JPS6138447A - Particle analyser - Google Patents

Particle analyser

Info

Publication number
JPS6138447A
JPS6138447A JP15851784A JP15851784A JPS6138447A JP S6138447 A JPS6138447 A JP S6138447A JP 15851784 A JP15851784 A JP 15851784A JP 15851784 A JP15851784 A JP 15851784A JP S6138447 A JPS6138447 A JP S6138447A
Authority
JP
Japan
Prior art keywords
light
photoelectric detector
scattered
irradiated
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15851784A
Other languages
Japanese (ja)
Inventor
Shinichi Oe
慎一 大江
Yuji Ito
勇二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15851784A priority Critical patent/JPS6138447A/en
Publication of JPS6138447A publication Critical patent/JPS6138447A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/532Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke with measurement of scattering and transmission

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To contrive to enhance accuracy by removing the variation in the output of a beam source, by correcting the detection output signal, which was obtained by measuring the beam scattered by a specimen irradiated with beam from the beam source, by the output signal from the photoelectric detector for detecting said irradiated beam. CONSTITUTION:The parallel beam from a laser beam source 10 is allowed to irradiate the specimen S in a flowing part 2 and forward scattered beam is received by a lens 4 and a photoelectric detector 5 while lens 13a, 13b and photoelectric detectors 14a, 14b are respectively provided in two directions crossing incident beam at right angles to measure laterally scattered beam. A beam splitter 11 is obliquely provided between the beam source 10 and a lens 3 so as to guide a part of laser irradiated beam to a photoelectric detector 12. The outputs of the detectors 14a, 14b and the output of the detector 12 are respectively connected to a differential amplifier and the difference between the signals A, B by scattered beam and the signal C by irradiated beam is amplified to remove the effect by the variation of the beam source 10.

Description

【発明の詳細な説明】 本発明は、フローサイトメータ等に用いられ、検体に光
を照射し、発生した散乱光の測定値を照射光強度により
補正する粒子解析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a particle analysis device used in a flow cytometer or the like, which irradiates a specimen with light and corrects the measured value of the generated scattered light based on the intensity of the irradiated light.

フローサイトメータとは、高速で流れる細胞浮遊溶液に
例えばレーザー光を照射し、その散乱光による光電信号
を検出解析し、細胞の性質・構造を解明する装置であり
、細胞化学、免疫学、血液学、腫瘍学、遺伝学等の分野
で使用されている。
A flow cytometer is a device that elucidates the properties and structure of cells by irradiating, for example, laser light onto a cell suspension solution flowing at high speed, and detecting and analyzing photoelectric signals from the scattered light. It is used in fields such as medicine, oncology, and genetics.

従来の粒子解析用光学系では、fj51図に示すフロー
セルlの中央部の例えば70pmX20gmの微小の矩
形状断面を有する流通部2内を、シース液に包まれて通
過する例えば血球細胞などの検体Sに、図示しないレー
ザー光源からの平行光を第2図に示すようにレンズ3を
介して集光し、照射光の直進方向の前方散乱光をレンズ
4を介して光電検出器5で受光し、検体Sの大きさの情
報を得る。また、照射光の直進方向に対して直交する方
向の側方散乱光は、レンズ6と光電検出器7により検出
され、検体Sの内部状態の情報を得ることができる。ま
た、フローサイトメータにおいて細胞に蛍光標識を施し
て細胞化学解析を行う場合には、図示しないバリアフィ
ルタ、レンズ6、光電検出器7の組み合わせにより測定
が可能である。
In the conventional optical system for particle analysis, a sample S such as a blood cell, for example, is wrapped in a sheath liquid and passes through a flow section 2 having a minute rectangular cross section of, for example, 70 pm x 20 gm in the center of the flow cell l shown in Fig. fj51. 2, collimated light from a laser light source (not shown) is focused through a lens 3, and forward scattered light in the straight direction of the irradiated light is received by a photodetector 5 through a lens 4. Information on the size of the specimen S is obtained. Further, side scattered light in a direction perpendicular to the straight direction of the irradiated light is detected by the lens 6 and the photoelectric detector 7, and information on the internal state of the specimen S can be obtained. Furthermore, when performing cytochemical analysis by fluorescently labeling cells with a flow cytometer, measurement can be performed using a combination of a barrier filter, a lens 6, and a photodetector 7 (not shown).

