JP3521381B2 - Particle counting device - Google Patents

Particle counting device

Info

Publication number
JP3521381B2
JP3521381B2 JP04006198A JP4006198A JP3521381B2 JP 3521381 B2 JP3521381 B2 JP 3521381B2 JP 04006198 A JP04006198 A JP 04006198A JP 4006198 A JP4006198 A JP 4006198A JP 3521381 B2 JP3521381 B2 JP 3521381B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
light
particle
detecting means
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04006198A
Other languages
Japanese (ja)
Other versions
JPH11237329A (en
Inventor
朋信 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP04006198A priority Critical patent/JP3521381B2/en
Publication of JPH11237329A publication Critical patent/JPH11237329A/en
Application granted granted Critical
Publication of JP3521381B2 publication Critical patent/JP3521381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、流路を通過する粒
子の個数を粒径を弁別してカウントする粒子計数装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particle counting device for counting the number of particles passing through a flow channel by discriminating the particle size.

【0002】[0002]

【従来の技術】従来の粒子計数装置としては、図22に
示すように、レーザ光Laをフローセル110の内部流
路に照射し、この内部流路を粒子が通過する際に、粒子
が放出する散乱光Lsを集光光学系111によって光電
変換素子112に集光させ、光電変換素子112の出力
信号に基づき、比較回路113及びパルス計数回路11
4により、内部流路を通過する粒子の個数を粒径を弁別
して計数する光散乱式粒子計数装置が知られている。
2. Description of the Related Art As a conventional particle counting device, as shown in FIG. 22, a laser beam La is irradiated onto an internal flow path of a flow cell 110, and when the particle passes through the internal flow path, the particle is emitted. The scattered light Ls is condensed on the photoelectric conversion element 112 by the condensing optical system 111, and based on the output signal of the photoelectric conversion element 112, the comparison circuit 113 and the pulse counting circuit 11
4, there is known a light scattering type particle counting device for counting the number of particles passing through the internal flow path by discriminating the particle size.

【0003】光電変換素子112は、粒子が内部流路を
通過すると、粒子が放出する散乱光Lsに応じたパルス
状の電圧を出力する。このパルス状の電圧の波高値は、
粒子の粒径によって変化する。比較回路113は、光電
変換素子112の出力電圧を所定値と比較し、光電変換
素子112の出力電圧が所定値より大きいとき、所定の
粒径よりも大きいとしてパルス信号を出力する。このパ
ルス信号をパルス計数回路114により計数して、粒子
の個数を検出する。
The photoelectric conversion element 112 outputs a pulsed voltage corresponding to the scattered light Ls emitted by the particles when the particles pass through the internal flow path. The peak value of this pulsed voltage is
It depends on the particle size. The comparison circuit 113 compares the output voltage of the photoelectric conversion element 112 with a predetermined value, and when the output voltage of the photoelectric conversion element 112 is larger than a predetermined value, outputs a pulse signal as being larger than the predetermined particle size. This pulse signal is counted by the pulse counting circuit 114 to detect the number of particles.

【0004】[0004]

【発明が解決しようとする課題】しかし、図22に示す
光散乱式粒子計数装置においては、レーザ光Laを照射
した内部流路のレーザ光強度が一定でない場合、粒径の
弁別を誤って計数するという問題がある。内部流路のレ
ーザ光強度は、一般にレーザ光束の中心部が最も高く、
中心部からずれて端部に行くほど低くなるという分布
(ほぼガウス分布)を示す場合が多い。
However, in the light-scattering type particle counting device shown in FIG. 22, when the laser light intensity of the internal flow path irradiated with the laser light La is not constant, the discrimination of the particle diameter is erroneously counted. There is a problem of doing. The laser light intensity of the internal flow path is generally highest in the center of the laser beam,
In many cases, the distribution deviates from the center and becomes lower toward the ends (almost Gaussian distribution).

【0005】従って、粒子の粒径及び光学的性質は同じ
であっても、レーザ光束の端部を通過するときと、中心
部を通過するときとでは、粒子の散乱光Lsの強度が異
なり、光電変換素子112の出力電圧が異なる。そのた
め、比較回路113の出力信号も異なり、パルス計数回
路114が粒子を計数する場合としない場合がある。
Therefore, even if the particle size and optical properties of the particles are the same, the intensity of the scattered light Ls of the particles is different between when passing through the end portion of the laser beam and when passing through the central portion. The output voltage of the photoelectric conversion element 112 is different. Therefore, the output signal of the comparison circuit 113 is also different, and the pulse counting circuit 114 may or may not count particles.

【0006】本発明は、従来の技術が有するこのような
問題点に鑑みてなされたものであり、その目的とすると
ころは、光を照射する測定領域における光強度分布が、
一様でなくても、正確に粒径を弁別して粒子を計数でき
る粒子計数装置を提供しようとするものである。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to obtain a light intensity distribution in a measurement region for irradiating light.
An object of the present invention is to provide a particle counting device capable of accurately discriminating particle diameters and counting particles even if they are not uniform.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すべく請
求項1に係る発明は、光の照射領域を通過する粒子の通
過位置を検出する粒子位置検出手段と、前記粒子が発す
る散乱光の強度を検出する散乱光検出手段と、前記粒子
位置検出手段の出力信号が前記照射領域の所定範囲内で
あるか否かを判断すると共に、前記散乱光検出手段の出
力信号が所定値以上であるか否かを判断し、前記所定範
囲内で且つ所定値以上の場合にパルス信号を出力する判
別手段と、この判別手段が出力するパルス信号をカウン
トする計数手段を備えるものである。
In order to solve the above-mentioned problems, the invention according to claim 1 discloses a particle position detecting means for detecting a passage position of a particle passing through a light irradiation region, and a scattered light emitted from the particle. The scattered light detecting means for detecting the intensity and the output signal of the particle position detecting means determine whether or not the output signal is within a predetermined range of the irradiation area, and the output signal of the scattered light detecting means is a predetermined value or more. It is provided with a discriminating means for discriminating whether or not the pulse signal is outputted within the prescribed range and when it is equal to or larger than a prescribed value, and a counting means for counting the pulse signals outputted by the discriminating means.

【0008】請求項2に係る発明は、光を照射する測定
領域の光強度分布を検出する光強度分布検出手段と、前
記測定領域を通過する粒子の通過位置を検出する粒子位
置検出手段と、前記粒子が発する散乱光の強度を検出す
る散乱光検出手段と、標準粒子を使用して前記光強度分
布検出手段の出力信号をテーブルとした粒子情報参照テ
ーブルと前記粒子位置検出手段の出力信号に基づいて前
記粒子の散乱光強度の補正値を算出する参照手段と、前
記補正値に基づいて前記散乱光検出手段の出力信号を補
正する正規化手段と、この正規化手段の出力信号が所定
値以上のときにパルス信号を出力する弁別手段と、この
弁別手段が出力するパルス信号をカウントする計数手段
を備えるものである。
According to a second aspect of the present invention, a light intensity distribution detecting means for detecting a light intensity distribution in a measurement area for irradiating light, and a particle position detecting means for detecting a passage position of particles passing through the measurement area, Scattered light detection means for detecting the intensity of scattered light emitted by the particles , a particle information reference table using the output signal of the light intensity distribution detection means using standard particles as a table and the output signal of the particle position detection means Reference means for calculating the correction value of the scattered light intensity of the particles based on the normalization means for correcting the output signal of the scattered light detection means based on the correction value, the output signal of the normalization means is a predetermined value A discriminating means for outputting a pulse signal at the above time and a counting means for counting the pulse signal output by the discriminating means are provided.

