 A JP15851684 A JP 15851684A JP S6135335 A JPS6135335 A JP S6135335A
Authority
JP
Japan
Prior art keywords
scattered light
sample
light
specimen
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15851684A
Other languages
Japanese (ja)
Inventor
Yuji Ito
勇二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15851684A priority Critical patent/JPS6135335A/en
Publication of JPS6135335A publication Critical patent/JPS6135335A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1456Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Electro-optical investigation, e.g. flow cytometers without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream

Abstract

PURPOSE:To obtain a stable measured value with high accuracy by measuring sideway scattered light in plural directions across a sample, and averaging measured values and generating an output signal. CONSTITUTION:A lens 10a, photodetector 11a, lens 10b, and photoelectric detector 11b are installed in two directions perpendicular to incident luminous flux so as to measure sideway scattered light projected to both short sides of a flowing part 2. Then, outputs of photoelectric detectors 11a and 11b are connected to an arithmetic part 12, storage part 13, and display part 14. Namely, scattered light La in one direction of the sideway scattered light from the sample and scattered light Lb in the opposite direction are passed through the lenses 10a and 10b and converted by the detectors 11a and 11b into light signal outputs, which are inputted to the arithmetic part 12; and the result is inputted to the storage part 13 and displayed on the display part 14. Therefore, the even if the flow of sample in the flowing part 2 deviates lengthwise, scattered light from both sides of the a moving direction is detected and processed, so the influence of the movement of the sample is reduced.

Description

【発明の詳細な説明】 本発明は、フローサイトメータ等に用いられ、検体に光
を照射し、その側方散乱光を複数方向から測定し、測定
値を平均化する粒子解析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a particle analysis device used in a flow cytometer or the like, which irradiates a sample with light, measures the side scattered light from multiple directions, and averages the measured values. be.

フローサイトメータとは、高速で流れる細胞浮遊溶液に
例えばレーザー光を照射し、その散乱光による光電信号
を検出し、細胞の性質嚇構造を解明する装置であり、細
胞化学、免疫学、血液学、腫瘍学、遺伝学等の分野で使
用されつつある。
A flow cytometer is a device that irradiates a rapidly flowing cell suspension solution with, for example, a laser beam, detects a photoelectric signal from the scattered light, and elucidates the nature and structure of cells. It is being used in fields such as , oncology, and genetics.

従来の粒子解析用光学系では、検体に光を照射したとき
に発する側方散乱光を一方向から測光している。即ち、
第1図に示すフローセルlの中央部の例えば70pmX
20ILmの微小な矩形状断面を有する流通部2内を、
シース液に包まれて通過する血球細胞などの検体Sに、
図示しないレーザー光源からの平行光を第2図に示すよ
うにレンズ3を介して集光し、この照射光の直進方向の
前方散乱光をレンズ4を介して光電検出器5上で受光し
、検体Sの大きさの情報を得る。また、照射光の直進方
向に対してほぼ直交する方向で得られる側方散乱光は、
レンズ6と光電検出器7により検出され、検体Sの内部
状態の情報を得ることができる。更に、細胞に蛍光標識
を施して、細胞化学的解析を行う場合には、図示しない
バリアフィルタ、レンズ6、光電検出器7の組み合わせ
により測定が可能である。
In conventional optical systems for particle analysis, side scattered light emitted when a sample is irradiated with light is measured from one direction. That is,
For example, 70 pmX in the center of the flow cell l shown in FIG.
Inside the flow section 2 having a minute rectangular cross section of 20 ILm,
Samples S, such as blood cells, pass through wrapped in sheath fluid,
As shown in FIG. 2, parallel light from a laser light source (not shown) is focused through a lens 3, and forward scattered light in the straight direction of this irradiated light is received on a photoelectric detector 5 through a lens 4. Information on the size of the specimen S is obtained. In addition, the side scattered light obtained in a direction almost perpendicular to the straight direction of the irradiated light is
It is detected by the lens 6 and the photoelectric detector 7, and information on the internal state of the specimen S can be obtained. Furthermore, when performing cytochemical analysis by fluorescently labeling cells, measurement can be performed using a combination of a barrier filter, lens 6, and photoelectric detector 7 (not shown).