前方nk乱光側の光電検出器7は、通常の検出能力を有
する半導体検出器でも十分に検出が可能であるが、側方
散乱光は前方散乱光に比較して極めて微弱であるので、
光電検出器7等には例えばホトマルチプライヤ等の光増
倍管が使用されている。また、大きな受光量の側方散乱
光を得るためには、光源の出力を大きくすることが考え
られるが、例えばレーザー光源の場合にその出力は数ワ
ットのものが要求される。一方、光源出力を軽減させる
には、側方散乱光の集光能力の増加が望まれるが、その
ためには通常では集光光学系の開口数を大きくすること
により実施できる。ところが、このように集光光学系の
開口数を大きくすると、検体Sが流通部2内でレンズ6
の光軸方向へ移動した場合に、測定光量にばらつきが生
じ易くなる。
The photoelectric detector 7 on the side of the forward NK scattered light can sufficiently detect it with a semiconductor detector having normal detection ability, but since the side scattered light is extremely weak compared to the forward scattered light,
For example, a photomultiplier tube such as a photomultiplier is used as the photoelectric detector 7 and the like. Further, in order to obtain a large amount of received side scattered light, it is conceivable to increase the output of the light source, but for example, in the case of a laser light source, the output is required to be several watts. On the other hand, in order to reduce the light source output, it is desired to increase the ability to collect side scattered light, but this can usually be achieved by increasing the numerical aperture of the focusing optical system. However, when the numerical aperture of the condensing optical system is increased in this way, the sample S is
When moving in the optical axis direction, variations in the amount of measured light tend to occur.

第3図に検体の粒子が測定光軸を移動した場合の結像の
様子を示している。この第3図において、0の位置にあ
る粒子が発する光を集光レンズ6で光電検出器7に導く
と、その光信号の強さは立体角2π(1−cosφl)
に比例する。同様に、0°の位置にある粒子の発する光
は、立体角2π(1−cosφ2)に比例する。従って
、粒子がfl+1定光軸上でOからOoへと移動すれば
、同一の粒子をX1ll定しているにも拘らず、光電検
出器7の出力信号が変動し、測定が不正確なものになる
。これは特に立体角φが大きい程、つまり集光レンズ6
の開口数が大きくなるにつれその影響は大きくなる。
FIG. 3 shows how an image is formed when sample particles move along the measurement optical axis. In Fig. 3, when the light emitted by the particle at position 0 is guided to the photoelectric detector 7 by the condenser lens 6, the intensity of the optical signal is equal to the solid angle 2π (1-cosφl).
is proportional to. Similarly, the light emitted by a particle at a position of 0° is proportional to the solid angle 2π (1−cosφ2). Therefore, if a particle moves from O to Oo on the fl+1 constant optical axis, the output signal of the photoelectric detector 7 will fluctuate, making the measurement inaccurate, even though the same particle is being fixed at X1ll. Become. This is especially true when the solid angle φ is large, that is, when the condenser lens 6
The effect increases as the numerical aperture increases.

また、上述のような粒子の移動による測定値のばらつき
の他に、レーザー光電等の出力変動の影響によって、得
られる散乱光の検出信号は相当に大きく変動する。即ち
、従来装置では検体の変動による誤差と共に、光源等の
影響による誤差が生じ易いという欠点があった。
Furthermore, in addition to the variations in measured values due to the movement of particles as described above, the detection signal of the scattered light obtained varies considerably due to the influence of output variations of laser photoelectric and the like. That is, the conventional apparatus has the disadvantage that it is susceptible to errors due to the influence of the light source, etc., as well as errors due to variations in the specimen.