【0009】請求項3に係る発明は、請求項2記載の粒
子計数装置において、前記光強度分布検出手段は、透明
部材で屈曲形状に形成したフローセルと、このフローセ
ルの流路に光を照射して測定領域を形成する光源と、前
記流路の中心軸と一致する光軸を有して前記測定領域で
発生する粒子の散乱光を集光する集光手段と、この集光
手段が集光した散乱光を受光する複数の光電変換素子か
ら成る光検出手段と、前記複数の光電変換素子の出力信
号を検出する電圧検出手段と、この電圧検出手段の出力
信号を互いに比較して粒子が通過した前記測定領域の通
過位置データと粒子の散乱光強度データを出力する粒子
情報検出手段を備えるものである。
According to a third aspect of the present invention, in the particle counting apparatus according to the second aspect, the light intensity distribution detecting means irradiates the flow cell formed in a bent shape with a transparent member and the flow path of the flow cell with light. And a light source that forms a measurement region, a light collecting unit that has an optical axis that coincides with the central axis of the flow path, and collects scattered light of particles generated in the measurement region, and the light collecting unit collects light. The light detection means composed of a plurality of photoelectric conversion elements for receiving the scattered light, the voltage detection means for detecting the output signals of the plurality of photoelectric conversion elements, and the output signals of the voltage detection means are compared with each other and the particles pass through. The particle information detecting means for outputting the passing position data of the measurement region and the scattered light intensity data of the particles is provided.

【0010】請求項4に係る発明は、請求項1、請求項
2又は請求項3記載の粒子計数装置において、前記粒子
位置検出手段は、透明部材で屈曲形状に形成したフロー
セルと、このフローセルの流路に光を照射して測定領域
を形成する光源と、前記流路の中心軸と一致する光軸を
有して前記測定領域で発生する粒子の散乱光を集光する
集光手段と、この集光手段が集光した散乱光を受光する
複数の光電変換素子から成る光検出手段と、前記複数の
光電変換素子の出力信号を検出する電圧検出手段と、こ
の電圧検出手段の出力信号を互いに比較して粒子が通過
した前記測定領域の通過位置データを出力する位置検出
手段を備えるものである。
According to a fourth aspect of the present invention, in the particle counting device according to the first, second or third aspect, the particle position detecting means includes a flow cell formed of a transparent member in a bent shape, and the flow cell of the flow cell. A light source that irradiates the channel with light to form a measurement region, and a condensing unit that condenses scattered light of particles generated in the measurement region with an optical axis that coincides with the central axis of the channel, The light detecting means composed of a plurality of photoelectric conversion elements for receiving the scattered light collected by the light collecting means, the voltage detecting means for detecting the output signals of the plurality of photoelectric conversion elements, and the output signal of the voltage detecting means It is provided with a position detecting means for comparing with each other and outputting passage position data of the measurement region where the particles have passed.

【0011】請求項5に係る発明は、請求項3又は請求
項4記載の粒子計数装置において、前記複数の光電変換
素子から成る光検出手段は、各受光面が前記流路の中心
軸に垂直で、且つ前記流路の中心軸と前記光源の光軸に
ほぼ垂直な方向に隣接して設けたN(Nは2以上の整
数)個の光電変換素子から成る光電変換素子アレイであ
る。
According to a fifth aspect of the present invention, in the particle counting apparatus according to the third or fourth aspect, in the light detecting means including the plurality of photoelectric conversion elements, each light receiving surface is perpendicular to the central axis of the flow path. The photoelectric conversion element array includes N (N is an integer of 2 or more) photoelectric conversion elements provided adjacent to each other in the direction substantially perpendicular to the central axis of the flow path and the optical axis of the light source.

【0012】請求項6に係る発明は、請求項3又は請求
項4記載の粒子計数装置において、前記複数の光電変換
素子から成る光検出手段は、縦と横がV個×H個(V、
Hとも2以上の整数)の光電変換素子から成り、各受光
面が前記流路の中心軸に垂直である。
According to a sixth aspect of the present invention, in the particle counting device according to the third or fourth aspect, the photo-detecting means including the plurality of photoelectric conversion elements has a vertical and horizontal length of V × H (V,
H is an integer of 2 or more) and each light receiving surface is perpendicular to the central axis of the flow path.

【0013】請求項7に係る発明は、請求項2記載の粒
子計数装置において、前記光強度分布検出手段は、は、
透明部材で形成したフローセルと、このフローセルの流
路に光を照射して測定領域を形成する光源と、前記光の
中心軸と一致する光軸を有して前記測定領域で発生する
粒子の散乱光を集光する集光手段と、この集光手段の光
軸上に位置するトラップと、前記集光手段が集光した散
乱光を受光する複数の光電変換素子から成る光検出手段
と、前記複数の光電変換素子の出力信号を検出する電圧
検出手段と、この電圧検出手段の出力信号を互いに比較
して粒子が通過した前記測定領域の通過位置データと粒
子の散乱光強度データを出力する粒子情報検出手段を備
えるものである。
The invention according to claim 7 is the particle counting device according to claim 2, wherein the light intensity distribution detecting means is
A flow cell formed of a transparent member, a light source that irradiates the flow path of the flow cell with light to form a measurement region, and a scattering of particles that have an optical axis that coincides with the central axis of the light and that occur in the measurement region. Light collecting means for collecting light, a trap located on the optical axis of the light collecting means, a light detecting means comprising a plurality of photoelectric conversion elements for receiving scattered light collected by the light collecting means, Particles for outputting voltage detection means for detecting output signals of a plurality of photoelectric conversion elements, and comparison of output signals of the voltage detection means with each other and passing position data of the measurement region where particles have passed and scattered light intensity data of particles. The information detecting means is provided.

【0014】請求項8に係る発明は、請求項1、請求項
2又は請求項7記載の粒子計数装置において、前記粒子
位置検出手段は、透明部材で形成したフローセルと、こ
のフローセルの流路に光を照射して測定領域を形成する
光源と、前記光の中心軸と一致する光軸を有して前記測
定領域で発生する粒子の散乱光を集光する集光手段と、
この集光手段の光軸上に位置するトラップと、前記集光
手段が集光した散乱光を受光する複数の光電変換素子か
ら成る光検出手段と、前記複数の光電変換素子の出力信
号を検出する電圧検出手段と、この電圧検出手段の出力
信号を互いに比較して粒子が通過した前記測定領域の通
過位置データを出力する位置検出手段を備えるものであ
る。
The invention according to claim 8 is the particle counting device according to claim 1, claim 2 or claim 7, wherein the particle position detecting means includes a flow cell formed of a transparent member and a flow path of the flow cell. A light source that irradiates light to form a measurement region, and a light condensing unit that has an optical axis that coincides with the central axis of the light and condenses scattered light of particles generated in the measurement region,
A trap located on the optical axis of the light converging means, a light detecting means including a plurality of photoelectric conversion elements for receiving the scattered light condensed by the light condensing means, and an output signal of the plurality of photoelectric conversion elements are detected. And a position detecting means for comparing the output signals of the voltage detecting means with each other and outputting passage position data of the measurement region where the particles have passed.

【0015】請求項9に係る発明は、請求項7又は請求
項8記載の粒子計数装置において、前記複数の光電変換
素子から成る光検出手段は、各受光面が前記光源の光軸
に垂直で、且つ前記流路の中心軸と前記光源の光軸にほ
ぼ垂直な方向に隣接して設けたN(Nは2以上の整数)
個の光電変換素子で成る光電変換素子アレイである。
According to a ninth aspect of the present invention, in the particle counting apparatus according to the seventh or eighth aspect, the light detecting means including the plurality of photoelectric conversion elements has each light receiving surface perpendicular to the optical axis of the light source. And N provided adjacent to each other in a direction substantially perpendicular to the central axis of the flow path and the optical axis of the light source (N is an integer of 2 or more)
The photoelectric conversion element array is composed of individual photoelectric conversion elements.