前方散乱光側の光電検出器5は、通常の検出能力を有す
る半導体検出器でも十分に検出可能であるが、側方散乱
光は前方散乱光に比較して極めて微弱であるので、光電
検出器7等には例えばホトマルチプライヤなどの光増強
管が使用されている。また、大きな受光量の側方散乱光
を得るためには、光源の出力を大きくすることが考えら
れるが、例えばレーザー光源の場合にその出力は数ワッ
トのものが要求される。一方、光源出力を軽減させるに
は、側方散乱光の集光能力の増加が望まれるが、そのた
めには通常では集光光学系の開口数を大きくすることに
より実現できる。ところが、このように集光光学系の開
口数を大きくすると、検体Sの分布が流通部2内でレン
ズ6の光軸方向を移動した場合に、測定光量にばらつき
が生じ易くなる問題がある。
The photoelectric detector 5 on the forward scattered light side can be sufficiently detected by a semiconductor detector having a normal detection ability, but since the side scattered light is extremely weak compared to the forward scattered light, a photoelectric detector 5 is used. 7 etc., a light intensifier tube such as a photomultiplier is used. Further, in order to obtain a large amount of received side scattered light, it is conceivable to increase the output of the light source, but for example, in the case of a laser light source, the output is required to be several watts. On the other hand, in order to reduce the light source output, it is desirable to increase the ability to collect side scattered light, but this can usually be achieved by increasing the numerical aperture of the focusing optical system. However, when the numerical aperture of the condensing optical system is increased in this manner, there is a problem in that when the distribution of the specimen S moves in the direction of the optical axis of the lens 6 within the flow section 2, variations in the amount of measured light tend to occur.

第3図に検体の粒子が測定光軸上を移動した場合の結像
の様子を示している。この第3図において、0の位置に
ある粒子が発する光を集光レンズ6を介して光電検出器
7に導くと、その光信号の強さは立体角2π (1−c
osφ1)に比例する。同様に、0′の位置にある粒子
の発する光は、立体角2π (1−cosφ2)に比例
する。従って、粒子が測定光軸上でOからO”へと移動
すれば、同一の粒子を測定しているにも拘らず、光電検
出器7の出力信号が変動し、測定が不正確なものになる
。これは、特に立体角φが大きい程、つまり集光レンズ
6の開口数が大きくなればなる程その影響が大きくなる
。このように従来の粒子解析用晃学系では、側方散乱光
の大きな受光量を得るために集光光学系の開口数を大き
くすると、検体Sの光軸方向への移動による測定光量の
ばらつきが生じ易くなるという欠点がある。
FIG. 3 shows how an image is formed when sample particles move on the measurement optical axis. In Fig. 3, when the light emitted by the particle at position 0 is guided to the photoelectric detector 7 through the condenser lens 6, the intensity of the optical signal is increased by the solid angle 2π (1-c
osφ1). Similarly, the light emitted by a particle at position 0' is proportional to the solid angle 2π (1-cosφ2). Therefore, if a particle moves from O to O'' on the measurement optical axis, the output signal of the photoelectric detector 7 will fluctuate even though the same particle is being measured, making the measurement inaccurate. This effect becomes particularly large as the solid angle φ becomes larger, that is, as the numerical aperture of the condensing lens 6 becomes larger.In this way, in the conventional particle analysis optical system, side scattered light If the numerical aperture of the condensing optical system is increased in order to obtain a large amount of received light, there is a drawback that variations in the amount of measured light are likely to occur due to movement of the specimen S in the optical axis direction.

本発明の目的は、このような従来粒子解析用光学系の欠
点を除去し、複数の側方方向から検体の側方散乱光を測
定し、得られた複数の出力を演算処理することにより、
側方への検体の移動による測定光量のばらつきを補正し
、安定した測定が可能で精度の良い測定がなし得る粒子
解析装置を提供することにあり、その要旨は、検体を通
過させる流通部を有するフローセルと、光源からの前記
検体に対する照射光の進行方向にほぼ直交する両側方へ
の検体の散乱光を測光するための光電検出器をそれぞれ
有する複数個の光学系と、前記複数個の光電検出器から
の出力信号を演算するための演算処理回路部とを具備す
ることを特徴とするものである。
The purpose of the present invention is to eliminate such drawbacks of conventional optical systems for particle analysis, measure side scattered light of a specimen from multiple lateral directions, and perform calculation processing on the multiple outputs obtained.
The purpose is to provide a particle analyzer that corrects variations in the amount of measurement light due to lateral movement of the sample and can perform stable and accurate measurements. a plurality of optical systems each having a photoelectric detector for measuring scattered light of the sample in both directions substantially orthogonal to a traveling direction of light irradiated onto the sample from a light source; The present invention is characterized by comprising an arithmetic processing circuit section for calculating an output signal from the detector.

本発明を第4図、第5図に図示の実施例に基づいて詳細
に説明する。
The present invention will be explained in detail based on the embodiment shown in FIGS. 4 and 5. FIG.

ここで、第4図は光学系の構成図、第5図は信号処理系
のブロック回路構成図である。なお、第2図と同一の符
号は同一の部材を表している。
Here, FIG. 4 is a block diagram of the optical system, and FIG. 5 is a block circuit diagram of the signal processing system. Note that the same reference numerals as in FIG. 2 represent the same members.