本発明の目的は、特に前述の光源出力の変動を除去する
ために、得られた散乱光の強度を光源からの照射光の強
度により補正することにより、精度の良い安定したM1
定が可能な粒子解析装置を提供することにあり、その要
旨は、検体を通過させる流通部を有するフローセルと、
光源からの照射光により検体で散乱された光を測光する
ための光電検出器と、前記照射光の光強度を検出する光
電検出器と、前記散乱光を検出する光電検出器からの出
力信号を前記照射光を検出する光電検出器からの出力信
号により補正するための演算処理回路とを具備すること
を特徴とするものである。
In particular, an object of the present invention is to correct the intensity of the obtained scattered light by the intensity of the irradiated light from the light source, in order to eliminate the above-mentioned fluctuations in the light source output, thereby achieving stable M1 with high accuracy.
The purpose is to provide a particle analysis device that can perform particle analysis, and its gist is to provide a flow cell having a flow section through which a sample passes;
A photoelectric detector for measuring the light scattered by the specimen by the irradiated light from the light source, a photoelectric detector for detecting the light intensity of the irradiated light, and an output signal from the photoelectric detector for detecting the scattered light. The present invention is characterized in that it includes an arithmetic processing circuit for performing correction using an output signal from a photoelectric detector that detects the irradiated light.

本発明を第4図、第5図に図示の実施例を基に詳細に説
明する。
The present invention will be explained in detail based on the embodiments shown in FIGS. 4 and 5.

ここで、第4図は光学系の構成図、第5図は信号処理系
のブロック回路構成図である。なお、第2図と同一の符
号は同一の部材を表している。
Here, FIG. 4 is a block diagram of the optical system, and FIG. 5 is a block circuit diagram of the signal processing system. Note that the same reference numerals as in FIG. 2 represent the same members.

第4図において、10はレーザー光源であり、この光源
10からの平行光が、レンズ3により流通部2の検体S
を照射し、その前方散乱光をレンズ4、光電検出器5に
より受光することはg:32図の場合と同様である。光
源lOとレンズ3との間に、ビームスプリッタ11が斜
設され、レーザ照射光の一部を光電検出器12に導くよ
うになっている。側方散乱光を測光するために、流通部
2への入射光量に対して直交する2方向に、それぞれレ
ンズ13a、光電検出器14a、及びレンズ13b、光
電検出器14bが設置されている。
In FIG. 4, reference numeral 10 denotes a laser light source, and parallel light from this light source 10 is transmitted through a lens 3 to the sample S in the flow section 2.
The forward scattered light is received by the lens 4 and the photoelectric detector 5 in the same manner as in the case of Fig. g:32. A beam splitter 11 is installed obliquely between the light source 1O and the lens 3, and guides a portion of the laser irradiation light to the photoelectric detector 12. In order to photometer the side scattered light, a lens 13a and a photoelectric detector 14a, and a lens 13b and a photoelectric detector 14b are installed in two directions perpendicular to the amount of light incident on the flow section 2, respectively.

そして、第5図に示すように光電検出器14a、14b
の出力は、それぞれ可変抵抗器15a、15b、コンデ
ンサ16a、16bを介して差動増幅器17a、17b
に接続されている。一方、光電検出器12の出力は可変
抵抗器18、コンデンサ19を経て差動増幅器17a、
17bに並列的に接続されている。差動増幅器17a、
17bにはアナログ・デジタル変換器20a、20bが
それぞれ接続され、これらのアナログ・デジタル変換器
20a、20bの出力は、演算部21、記憶部22、表
示部23が直列的に構成された一連の回路装置に接続さ
れている。
Then, as shown in FIG. 5, photoelectric detectors 14a and 14b
The outputs of
It is connected to the. On the other hand, the output of the photoelectric detector 12 passes through a variable resistor 18 and a capacitor 19 to a differential amplifier 17a.
17b in parallel. differential amplifier 17a,
Analog-to-digital converters 20a and 20b are connected to 17b, respectively, and the outputs of these analog-to-digital converters 20a and 20b are connected to a series of serially configured arithmetic section 21, storage section 22, and display section 23. Connected to circuit equipment.