【0016】[0016]

【発明の実施の形態】以下に本発明の実施の形態を添付
図面に基づいて説明する。ここで、図1は本発明に係る
粒子計数装置の概念構成図、図2は本発明の第1の実施
の形態に係る粒子計数装置の構成図、図3は図2におけ
るレーザ光を照射した測定領域の平断面図、図4は図2
におけるレーザ光を照射した測定領域の縦断面図、図5
乃至図9は図2における光電変換素子アレイの受光状態
(a)とそのときの出力波形(b)を示す図、図10は
粒子情報参照テーブルを示す図、図11は本発明に係る
粒子計数装置の概念構成図、図12は本発明の第2の実
施の形態に係る粒子計数装置の構成図、図13は粒子情
報参照テーブルを示す図、図14は本発明の第3の実施
の形態に係る粒子計数装置の構成図、図15は本発明の
第4の実施の形態に係る粒子計数装置の構成図、図16
は図15におけるレーザ光を照射した測定領域の縦断面
図、図17乃至図21は図15における光電変換素子ア
レイの受光状態(a)とそのときの出力波形(b)を示
す図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a conceptual configuration diagram of the particle counting device according to the present invention, FIG. 2 is a configuration diagram of the particle counting device according to the first embodiment of the present invention, and FIG. 3 is the laser beam irradiation in FIG. Fig. 2 is a plan sectional view of the measurement area.
5 is a longitudinal sectional view of a measurement region irradiated with laser light in FIG.
9 is a diagram showing a light receiving state (a) of the photoelectric conversion element array in FIG. 2 and an output waveform (b) at that time, FIG. 10 is a diagram showing a particle information reference table, and FIG. 11 is a particle counting according to the present invention. 12 is a conceptual configuration diagram of the apparatus, FIG. 12 is a configuration diagram of a particle counting apparatus according to a second embodiment of the present invention, FIG. 13 is a diagram showing a particle information reference table, and FIG. 14 is a third embodiment of the present invention. 16 is a block diagram of a particle counting device according to the present invention, FIG. 15 is a block diagram of a particle counting device according to a fourth embodiment of the present invention, FIG.
15 is a vertical cross-sectional view of the measurement region irradiated with laser light in FIG. 15, and FIGS. 17 to 21 are views showing a light receiving state (a) of the photoelectric conversion element array in FIG. 15 and an output waveform (b) at that time.

【0017】本発明に係る粒子計数装置は、図1に示す
ように、光の照射領域を通過する粒子の通過位置を検出
する粒子位置検出手段2と、粒子が発する散乱光の強度
を検出する散乱光検出手段3と、粒子位置検出手段2の
出力信号の大きさから粒子の通過位置が照射領域の所定
範囲内であるか否かを判断すると共に、散乱光検出手段
3の出力信号が所定値以上であるか否かを判断し、所定
範囲内で且つ所定値以上の場合にパルス信号を出力する
判別手段8と、この判別手段8が出力するパルス信号を
カウントする計数手段7を備えて構成される。
The particle counting device according to the present invention, as shown in FIG. 1, detects a particle position detecting means 2 for detecting a passage position of a particle passing through a light irradiation region and an intensity of scattered light emitted by the particle. Based on the magnitudes of the output signals of the scattered light detecting means 3 and the particle position detecting means 2, it is determined whether or not the particle passing position is within a predetermined range of the irradiation area, and the output signal of the scattered light detecting means 3 is predetermined. It is provided with a discriminating means 8 for discriminating whether or not the value is equal to or more than a value and outputting a pulse signal within a predetermined range and in the case of being equal to or more than the predetermined value, and a counting means 7 for counting the pulse signal output by the discriminating means 8. Composed.

【0018】本発明の第1の実施の形態に係る粒子計数
装置は、図2に示すように構成されている。この粒子計
数装置は、光を照射した測定領域のうち光強度の差が少
ない中心部を通過する粒子のみを測定対象とする。
The particle counting device according to the first embodiment of the present invention is constructed as shown in FIG. This particle counting device measures only particles that pass through the central portion where the difference in light intensity is small among the measurement areas irradiated with light.

【0019】粒子位置検出手段2は、フローセル11、
レーザ光源12、集光光学系13、光電変換素子アレイ
14、ピーク値検出手段16a,16b,16c及び位
置検出手段18から構成される。
The particle position detecting means 2 comprises a flow cell 11,
It comprises a laser light source 12, a condensing optical system 13, a photoelectric conversion element array 14, peak value detecting means 16a, 16b, 16c and a position detecting means 18.

【0020】散乱光検出手段3は、集光光学系13、光
電変換素子アレイ14、ピーク値検出手段16a,16
b,16c及び粒子情報検出手段17から構成される。
なお、ピーク値検出手段16a,16b,16c、粒子
情報検出手段17、位置検出手段18、判別手段8及び
計数手段7を、処理装置15としている。
The scattered light detecting means 3 comprises a condensing optical system 13, a photoelectric conversion element array 14, and peak value detecting means 16a, 16a.
b, 16c and particle information detecting means 17.
The peak value detecting means 16a, 16b, 16c, the particle information detecting means 17, the position detecting means 18, the discriminating means 8 and the counting means 7 serve as a processing device 15.

【0021】フローセル11は、透明部材から成り、所
定長さの直線流路11aを有し、全体として屈曲してい
る。また、フローセル11は、断面形状を四角形状と
し、全体としてL型筒形状に形成したものである。直線
流路11aの中心軸は、X方向と一致している。
The flow cell 11 is made of a transparent member, has a linear flow path 11a of a predetermined length, and is bent as a whole. The flow cell 11 has a quadrangular cross section and is formed in an L-shaped tubular shape as a whole. The central axis of the straight flow path 11a coincides with the X direction.

【0022】所定長さの直線流路11aを設けた理由
は、フローセル11に供試流体を流したとき、供試流体
の流れを層流にするためである。なお、層流を得るため
の条件としては、供試流体の粘度、直線流路の長さ、流
路の断面形状及び流速などが挙げられ、直線流路11a
の長さ及び流路の断面形状については、供試流体の粘度
と流速を勘案して決定している。
The reason why the linear flow path 11a having a predetermined length is provided is that the flow of the test fluid is laminar when the test fluid is flown through the flow cell 11. The conditions for obtaining the laminar flow include the viscosity of the sample fluid, the length of the linear flow passage, the cross-sectional shape of the flow passage, the flow velocity, and the like.
The length and the cross-sectional shape of the flow path are determined in consideration of the viscosity and flow velocity of the test fluid.

【0023】レーザ光源12は、フローセル11の直線
流路11aの所定箇所にレーザ光Laを照射して照射領
域を形成する。ここで、レーザ光Laの光軸は、Z方向
と一致し、X方向と一致する直線流路11aの中心軸と
直交している。
The laser light source 12 irradiates a predetermined portion of the linear flow path 11a of the flow cell 11 with the laser light La to form an irradiation area. Here, the optical axis of the laser light La coincides with the Z direction and is orthogonal to the central axis of the linear flow path 11a which coincides with the X direction.

【0024】また、図3に示すように、レーザ光Laの
光軸とフローセル11の外壁との成す角を所定角度θに
設定してもよい。これは、レーザ光Laがフローセル1
1の外壁に反射して反射光の一部がレーザ光源12に戻
るのを防止するためである。反射光の一部がレーザ光源
12に戻ると、帰還ノイズがレーザ光Laに重畳するの
で好ましくないからである。
Further, as shown in FIG. 3, the angle formed by the optical axis of the laser beam La and the outer wall of the flow cell 11 may be set to a predetermined angle θ. This is because the laser light La is the flow cell 1
This is for preventing a part of the reflected light from being reflected by the outer wall of No. 1 and returning to the laser light source 12. This is because, when a part of the reflected light returns to the laser light source 12, the feedback noise is superimposed on the laser light La, which is not preferable.

【0025】なお、レーザ光Laがフローセル11の外
壁で反射しないように、例えばレーザ光Laをフローセ
ル11の外壁と同じ物質中を通して直線流路11aの所
定箇所に導くことができれば、所定角度θを設定する必
要はない。
If the laser light La can be guided to a predetermined position of the linear flow path 11a through the same material as the outer wall of the flow cell 11 so that the laser light La is not reflected by the outer wall of the flow cell 11, the predetermined angle θ is obtained. No need to set.

【0026】集光光学系13は、フローセル11の直線
流路11aの中心軸と一致する光軸を有し、図4に示す
照射領域内の所定の領域M(以下、測定領域Mと呼ぶ)
においてレーザ光Laを受けた粒子が発する散乱光Ls
を集光する機能を備える。
The condensing optical system 13 has an optical axis that coincides with the central axis of the linear flow path 11a of the flow cell 11, and has a predetermined area M (hereinafter referred to as measurement area M) in the irradiation area shown in FIG.
Light Ls emitted by particles that have received the laser light La at
It has a function of condensing light.