フローセル1の流通部2の長辺側の側面に、図示しない
レーザー光源からの平行光を検体Sに集光させるための
レンズ3を配置し、照射光の入射方向の前方散乱光を測
光するためのレンズ4と光電検出器5を設置しているの
は第1図に示した従来例と同様である。
A lens 3 for condensing parallel light from a laser light source (not shown) onto the specimen S is disposed on the long side side of the flow section 2 of the flow cell 1, and is used to photometer forward scattered light in the incident direction of the irradiation light. The arrangement of the lens 4 and the photoelectric detector 5 is the same as in the conventional example shown in FIG.

ここで、流通部2の両短辺側に出射される側方散乱光を
測定するために、上述の入射光束に対してほぼ直交する
両2方向に、それぞれレンズ10a、光電検出器11b
、及びレンズ10a、光電検出器11bが設置されてい
る。
Here, in order to measure side scattered light emitted to both short sides of the circulation section 2, a lens 10a and a photodetector 11b are installed in both directions substantially orthogonal to the above-mentioned incident light flux.
, a lens 10a, and a photoelectric detector 11b are installed.

そして、第5図に示すように光電検出器11a、llb
の出力は、演算部12、記憶部13、表示部14に接続
されている。即ち、検体Sからの側方散乱光の一方向の
散乱光Laと、その反対方向の散乱光Lbは、それぞれ
レンズloa、10bを介し光電検出器11a、llb
で光信号出力とに変換され、演算部12に入力される。
Then, as shown in FIG. 5, photoelectric detectors 11a and llb
The output of is connected to the calculation section 12, the storage section 13, and the display section 14. That is, the scattered light La of the side scattered light from the specimen S and the scattered light Lb of the side scattered light in the opposite direction are transmitted to the photoelectric detectors 11a and llb via lenses loa and 10b, respectively.
The signal is converted into an optical signal output and input to the arithmetic unit 12.

そして、この演算部12で演算された結果は記憶部13
に入力され、更に表示部14に表示される。
The result calculated by this calculation unit 12 is stored in a storage unit 13.
, and is further displayed on the display unit 14.

例えば、光電検出器11a、llbの出力の和の1/2
を検体Sのデータとして、記憶部13に刻々と記憶され
、最終的にはヒストグラムデータとして例えばCRTな
どの表示部14に表示される。
For example, 1/2 of the sum of the outputs of the photoelectric detectors 11a and llb
is stored moment by moment in the storage unit 13 as data of the specimen S, and is finally displayed on a display unit 14 such as a CRT as histogram data.

かくすることにより、流通部2内の検体Sの流れが、流
通部2の長辺方向に沿って偏位しても、移動方向の両側
から散乱光を検出して演算処理しているために、検体S
の移動の影響は緩和されることになる。
By doing this, even if the flow of the sample S in the flow section 2 deviates along the long side direction of the flow section 2, the scattered light is detected and processed from both sides of the movement direction. , sample S
The impact of migration will be mitigated.

また演算部12における演算は、光電検出器11a、l
lbの出力の和を単純に平均することが最も普通である
が、単に和を求めただけでもよいし、検体Sの流通部2
の長辺方向への分布関数を考慮して、例えば二乗平均と
か他の統計的処理方法を駆使することも考えられる。
Further, the calculation in the calculation unit 12 is carried out by the photoelectric detectors 11a and l.
It is most common to simply average the sum of the outputs of lb, but it is also possible to simply calculate the sum, or
It is also conceivable to consider the distribution function in the long side direction of , and use other statistical processing methods such as the root mean square.

また、検体Sに蛍光標識を施した場合には、2つの側方
散乱光の検出光学系中にバリアフィルタを挿入すればよ
い。
Furthermore, when the specimen S is fluorescently labeled, barrier filters may be inserted into the two side scattered light detection optical systems.

以上説明したように本発明に係る粒子解析装置は、側方
散乱光を検体を挟む複数方向で測定し、その値を平均化
して出力信号とすることにより、精度の高い安定した測
定値が得られる。また、光源の出力を小さくしても、従
来と同等程度の精度を得ることが可能となる。
As explained above, the particle analyzer according to the present invention measures side scattered light in multiple directions across the sample, averages the values, and uses the resulting output signal to obtain highly accurate and stable measured values. It will be done. Further, even if the output of the light source is reduced, it is possible to obtain accuracy equivalent to that of the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフローセルの斜視図、第2図は従来装置の光学
系の構成図、第3図はレンズの集光効率の説明図、第4
図以下は本発明に係る粒子解析装置の一実施例を示し、
第4図はその光学的構成図、第5図は信号処理系のブロ
ック回路構成図である。 符号1はフローセル、2は流通部、3,4.10a、i
obはL/ンズ、5、lla、llbは光電検出器、1
2は演算部、13は記憶部、14は表示部、Sは検体で
ある。
Figure 1 is a perspective view of the flow cell, Figure 2 is a configuration diagram of the optical system of a conventional device, Figure 3 is an explanatory diagram of the light collection efficiency of the lens, and Figure 4
The figure below shows an example of a particle analysis device according to the present invention,
FIG. 4 is a diagram of its optical configuration, and FIG. 5 is a block circuit diagram of the signal processing system. Code 1 is the flow cell, 2 is the circulation section, 3, 4.10a, i
ob is L/ns, 5, lla, llb are photoelectric detectors, 1
2 is a calculation section, 13 is a storage section, 14 is a display section, and S is a sample.