本発明の実施例は上述の構成を有するので、フローセル
1の流通部2中を検体Sが通過すると、検体Sによる前
方散乱光はレンズ4、光電検出器5により求められ1図
示しない処理回路によってデータ処理される。また、側
方散乱光は互いに反対方向に配置さ・れた光電検出器1
3a、13bにより光強度信号A、Bに変換され、差動
増幅器17a、17bにより入力され、光電変換器12
からの照射光強度信号Cも差動増幅器17a、17bに
入力される。可変抵抗器15a、15b、18の抵抗値
は予め差動増幅器17a、17bの出力が最小となるよ
うに設定されており、また散乱光による光信号A、B、
照射光による光信号Cは、それぞれコンデンサ16a、
16b、19によって不要な低周波数成分が取り除かれ
る。差動増幅器17aで散乱光の信号Aと照射光の信号
Cとの差が増幅され、差動増幅器17bで散乱光の信号
Bと信号Cとの差が増幅されるので、光源10の変動に
よる影響を取り除くことができる。
Since the embodiment of the present invention has the above-described configuration, when the sample S passes through the flow section 2 of the flow cell 1, the forward scattered light by the sample S is determined by the lens 4 and the photoelectric detector 5, and is processed by a processing circuit (not shown). Data is processed. In addition, side scattered light is detected by photoelectric detectors 1 arranged in opposite directions.
3a and 13b into optical intensity signals A and B, which are input to the differential amplifiers 17a and 17b, and then sent to the photoelectric converter 12.
The irradiated light intensity signal C is also input to the differential amplifiers 17a and 17b. The resistance values of the variable resistors 15a, 15b, 18 are set in advance so that the outputs of the differential amplifiers 17a, 17b are minimized, and the optical signals A, B, and
The optical signal C caused by the irradiation light is transmitted to a capacitor 16a,
16b and 19 remove unnecessary low frequency components. The differential amplifier 17a amplifies the difference between the scattered light signal A and the irradiated light signal C, and the differential amplifier 17b amplifies the difference between the scattered light signals B and C. influence can be removed.

従って、差動増幅器17a、17bによって得られた出
力信号り、Eは雑音が少なく、かつ精度の高いものとな
り、アナログ争デジタル変換器20a、20bで、それ
ぞれデジタル信号F、 Gに変換され、演算部21で演
算される。そして、例えばデジタル信号F、Gの和を平
均した値が、検体Sの側方散乱光のデータとして記憶部
22に刻々と記憶され、最終的にはヒストグラムデータ
としてCRTなどの表示部23に表示されるようになっ
ている。
Therefore, the output signals E obtained by the differential amplifiers 17a and 17b have low noise and high precision, and are converted into digital signals F and G by the analog-to-digital converters 20a and 20b, respectively. It is calculated in section 21. Then, for example, the average value of the sum of the digital signals F and G is stored moment by moment in the storage unit 22 as side scattered light data of the specimen S, and is finally displayed on the display unit 23 such as a CRT as histogram data. It is now possible to do so.

上述の実施例においては、複数方向の側方散乱光信号を
照射光信号により補正したが、必ずしも複数方向の散乱
光出力信号でなくてもよいし、前方散乱光に対して補正
を行うことも可能である。
In the above embodiment, side scattered light signals in multiple directions are corrected by the irradiation light signal, but the scattered light signals in multiple directions do not necessarily have to be output signals, and forward scattered light may also be corrected. It is possible.