【0027】光電変換素子アレイ14は、3個の光電変
換素子14a,14b,14cから成り、各受光面が流
路の中心軸に垂直で、且つ流路の中心軸(X方向)とレ
ーザ光軸(Z方向)に垂直なY方向に隣接して設けられ
ている。光電変換素子14a,14b,14cは、粒子
が測定領域Mを通過する間に発する散乱光Lsを電圧に
変換する。
The photoelectric conversion element array 14 is composed of three photoelectric conversion elements 14a, 14b, 14c, each light-receiving surface is perpendicular to the central axis of the flow path, and the central axis (X direction) of the flow path and the laser beam. It is provided adjacent to the Y direction perpendicular to the axis (Z direction). The photoelectric conversion elements 14a, 14b, 14c convert the scattered light Ls emitted while the particles pass through the measurement region M into a voltage.

【0028】なお、レーザ光Laの光軸とフローセル1
1の外壁との成す角を、図3に示す所定角度θに設定し
た場合には、光電変換素子14a,14b,14cの受
光面を、集光光学系13の光軸に垂直な面に対して所定
角度θだけ傾けてもよい。
The optical axis of the laser beam La and the flow cell 1
When the angle formed with the outer wall of 1 is set to the predetermined angle θ shown in FIG. 3, the light receiving surfaces of the photoelectric conversion elements 14a, 14b, 14c are set to the surface perpendicular to the optical axis of the condensing optical system 13. May be inclined by a predetermined angle θ.

【0029】粒子情報検出手段17と位置検出手段18
は、ともに演算部17aと記憶部17bからなる。粒子
情報検出手段17と位置検出手段18では、先ず演算部
17aにおいて、下記の(1)と(2)の演算処理を行
い、その結果を記憶部17bに記憶し、図10に示す粒
子情報参照テーブルを作成する。
Particle information detecting means 17 and position detecting means 18
Are both composed of a calculation unit 17a and a storage unit 17b. In the particle information detecting means 17 and the position detecting means 18, first, in the calculating part 17a, the following calculation processes (1) and (2) are performed, and the result is stored in the storing part 17b, and the particle information shown in FIG. Create a table.

【0030】(1)ピーク値検出手段16bの出力電圧
Ebに対するピーク値検出手段16aの出力電圧Eaの
比Ea/Ebを演算する。 (2)ピーク値検出手段16bの出力電圧Ebに対する
ピーク値検出手段16cの出力電圧Ecの比Ec/Eb
を演算する。
(1) The ratio Ea / Eb of the output voltage Ea of the peak value detecting means 16a to the output voltage Eb of the peak value detecting means 16b is calculated. (2) Ratio Ec / Eb of the output voltage Ec of the peak value detecting means 16c to the output voltage Eb of the peak value detecting means 16b.
Is calculated.

【0031】従って、粒子情報検出手段17の機能は、
位置検出手段18の機能を全て包含することになる。
Therefore, the function of the particle information detecting means 17 is as follows.
All the functions of the position detecting means 18 are included.

【0032】判別手段8は、粒子情報検出手段17の出
力信号(Ea/EbとEc/Eb)の大きさから粒子情
報参照テーブルを参照して粒子の通過位置が測定領域M
の所定範囲内、即ち中心部であるか否かを判断すると共
に、ピーク値検出手段16bの出力電圧Ebが所定値以
上であるか否かを判断し、所定範囲内で且つ所定値以上
の場合にパルス信号を出力する。なお、ピーク値検出手
段16bの出力電圧Ebと比較される所定値は、粒径に
比例する電圧値で、予め所望な値(ある粒径以上の粒子
の個数を検出する場合)に設定される。
The discriminating means 8 refers to the particle information reference table on the basis of the magnitudes of the output signals (Ea / Eb and Ec / Eb) of the particle information detecting means 17 to determine the passage position of the particles in the measurement area M.
If the output voltage Eb of the peak value detecting means 16b is not less than a predetermined value, it is determined whether the output voltage Eb is within the predetermined range. The pulse signal is output to. The predetermined value compared with the output voltage Eb of the peak value detecting means 16b is a voltage value proportional to the particle size, and is set to a desired value (when detecting the number of particles having a certain particle size or more) in advance. .

【0033】計数手段7は、判別手段8が出力するパル
ス信号の数をカウントし、そのカウント数がある粒径以
上の粒子の個数となる。
The counting means 7 counts the number of pulse signals output from the discrimination means 8, and the counted number is the number of particles having a certain particle diameter or more.

【0034】以上のように構成した本発明の第1の実施
の形態に係る粒子計数装置の作用について説明する。粒
子の通過位置を検出するのに必要な粒子情報参照テーブ
ルの作成方法について説明する。
The operation of the particle counting device according to the first embodiment of the present invention constructed as above will be described. A method of creating a particle information reference table necessary for detecting the passage position of particles will be described.

【0035】図2に示すように、矢印Aの方向から標準
粒子(粒径が同一のもの)を多数含んだ流体をフローセ
ル11に流し込む。このとき、測定領域Mのどの位置を
標準粒子が通過するかによって、光電変換素子アレイ1
4の各光電変換素子14a,14b,14cの出力波形
は様々なものとなる。そして、3個の光電変換素子14
a,14b,14cから成る光電変換素子アレイ14の
場合には、主な5通りの通過パターンが考えられる。
As shown in FIG. 2, a fluid containing a large number of standard particles (having the same particle size) is poured into the flow cell 11 from the direction of arrow A. At this time, the photoelectric conversion element array 1 depends on which position in the measurement region M the standard particles pass through.
The output waveforms of the photoelectric conversion elements 14a, 14b, 14c of No. 4 are various. Then, the three photoelectric conversion elements 14
In the case of the photoelectric conversion element array 14 including a, 14b, and 14c, five main passage patterns are considered.

【0036】先ず、標準粒子が、図4に示す測定領域M
の中心Mcを通過する場合で、標準粒子による散乱光L
sのスポットSは、図5(a)に示すように、光電変換
素子アレイ14の中央の光電変換素子14bのみに現れ
る。このとき、各光電変換素子14a,14b,14c
の出力波形(時間tと電圧Eとの関係)は、図5(b)
に示すようになる。
First, the standard particles are measured in the measurement area M shown in FIG.
Of light scattered by standard particles when passing through the center Mc of
The spot S of s appears only in the photoelectric conversion element 14b at the center of the photoelectric conversion element array 14, as shown in FIG. At this time, each photoelectric conversion element 14a, 14b, 14c
Output waveform (relationship between time t and voltage E) is shown in FIG.
As shown in.

【0037】即ち、光電変換素子14bのみが測定領域
Mの中心Mcをある時間の間(時間t1から時間t2)に
通過する標準粒子の散乱光Lsに応じた略パルス状の電
圧(ピーク値Eb)を出力し、他の光電変換素子14
a,14cはノイズに応じた略レベル電圧(ピーク値E
a,Ec)しか出力しない。
That is, only the photoelectric conversion element 14b passes through the center Mc of the measurement region M for a certain period of time (time t1 to time t2) and has a substantially pulsed voltage (peak value Eb) corresponding to the scattered light Ls of the standard particles. ) Is output, and another photoelectric conversion element 14
a and 14c are substantially level voltages (peak value E corresponding to noise)
Only a, Ec) are output.

【0038】次に、標準粒子が、図4に示す測定領域M
の一端部Msを通過する場合で、標準粒子による散乱光
LsのスポットSは、図6(a)に示すように、光電変
換素子アレイ14の一端の光電変換素子14aのみに現
れる。このとき、各光電変換素子14a,14b,14
cの出力波形(時間tと電圧Eとの関係)は、図6
(b)に示すようになる。
Next, the standard particles are measured in the measurement area M shown in FIG.
6A, the spot S of the scattered light Ls by the standard particles appears only on the photoelectric conversion element 14a at one end of the photoelectric conversion element array 14 as shown in FIG. 6A. At this time, the photoelectric conversion elements 14a, 14b, 14
The output waveform of c (relationship between time t and voltage E) is shown in FIG.
As shown in (b).

【0039】即ち、光電変換素子14aのみが測定領域
Mの一端部Msをある時間の間(時間t3から時間t4)
に通過する標準粒子の散乱光Lsに応じた略パルス状の
電圧(ピーク値Ea)を出力し、他の光電変換素子14
b,14cはノイズに応じた略レベル電圧(ピーク値E
b,Ec)しか出力しない。
That is, only the photoelectric conversion element 14a moves one end Ms of the measurement region M for a certain time (time t3 to time t4).
Outputs a substantially pulsed voltage (peak value Ea) according to the scattered light Ls of the standard particles passing through the other photoelectric conversion element 14
b and 14c are substantially level voltages (peak value E corresponding to noise)
b, Ec) only.