Claims (1)

【特許請求の範囲】 1、検体を通過させる流通部を有するフローセルと、光
源からの前記検体に対する照射光の進行方向にほぼ直交
する両側方への検体の散乱光を測光するための光電検出
器をそれぞれ有する複数個の光学系と、前記複数個の光
電検出器からの出力信号を演算するための演算処理回路
部とを具備することを特徴とする粒子解析装置。 2、前記演算処理回路部は前記検体を挟んで配置された
複数個の光電検出器の出力信号を平均するようにした特
許請求の範囲第1項に記載の粒子解析装置。 3、蛍光標識を付した検体を検出するため、前記光電検
出器を含む光学系中にバリアフィルタを挿入できるよう
にした特許請求の範囲第1項に記載の粒子解析装置。
[Claims] 1. A flow cell having a flow section through which a specimen passes, and a photoelectric detector for measuring scattered light of the specimen in both directions substantially orthogonal to the traveling direction of the light irradiated onto the specimen from a light source. What is claimed is: 1. A particle analysis apparatus comprising: a plurality of optical systems, each having a plurality of optical systems; and an arithmetic processing circuit section for computing output signals from the plurality of photoelectric detectors. 2. The particle analysis apparatus according to claim 1, wherein the arithmetic processing circuit unit averages output signals of a plurality of photoelectric detectors arranged across the specimen. 3. The particle analysis device according to claim 1, wherein a barrier filter can be inserted into an optical system including the photoelectric detector in order to detect a fluorescently labeled specimen.
JP15851684A 1984-07-28 1984-07-28 Particle analyzing device Pending JPS6135335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15851684A JPS6135335A (en) 1984-07-28 1984-07-28 Particle analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15851684A JPS6135335A (en) 1984-07-28 1984-07-28 Particle analyzing device

Publications (1)

Publication Number Publication Date
JPS6135335A true JPS6135335A (en) 1986-02-19

Family

ID=15673445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15851684A Pending JPS6135335A (en) 1984-07-28 1984-07-28 Particle analyzing device

Country Status (1)

Country Link
JP (1) JPS6135335A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085500A (en) * 1989-11-28 1992-02-04 Tsi Incorporated Non-imaging laser particle counter
JP2006510902A (en) * 2002-12-20 2006-03-30 オプトキュー アーベー Method and apparatus for blood measurement
WO2021099081A1 (en) * 2019-11-22 2021-05-27 Ams Ag Optical based particulate matter sensing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085500A (en) * 1989-11-28 1992-02-04 Tsi Incorporated Non-imaging laser particle counter
JP2006510902A (en) * 2002-12-20 2006-03-30 オプトキュー アーベー Method and apparatus for blood measurement
WO2021099081A1 (en) * 2019-11-22 2021-05-27 Ams Ag Optical based particulate matter sensing

Similar Documents

Publication Publication Date Title
US5194909A (en) Apparatus and method for measuring volume and hemoglobin concentration of red blood cells
JP2641927B2 (en) Particle measurement device
CN108956402B (en) High-sensitivity dust concentration detection method with composite multi-photosensitive-area structure
JPS61139747A (en) Particle analyser
JPH10253624A (en) Particle measuring device
JP4132692B2 (en) Particle size distribution measuring device
JP3521381B2 (en) Particle counting device
JPH05172732A (en) Method and apparatus for detecting particle in liquid
JPS6135335A (en) Particle analyzing device
JPS6138447A (en) Particle analyser
JPH0462455A (en) Particle size distribution measuring instrument
JPS6129737A (en) Particle analyzing instrument
JPH0792076A (en) Grain analyzing device
JPH0486546A (en) Specimen inspection device
JPH0277636A (en) Particle measuring device
JP2720069B2 (en) Flow cell analyzer
JP3144687B2 (en) Particle measurement device
JP2000046723A (en) Method for inspecting function of platelet
JPH0262179B2 (en)
JP2001330551A (en) Particle measuring instrument
JPS6244649A (en) Particle analyzing device
JPH0262180B2 (en)
JPH0262181B2 (en)
JPH07117484B2 (en) Correction method of particle size distribution in fine particle measurement
JPH0442621B2 (en)