このように本発明に係る粒子解析装置は、照射光の一部
を取り出して、その強度により散乱光の出力を補正する
ことにしたので、光源の不安定性による影響を除去し、
精度の高い安定した検体解−析を行うことか可能である
。更に、側方散乱光を複数方向から検出してその出力を
平均化すれば、より精度の高い測定結果が得られる。
In this way, the particle analysis device according to the present invention extracts a part of the irradiated light and corrects the output of the scattered light based on its intensity, thereby eliminating the influence of the instability of the light source.
It is possible to perform highly accurate and stable sample analysis. Furthermore, if side scattered light is detected from multiple directions and the outputs are averaged, more accurate measurement results can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフローセルの斜視図、第2図は従来装置の断面
図、第3図はレンズの集光効率の説明図、第4図以下は
本発明に係る粒子解析装置の一実施例を示し、第4図は
光学系の断面図、第5図は信号処理系のブロック回路構
成図である。 符号1はフローセル、2は流通部、3.4.13a、1
3bはレンズ、5,12.14a、14bは光電検出器
、10はレーザー光源、11はビームスプリ、り、17
a、17bは増幅器、20a、20bはアナログ・デジ
タル変換器、21は演算部、22は記憶部、23は表示
部、Sは検体である。 特許出願人   キャノン株式会社 代 理 人 弁理士 日 比 谷 征 彦’、Ll’H
’s−,,、s%、。 ゛巳−
Fig. 1 is a perspective view of a flow cell, Fig. 2 is a sectional view of a conventional device, Fig. 3 is an explanatory diagram of the light collection efficiency of a lens, and Fig. 4 and the following show an embodiment of a particle analysis device according to the present invention. , FIG. 4 is a sectional view of the optical system, and FIG. 5 is a block circuit diagram of the signal processing system. Code 1 is the flow cell, 2 is the distribution section, 3.4.13a, 1
3b is a lens, 5, 12.14a, 14b is a photoelectric detector, 10 is a laser light source, 11 is a beam splitter, 17
a and 17b are amplifiers, 20a and 20b are analog-to-digital converters, 21 is an arithmetic unit, 22 is a storage unit, 23 is a display unit, and S is a sample. Patent applicant Canon Co., Ltd. Representative Patent attorney Yukihiko Hibiya', Ll'H
's-,,,s%,.゛巳-

Claims (1)

【特許請求の範囲】 1、検体を通過させる流通部を有するフローセルと、光
源からの照射光により検体で散乱された光を測光するた
めの光電検出器と、前記照射光の光強度を検出する光電
検出器と、前記散乱光を検出する光電検出器からの出力
信号を前記照射光を検出する光電検出器からの出力信号
により補正するための演算処理回路とを具備することを
特徴とする粒子解析装置。 2、前記照射光の光強度の検出は、照射光路中にビーム
スプリットを介在して照射光の一部を取り出すことによ
り行うようにした特許請求の範囲第1項に記載の粒子解
析装置。 3、前記補正を行うべき散乱光は側方散乱光とした特許
請求の範囲第1項に記載の粒子解析装置。 4、前記側方散乱光は検体の両側で検出し、これらの出
力を平均化した特許請求の範囲第3項に記載の粒子解析
装置。
[Claims] 1. A flow cell having a flow section through which a specimen passes, a photoelectric detector for measuring light scattered by the specimen by irradiation light from a light source, and a photoelectric detector for detecting the light intensity of the irradiation light. A particle comprising a photoelectric detector and an arithmetic processing circuit for correcting an output signal from the photoelectric detector that detects the scattered light with an output signal from the photoelectric detector that detects the irradiated light. Analysis device. 2. The particle analysis device according to claim 1, wherein the detection of the light intensity of the irradiation light is performed by interposing a beam splitter in the irradiation optical path and extracting a part of the irradiation light. 3. The particle analysis device according to claim 1, wherein the scattered light to be corrected is side scattered light. 4. The particle analysis device according to claim 3, wherein the side scattered light is detected on both sides of the specimen, and these outputs are averaged.
JP15851784A 1984-07-28 1984-07-28 Particle analyser Pending JPS6138447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15851784A JPS6138447A (en) 1984-07-28 1984-07-28 Particle analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15851784A JPS6138447A (en) 1984-07-28 1984-07-28 Particle analyser

Publications (1)