【0040】同様に、標準粒子が、図4に示す測定領域
Mの他端部Ms(一端部Msと対称)を通過する場合
で、標準粒子による散乱光LsのスポットSは、図7
(a)に示すように、光電変換素子アレイ14の他端の
光電変換素子14cのみに現れる。このとき、各光電変
換素子14a,14b,14cの出力波形(時間tと電
圧Eとの関係)は、図7(b)に示すようになる。
Similarly, when the standard particles pass through the other end Ms (symmetrical to the one end Ms) of the measurement area M shown in FIG. 4, the spot S of the scattered light Ls by the standard particles is shown in FIG.
As shown in (a), it appears only in the photoelectric conversion element 14c at the other end of the photoelectric conversion element array 14. At this time, the output waveform of each photoelectric conversion element 14a, 14b, 14c (relationship between time t and voltage E) is as shown in FIG. 7 (b).

【0041】即ち、光電変換素子14cのみが測定領域
Mの他端部Msをある時間の間(時間t3から時間t4)
に通過する標準粒子の散乱光Lsに応じた略パルス状の
電圧(ピーク値Ec)を出力し、他の光電変換素子14
a,14bはノイズに応じた略レベル電圧(ピーク値E
a,Eb)しか出力しない。
That is, only the photoelectric conversion element 14c moves the other end Ms of the measurement region M for a certain period of time (time t3 to time t4).
Outputs a substantially pulsed voltage (peak value Ec) according to the scattered light Ls of the standard particles passing through the other photoelectric conversion element 14
a and 14b are substantially level voltages (peak value E corresponding to noise).
Only a, Eb) are output.

【0042】更に、標準粒子が、図4に示す測定領域M
の一経路Mmを通過する場合で、標準粒子による散乱光
LsのスポットSは、図8(a)に示すように、光電変
換素子14aと光電変換素子14bの境界にまたがって
現れる。このとき、各光電変換素子14a,14b,1
4cの出力波形(時間tと電圧Eとの関係)は、図8
(b)に示すようになる。
Further, the standard particles are the measurement area M shown in FIG.
When passing through one path Mm, the spot S of the scattered light Ls by the standard particles appears across the boundary between the photoelectric conversion elements 14a and 14b as shown in FIG. 8A. At this time, each photoelectric conversion element 14a, 14b, 1
The output waveform of 4c (relationship between time t and voltage E) is shown in FIG.
As shown in (b).

【0043】即ち、光電変換素子14a,14bが測定
領域Mの一経路Mmをある時間の間(時間t5から時間
t6)に通過する標準粒子の散乱光Lsに応じた略パル
ス状の電圧(ピーク値Ea,Eb)を出力し、光電変換
素子14cはノイズに応じた略レベル電圧(ピーク値E
c)しか出力しない。
That is, the photoelectric conversion elements 14a and 14b pass through the one path Mm of the measurement region M for a certain time (time t5 to time t6) and have a substantially pulse-like voltage (peak) according to the scattered light Ls of the standard particles. The values Ea and Eb) are output, and the photoelectric conversion element 14c outputs a level voltage (peak value E) corresponding to noise.
Only output c).

【0044】同様に、標準粒子が、図4に示す測定領域
Mの他経路Mm(一経路Mmと対称)を通過する場合
で、標準粒子による散乱光LsのスポットSは、図9
(a)に示すように、光電変換素子14bと光電変換素
子14cの境界にまたがって現れる。このとき、各光電
変換素子14a,14b,14cの出力波形(時間tと
電圧Eとの関係)は、図9(b)に示すようになる。
Similarly, when the standard particles pass through the other path Mm (symmetrical to one path Mm) of the measurement region M shown in FIG. 4, the spot S of the scattered light Ls by the standard particles is shown in FIG.
As shown in (a), it appears straddling the boundary between the photoelectric conversion elements 14b and 14c. At this time, the output waveform of each photoelectric conversion element 14a, 14b, 14c (relationship between time t and voltage E) is as shown in FIG. 9 (b).

【0045】即ち、光電変換素子14b,14cが測定
領域Mの他経路Mmをある時間の間(時間t5から時間
t6)に通過する標準粒子の散乱光Lsに応じた略パル
ス状の電圧(ピーク値Eb,Ec)を出力し、光電変換
素子14aはノイズに応じた略レベル電圧(ピーク値E
a)しか出力しない。
That is, the photoelectric conversion elements 14b, 14c pass through the other path Mm of the measurement region M for a certain time (time t5 to time t6) and have a substantially pulsed voltage (peak) corresponding to the scattered light Ls of the standard particles. The values Eb and Ec) are output, and the photoelectric conversion element 14a outputs a substantially level voltage (peak value E) corresponding to noise.
Only a) is output.

【0046】そして、位置検出手段18では、図5
(a)に示すように、中央の光電変換素子14bのみに
スポットSが現れた場合、演算部17aにおいて、光電
変換素子14bのピーク電圧Ebに対する光電変換素子
14aのピーク電圧Eaの比Ea/Ebを演算し、Ea
<Ebであるから、比Ea/Ebとして、ほぼゼロ(E
a/Eb≒0)の値を出力し、記憶部17bに記憶す
る。
Then, in the position detecting means 18, FIG.
As shown in (a), when the spot S appears only in the central photoelectric conversion element 14b, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 14a to the peak voltage Eb of the photoelectric conversion element 14b in the calculation unit 17a. To calculate Ea
Since <Eb, the ratio Ea / Eb is almost zero (E
The value of a / Eb≈0) is output and stored in the storage unit 17b.

【0047】また、演算部17aにおいて、光電変換素
子14bのピーク電圧Ebに対する光電変換素子14c
のピーク電圧Ecの比Ec/Ebを演算し、Ec<Eb
であるから、比Ec/Ebとして、ほぼゼロ(Ec/E
b≒0)の値を出力し、記憶部17bに記憶する。
In addition, in the calculation unit 17a, the photoelectric conversion element 14c for the peak voltage Eb of the photoelectric conversion element 14b.
Of the peak voltage Ec of Ec / Eb is calculated, and Ec <Eb
Therefore, the ratio Ec / Eb is almost zero (Ec / Eb
The value of b≈0) is output and stored in the storage unit 17b.

【0048】また、位置検出手段18では、図6(a)
に示すように、一端の光電変換素子14aのみにスポッ
トSが現れた場合、演算部17aにおいて、光電変換素
子14bのピーク電圧Ebに対する光電変換素子14a
のピーク電圧Eaの比Ea/Ebを演算し、Ea>Eb
であるから、比Ea/Ebとして非常に大きな値(Ea
/Eb≒∞)を出力し、記憶部17bに記憶する。同様
に、光電変換素子14bのピーク電圧Ebに対する光電
変換素子14cのピーク電圧Ecの比Ec/Ebを演算
し、Ec≒Ebであるから、比Ec/Ebとして約1
(Ec/Eb≒1)の値を出力し、記憶部17bに記憶
する。
Further, in the position detecting means 18, FIG.
When the spot S appears only on the photoelectric conversion element 14a at one end as shown in FIG. 7, the photoelectric conversion element 14a corresponding to the peak voltage Eb of the photoelectric conversion element 14b is calculated in the calculation unit 17a.
Of the peak voltage Ea of Ea / Eb is calculated, and Ea> Eb
Therefore, a very large value (Ea / Eb) as the ratio Ea / Eb is obtained.
/ Eb≈∞) is output and stored in the storage unit 17b. Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 14c to the peak voltage Eb of the photoelectric conversion element 14b is calculated. Since Ec≈Eb, the ratio Ec / Eb is about 1
The value of (Ec / Eb≈1) is output and stored in the storage unit 17b.

【0049】また、位置検出手段18では、図7(a)
に示すように、他端の光電変換素子14cのみにスポッ
トSが現れた場合、演算部17aにおいて、光電変換素
子14bのピーク電圧Ebに対する光電変換素子14a
のピーク電圧Eaの比Ea/Ebを演算し、Ea≒Eb
であるから、比Ea/Ebとして約1(Ea/Eb≒
1)の値を出力し、記憶部17bに記憶する。同様に、
光電変換素子14bのピーク電圧Ebに対する光電変換
素子14cのピーク電圧Ecの比Ec/Ebを演算し、
Ec>Ebであるから、比Ec/Ebとして非常に大き
な値(Ec/Eb≒∞)を出力し、記憶部17bに記憶
する。
Further, in the position detecting means 18, FIG.
When the spot S appears only in the photoelectric conversion element 14c at the other end, as shown in FIG. 5, in the calculation unit 17a, the photoelectric conversion element 14a corresponding to the peak voltage Eb of the photoelectric conversion element 14b.
Of the peak voltage Ea of Ea / Eb is calculated, and Ea≈Eb
Therefore, the ratio Ea / Eb is about 1 (Ea / Eb≈
The value of 1) is output and stored in the storage unit 17b. Similarly,
The ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 14c to the peak voltage Eb of the photoelectric conversion element 14b is calculated,
Since Ec> Eb, a very large value (Ec / Eb≈∞) is output as the ratio Ec / Eb and stored in the storage unit 17b.

【0050】次に、位置検出手段18では、図8(a)
に示すように、光電変換素子14aと光電変換素子14
bの境界にスポットSがまたがって現れた場合、演算部
17aにおいて、光電変換素子14bのピーク電圧Eb
に対する光電変換素子14aのピーク電圧Eaの比Ea
/Ebを演算し、Ea≒Ebであるから、比Ea/Eb
として約1(Ea/Eb≒1)の値を出力し、記憶部1
7bに記憶する。同様に、光電変換素子14bのピーク
電圧Ebに対する光電変換素子14cのピーク電圧Ec
の比Ec/Ebを演算し、Ec<Ebであるから、比E
c/Ebとしてほぼゼロ(Ec/Eb≒0)の値を出力
し、記憶部17bに記憶する。
Next, in the position detecting means 18, FIG.
, The photoelectric conversion element 14a and the photoelectric conversion element 14
When the spot S appears across the boundary of b, the peak voltage Eb of the photoelectric conversion element 14b is calculated in the calculation unit 17a.
Ratio of peak voltage Ea of photoelectric conversion element 14a to Ea
/ Eb is calculated, and since Ea≈Eb, the ratio Ea / Eb
Output a value of about 1 (Ea / Eb≈1) as
Store in 7b. Similarly, the peak voltage Ec of the photoelectric conversion element 14c with respect to the peak voltage Eb of the photoelectric conversion element 14b.
The ratio Ec / Eb is calculated and Ec <Eb, so the ratio E
A value of substantially zero (Ec / Eb≈0) is output as c / Eb and stored in the storage unit 17b.

【0051】また、位置検出手段18では、図9(a)
に示すように、光電変換素子14bと光電変換素子14
cの境界にスポットSがまたがって現れた場合、演算部
17aにおいて、光電変換素子14bのピーク電圧Eb
に対する光電変換素子14aのピーク電圧Eaの比Ea
/Ebを演算し、Ea<Ebであるから、比Ea/Eb
としてほぼゼロ(Ec/Eb≒0)の値を出力し、記憶
部17bに記憶する。同様に、光電変換素子14bのピ
ーク電圧Ebに対する光電変換素子14cのピーク電圧
Ecの比Ec/Ebを演算し、Ec≒Ebであるから、
比Ec/Ebとして約1(Ec/Eb≒1)の値を出力
し、記憶部17bに記憶する。
Further, in the position detecting means 18, FIG.
, The photoelectric conversion element 14b and the photoelectric conversion element 14
When the spot S appears across the boundary of c, the peak voltage Eb of the photoelectric conversion element 14b is calculated by the calculation unit 17a.
Ratio of peak voltage Ea of photoelectric conversion element 14a to Ea
/ Eb is calculated, and since Ea <Eb, the ratio Ea / Eb
As a value, a value of substantially zero (Ec / Eb≈0) is output and stored in the storage unit 17b. Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 14c to the peak voltage Eb of the photoelectric conversion element 14b is calculated, and since Ec≈Eb,
A value of about 1 (Ec / Eb≈1) is output as the ratio Ec / Eb and stored in the storage unit 17b.

【0052】なお、基準とする電圧は、光電変換素子1
4bのピーク電圧Eb以外の他の光電変換素子14a,
14cのピーク電圧Ea,Ecでもよいし、また各ピー
ク電圧の和(Ea+Eb+Ec)でもよい。要は、光電
変換素子14a,14b,14cのピーク電圧の絶対値
ではなく、基準電圧に対する各光電変換素子14a,1
4b,14cのピーク電圧の比(割合)から標準粒子に
よる散乱光LsのスポットSの位置を求める方が確度が
高いからである。
The reference voltage is the photoelectric conversion element 1
Photoelectric conversion elements 14a other than the peak voltage Eb of 4b,
The peak voltages Ea and Ec of 14c may be used, or the sum of the peak voltages (Ea + Eb + Ec) may be used. The point is that not the absolute value of the peak voltage of the photoelectric conversion elements 14a, 14b, 14c, but the photoelectric conversion elements 14a, 1 with respect to the reference voltage.
This is because it is more accurate to obtain the position of the spot S of the scattered light Ls by the standard particles from the ratio (ratio) of the peak voltages of 4b and 14c.

【0053】以上のような5通りの場合について、図1
0に示すように、基準電圧を光電変換素子14bのピー
ク電圧Ebとした場合の粒子情報参照テーブルが作成で
きる。従って、光電変換素子14bのピーク電圧Ebに
対する光電変換素子14aのピーク電圧Eaの比Ea/
Ebと、光電変換素子14bのピーク電圧Ebに対する
光電変換素子14cのピーク電圧Ecの比Ec/Ebが
分かれば、粒子情報参照テーブルを参照することによ
り、測定領域Mにおける粒子のY方向の通過位置を5通
りの中から識別することができる。
FIG. 1 shows the above five cases.
As shown in 0, a particle information reference table can be created when the reference voltage is the peak voltage Eb of the photoelectric conversion element 14b. Therefore, the ratio of the peak voltage Ea of the photoelectric conversion element 14a to the peak voltage Eb of the photoelectric conversion element 14b Ea /
If Eb and the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 14c to the peak voltage Eb of the photoelectric conversion element 14b are known, by referring to the particle information reference table, the passage position of the particle in the measurement region M in the Y direction. Can be identified from the five ways.

【0054】また、上記した5通りの通過パターン以外
で、光電変換素子14aと光電変換素子14bの境界又
は光電変換素子14bと光電変換素子14cの境界にス
ポットSが均等でなくまたがって現れるような測定領域
Mの経路を通過した場合であっても、光電変換素子14
bのピーク電圧Ebに対する光電変換素子14aのピー
ク電圧Eaの比Ea/Ebと、光電変換素子14bのピ
ーク電圧Ebに対する光電変換素子14cのピーク電圧
Ecの比Ec/Ebが分かれば、比Ea/Ebの値と比
Ec/Ebの値を粒子情報参照テーブルに当てはめるこ
とにより、測定領域Mにおける粒子のY方向の通過位置
を識別することができる。
In addition to the above-described five passage patterns, spots S appear to be uneven and straddle at the boundary between the photoelectric conversion element 14a and the photoelectric conversion element 14b or the boundary between the photoelectric conversion element 14b and the photoelectric conversion element 14c. Even when the photoelectric conversion element 14 passes through the path of the measurement region M,
If the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 14a to the peak voltage Eb of b and the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 14c to the peak voltage Eb of the photoelectric conversion element 14b are known, the ratio Ea / By applying the value of Eb and the value of the ratio Ec / Eb to the particle information reference table, the passage position of the particle in the measurement area M in the Y direction can be identified.

【0055】次に、標準粒子により作成した粒子情報参
照テーブルを利用して粒径が未知な粒子を計数する場合
について説明する。本発明の第1の実施の形態に係る粒
子計数装置は、測定領域Mのうち光強度分布がほぼ均一
である中心部を通過する粒子で、且つ所定の粒径以上の
粒子のみを検出する。
Next, a case will be described in which particles having an unknown particle size are counted by using a particle information reference table created from standard particles. The particle counting device according to the first embodiment of the present invention detects only particles in the measurement region M that pass through the central portion where the light intensity distribution is substantially uniform and have a predetermined particle size or more.