Publication Number Publication Date
JPS6138447A true JPS6138447A (en) 1986-02-24

Family

ID=15673469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15851784A Pending JPS6138447A (en) 1984-07-28 1984-07-28 Particle analyser

Country Status (1)

Country Link
JP (1) JPS6138447A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447950A (en) * 1987-08-18 1989-02-22 Japan Res Dev Corp Identification and separation method and apparatus for particle
US4984889A (en) * 1989-03-10 1991-01-15 Pacific Scientific Company Particle size measuring system with coincidence detection
JPH0396468U (en) * 1990-01-23 1991-10-02
WO2015012004A1 (en) * 2013-07-23 2015-01-29 ソニー株式会社 Particle analysis device and particle analysis method
CN105699275A (en) * 2014-11-24 2016-06-22 新乡天翼过滤技术检测有限公司 Microparticle counting system using laser imaging and projection
JP6429353B1 (en) * 2018-07-25 2018-11-28 仏山融芯智感科技有限公司 Air particle counting method and apparatus
WO2020021682A1 (en) * 2018-07-26 2020-01-30 株式会社島津製作所 Light scattering detection device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447950A (en) * 1987-08-18 1989-02-22 Japan Res Dev Corp Identification and separation method and apparatus for particle
US4984889A (en) * 1989-03-10 1991-01-15 Pacific Scientific Company Particle size measuring system with coincidence detection
JPH0396468U (en) * 1990-01-23 1991-10-02
JPWO2015012004A1 (en) * 2013-07-23 2017-03-02 ソニー株式会社 Particle analyzer and particle analysis method
CN105393104A (en) * 2013-07-23 2016-03-09 索尼公司 Particle analysis device and particle analysis method
WO2015012004A1 (en) * 2013-07-23 2015-01-29 ソニー株式会社 Particle analysis device and particle analysis method
US10031063B2 (en) 2013-07-23 2018-07-24 Sony Corporation Particle analysis apparatus and method for optically detecting particles
CN105699275A (en) * 2014-11-24 2016-06-22 新乡天翼过滤技术检测有限公司 Microparticle counting system using laser imaging and projection
JP6429353B1 (en) * 2018-07-25 2018-11-28 仏山融芯智感科技有限公司 Air particle counting method and apparatus
JP2020016630A (en) * 2018-07-25 2020-01-30 仏山融芯智感科技有限公司 Counting method and device of air particle
WO2020021682A1 (en) * 2018-07-26 2020-01-30 株式会社島津製作所 Light scattering detection device
CN112469985A (en) * 2018-07-26 2021-03-09 株式会社岛津制作所 Light scattering detection device
JPWO2020021682A1 (en) * 2018-07-26 2021-04-30 株式会社島津製作所 Light scattering detector

Similar Documents

Publication Publication Date Title
JP3412606B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP2641927B2 (en) Particle measurement device
US4798465A (en) Particle size detection device having high sensitivity in high molecular scattering environment
US3851169A (en) Apparatus for measuring aerosol particles
US4188121A (en) Multiple ratio single particle counter
JPS61139747A (en) Particle analyser
JPS6138447A (en) Particle analyser
JP4132692B2 (en) Particle size distribution measuring device
JP3521381B2 (en) Particle counting device
US6522405B2 (en) Method and apparatus for monitoring sub-micron particles
JPH0462455A (en) Particle size distribution measuring instrument
JPS6129737A (en) Particle analyzing instrument
JP2636051B2 (en) Particle measurement method and device
JPS6135335A (en) Particle analyzing device
JPH0277636A (en) Particle measuring device
US20040227941A1 (en) Particle size distribution analyzer
JPH0262180B2 (en)
JP4105888B2 (en) Particle size distribution measuring device
JP3144687B2 (en) Particle measurement device
JPH02304333A (en) Flowing cell analyzing instrument
JPH0262181B2 (en)
JPH0226054Y2 (en)
JPH0262179B2 (en)
JPH02310445A (en) Method for correcting grain size distribution in measurement of fine particle
JP2836481B2 (en) Particle size distribution analyzer