【0056】粒径が未知の粒子が測定領域Mを通過し、
光電変換素子14bのピーク電圧Ebに対する光電変換
素子14aのピーク電圧Eaの比Ea/Ebがほぼゼロ
(Ea/Eb≒0)で、且つ光電変換素子14bのピー
ク電圧Ebに対する光電変換素子14cのピーク電圧E
cの比Ec/Ebもほぼゼロ(Ec/Eb≒0)である
とする。この状態は、図10に示す粒子情報参照テーブ
ルを参照すると、光電変換素子14bにのみスポットS
が現れた場合(図5(a))に該当し、粒子が測定領域
Mの中心部を通過したものと推定できる。
Particles of unknown particle size pass through the measurement area M,
The ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 14a to the peak voltage Eb of the photoelectric conversion element 14b is substantially zero (Ea / Eb≈0), and the peak of the photoelectric conversion element 14c with respect to the peak voltage Eb of the photoelectric conversion element 14b. Voltage E
It is assumed that the ratio Ec / Eb of c is also substantially zero (Ec / Eb≈0). In this state, referring to the particle information reference table shown in FIG. 10, the spot S only on the photoelectric conversion element 14b.
Corresponds to the case (FIG. 5A), and it can be estimated that the particles have passed through the central portion of the measurement region M.

【0057】すると、判別手段8は、粒子情報検出手段
17の出力信号(Ea/Eb≒0とEc/Eb≒0)の
大きさから、粒子の通過位置が測定領域Mの所定範囲
内、即ち中心部であると判断すると共に、ピーク値検出
手段16bの出力電圧Ebが所定値以上である場合に
は、粒子の個数に応じた数のパルス信号を出力する。そ
して、計数手段7は、判別手段8が出力するパルス信号
の数をカウントし、そのカウント数が粒子の個数とな
る。
Then, the discriminating means 8 determines that the passage position of the particles is within the predetermined range of the measurement region M, that is, from the magnitudes of the output signals (Ea / Eb≈0 and Ec / Eb≈0) of the particle information detecting means 17. When the output voltage Eb of the peak value detecting means 16b is equal to or higher than a predetermined value while determining that it is the central portion, the number of pulse signals corresponding to the number of particles is output. Then, the counting means 7 counts the number of pulse signals output by the determining means 8, and the counted number is the number of particles.

【0058】なお、粒子が測定領域Mの中心部以外を通
過した場合、例えば比Ea/Ebが約1(Ea/Eb≒
1)で、且つ比Ec/Ebがほぼゼロ(Ec/Eb≒
0)の場合には、図10に示す粒子情報参照テーブルを
参照すると、スポットSが光電変換素子14aと光電変
換素子14bの境界にまたがって現れたものと推定さ
れ、粒子が測定領域Mの中心部を通過しなかったと判断
し、判別手段8はパルス信号を出力しない。即ち、測定
領域Mの中心部以外を通過した粒子は、測定対象としな
い。
When the particles pass through other than the central portion of the measurement area M, for example, the ratio Ea / Eb is about 1 (Ea / Eb≈
1) and the ratio Ec / Eb is almost zero (Ec / Eb≈
In the case of 0), referring to the particle information reference table shown in FIG. 10, it is estimated that the spot S appears across the boundary between the photoelectric conversion elements 14a and 14b, and the particle is at the center of the measurement region M. The determination means 8 does not output the pulse signal because it is determined that it has not passed through the section. That is, particles that have passed other than the central portion of the measurement area M are not measured.

【0059】また、本発明に係る粒子計数装置は、図1
1に示すように、光を照射する測定領域の光強度分布を
検出する光強度分布検出手段1と、測定領域を通過する
粒子の通過位置を検出する粒子位置検出手段2と、粒子
が発する散乱光の強度を検出する散乱光検出手段3と、
予め光強度分布検出手段1の出力信号により作成する粒
子情報参照テーブルと粒子位置検出手段2の出力信号に
基づいて粒子の散乱光強度の補正値を算出する参照手段
4と、補正値に基づいて散乱光検出手段3の出力信号を
補正する正規化手段5と、正規化手段5の出力信号が所
定値以上のときにパルス信号を出力する弁別手段6と、
弁別手段6が出力するパルス信号をカウントする計数手
段7を備えて構成することもできる。
The particle counting device according to the present invention is shown in FIG.
As shown in FIG. 1, a light intensity distribution detecting means 1 for detecting a light intensity distribution of a measurement area irradiated with light, a particle position detecting means 2 for detecting a passage position of particles passing through the measurement area, and scattering generated by the particles. Scattered light detecting means 3 for detecting the intensity of light,
Based on the particle information reference table created in advance from the output signal of the light intensity distribution detection means 1 and the reference means 4 for calculating the correction value of the scattered light intensity of the particles based on the output signal of the particle position detection means 2, and based on the correction value. A normalizing means 5 for correcting the output signal of the scattered light detecting means 3; a discriminating means 6 for outputting a pulse signal when the output signal of the normalizing means 5 is a predetermined value or more;
It can also be configured by including counting means 7 for counting the pulse signals output by the discrimination means 6.

【0060】本発明の第2の実施の形態に係る粒子計数
装置は、図12に示すように構成されている。この粒子
計数装置は、本発明の第1の実施の形態に係る粒子計数
装置における測定領域Mを通過する粒子の全てを測定対
象とする。
The particle counting device according to the second embodiment of the present invention is constructed as shown in FIG. This particle counting device targets all particles passing through the measurement region M in the particle counting device according to the first embodiment of the present invention.

【0061】光強度分布検出手段1は、フローセル1
1、レーザ光源12、集光光学系13、光電変換素子ア
レイ14、ピーク値検出手段16a,16b,16c及
び粒子情報検出手段17から構成される。粒子位置検出
手段2は、フローセル11、レーザ光源12、集光光学
系13、光電変換素子アレイ14、ピーク値検出手段1
6a,16b,16c及び位置検出手段18から構成さ
れる。
The light intensity distribution detecting means 1 is the flow cell 1
1, a laser light source 12, a condensing optical system 13, a photoelectric conversion element array 14, peak value detecting means 16a, 16b, 16c, and particle information detecting means 17. The particle position detecting means 2 includes a flow cell 11, a laser light source 12, a condensing optical system 13, a photoelectric conversion element array 14, and a peak value detecting means 1.
It is composed of 6a, 16b, 16c and a position detecting means 18.

【0062】散乱光検出手段3は、集光光学系13、光
電変換素子アレイ14、ピーク値検出手段16a,16
b,16c及び粒子情報検出手段17から構成される。
参照手段4は、粒子情報検出手段17により構成され
る。なお、ピーク値検出手段16a,16b,16c、
粒子情報検出手段17、位置検出手段18、正規化手段
5、弁別手段6及び計数手段7を、処理装置15として
いる。
The scattered light detecting means 3 includes a condensing optical system 13, a photoelectric conversion element array 14, and peak value detecting means 16a, 16a.
b, 16c and particle information detecting means 17.
The reference unit 4 is composed of a particle information detection unit 17. The peak value detecting means 16a, 16b, 16c,
The particle information detecting means 17, the position detecting means 18, the normalizing means 5, the discriminating means 6 and the counting means 7 constitute a processing device 15.

【0063】ここで、図12に示すフローセル11、レ
ーザ光源12、集光光学系13及び光電変換素子アレイ
14は、図2に示すフローセル11、レーザ光源12、
集光光学系13及び光電変換素子アレイ14と夫々同様
の構成であるので説明は省略する。
Here, the flow cell 11, laser light source 12, condensing optical system 13, and photoelectric conversion element array 14 shown in FIG. 12 are the same as the flow cell 11, laser light source 12, and laser light source 12 shown in FIG.
Since the condensing optical system 13 and the photoelectric conversion element array 14 have the same configurations, the description thereof will be omitted.

【0064】粒子情報検出手段17と位置検出手段18
は、ともに演算部17aと記憶部17bからなる。粒子
情報検出手段17と位置検出手段18では、先ず演算部
17aにおいて、下記の(1)と(2)の演算処理を行
い、その結果を記憶部17bに記憶し、更に粒子情報検
出手段17では、下記の(3)の演算処理も行い、その
結果を記憶部17bに記憶して、図13に示す粒子情報
参照テーブルを作成する。
Particle information detecting means 17 and position detecting means 18
Are both composed of a calculation unit 17a and a storage unit 17b. In the particle information detecting means 17 and the position detecting means 18, first, in the calculating part 17a, the following calculation processes (1) and (2) are performed, and the results are stored in the storing part 17b. The following (3) arithmetic processing is also performed, the result is stored in the storage unit 17b, and the particle information reference table shown in FIG. 13 is created.

【0065】(1)ピーク値検出手段16bの出力電圧
Ebに対するピーク値検出手段16aの出力電圧Eaの
比Ea/Ebを演算する。 (2)ピーク値検出手段16bの出力電圧Ebに対する
ピーク値検出手段16cの出力電圧Ecの比Ec/Eb
を演算する。 (3)ピーク値検出手段16a,16b,16cの出力
電圧Ea,Eb,Ecの和(Ea+Eb+Ec)を演算
する。
(1) The ratio Ea / Eb of the output voltage Ea of the peak value detecting means 16a to the output voltage Eb of the peak value detecting means 16b is calculated. (2) Ratio Ec / Eb of the output voltage Ec of the peak value detecting means 16c to the output voltage Eb of the peak value detecting means 16b.
Is calculated. (3) The sum (Ea + Eb + Ec) of the output voltages Ea, Eb, Ec of the peak value detecting means 16a, 16b, 16c is calculated.

【0066】従って、粒子情報検出手段17の機能は、
図2に示す第1の実施の形態に係る粒子計数装置と同様
に、位置検出手段18の機能を全て包含することにな
る。
Therefore, the function of the particle information detecting means 17 is as follows.
Similar to the particle counting device according to the first embodiment shown in FIG. 2, all the functions of the position detecting means 18 are included.

【0067】正規化手段5は、予めフローセル11に標
準粒子を流して作成する粒子情報参照テーブルに基づい
て、測定対象となる未知の粒子から得られるピーク値検
出手段16a,16b,16cの出力電圧の和(Ea+
Eb+Ec)に補正計数kを乗じ、その電圧((Ea+
Eb+Ec)×k)を出力するものである。
The normalizing means 5 outputs the output voltage of the peak value detecting means 16a, 16b, 16c obtained from unknown particles to be measured, based on a particle information reference table created by flowing standard particles in the flow cell 11 in advance. Sum of (Ea +
Eb + Ec) is multiplied by the correction count k, and the voltage ((Ea +
Eb + Ec) × k) is output.

【0068】弁別手段6は、粒径の大きさを、設定自在
な設定電圧Erの大きさに対応させ、正規化手段5の出
力信号((Ea+Eb+Ec)×k)が設定電圧Erよ
りも大きい場合((Ea+Eb+Ec)×k>Er)
に、パルス信号を出力する。計数手段7は、弁別手段6
が出力するパルス信号の数をカウントし、そのカウント
数が粒子の個数となる。
The discriminating means 6 makes the size of the particle diameter correspond to the freely settable voltage Er, and the output signal ((Ea + Eb + Ec) × k) of the normalizing means 5 is larger than the set voltage Er. ((Ea + Eb + Ec) × k> Er)
Then, the pulse signal is output. The counting means 7 is the discrimination means 6
The number of pulse signals output by is counted, and the counted number is the number of particles.

【0069】以上のように構成した本発明の第2の実施
の形態に係る粒子計数装置の作用について説明する。先
ず、本発明の第1の実施の形態に係る粒子計数装置と同
様に、標準粒子の粒子情報参照テーブルを作成するた
め、図12に示すように、矢印Aの方向から標準粒子
(粒径が同一のもの)を多数含んだ流体をフローセル1
1に流し込む。
The operation of the particle counting device according to the second embodiment of the present invention constructed as above will be described. First, similarly to the particle counting device according to the first embodiment of the present invention, in order to create a particle information reference table of standard particles, as shown in FIG. Flow cell 1 containing a large number of fluids containing the same)
Pour into 1.

【0070】ここで、図4に示すように、測定領域Mの
どの位置を標準粒子が通過するかによって、光電変換素
子アレイ14の各光電変換素子14a,14b,14c
の出力波形は様々なものとなるが、本発明の第1の実施
の形態の場合と同様なので(図5乃至図9)、その説明
は省略する。
Here, as shown in FIG. 4, each photoelectric conversion element 14a, 14b, 14c of the photoelectric conversion element array 14 depends on which position in the measurement region M the standard particle passes through.
Although there are various output waveforms, the same as in the case of the first embodiment of the present invention (FIGS. 5 to 9), the description thereof will be omitted.

【0071】そして、粒子情報検出手段17では、図5
(a)に示すように、中央の光電変換素子14bのみに
スポットSが現れた場合、演算部17aにおいて、光電
変換素子14bのピーク電圧Ebに対する光電変換素子
14aのピーク電圧Eaの比Ea/Ebを演算し、Ea
<Ebであるから、比Ea/Ebとしてほぼゼロ(Ea
/Eb≒0)の値を出力し、記憶部17bに記憶する。
Then, in the particle information detecting means 17, FIG.
As shown in (a), when the spot S appears only in the central photoelectric conversion element 14b, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 14a to the peak voltage Eb of the photoelectric conversion element 14b in the calculation unit 17a. To calculate Ea
Since <Eb, the ratio Ea / Eb is almost zero (Ea / Eb
The value of / Eb≈0) is output and stored in the storage unit 17b.

【0072】また、演算部17aにおいて、光電変換素
子14bのピーク電圧Ebに対する光電変換素子14c
のピーク電圧Ecの比Ec/Ebを演算し、Ec<Eb
であるから、比Ec/Ebとしてほぼゼロ(Ec/Eb
≒0)の値を出力し、記憶部17bに記憶する。更に、
演算部17aにおいて、光電変換素子14a,14b,
14cの出力電圧Ea,Eb,Ecの和(Ea+Eb+
Ec)を演算し、例えば、1.0を記憶部17bに記憶
する。
In addition, in the calculation unit 17a, the photoelectric conversion element 14c for the peak voltage Eb of the photoelectric conversion element 14b.
Of the peak voltage Ec of Ec / Eb is calculated, and Ec <Eb
Therefore, the ratio Ec / Eb is almost zero (Ec / Eb
The value of (≈0) is output and stored in the storage unit 17b. Furthermore,
In the calculation unit 17a, the photoelectric conversion elements 14a, 14b,
14c output voltage Ea, Eb, Ec sum (Ea + Eb +
Ec) is calculated and, for example, 1.0 is stored in the storage unit 17b.

【0073】また、粒子情報検出手段17では、図6
(a)に示すように、一端の光電変換素子14aのみに
スポットSが現れた場合、演算部17aにおいて、光電
変換素子14bのピーク電圧Ebに対する光電変換素子
14aのピーク電圧Eaの比Ea/Ebを演算し、Ea
>Ebであるから、比Ea/Ebとして非常に大きな値
(Ea/Eb≒∞)を出力し、記憶部17bに記憶す
る。
Further, in the particle information detecting means 17, as shown in FIG.
As shown in (a), when the spot S appears only on one end of the photoelectric conversion element 14a, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 14a to the peak voltage Eb of the photoelectric conversion element 14b in the calculation unit 17a. To calculate Ea
Since> Eb, a very large value (Ea / Eb≈∞) is output as the ratio Ea / Eb and stored in the storage unit 17b.

【0074】同様に、光電変換素子14bのピーク電圧
Ebに対する光電変換素子14cのピーク電圧Ecの比
Ec/Ebを演算し、Ec≒Ebであるから、比Ec/
Ebとして約1(Ec/Eb≒1)の値を出力し、記憶
部17bに記憶する。更に、演算部17aにおいて、光
電変換素子14a,14b,14cの出力電圧Ea,E
b,Ecの和(Ea+Eb+Ec)を演算し、例えば、
0.2を記憶部17bに記憶する。
Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 14c to the peak voltage Eb of the photoelectric conversion element 14b is calculated. Since Ec≈Eb, the ratio Ec / Eb
A value of about 1 (Ec / Eb≈1) is output as Eb and stored in the storage unit 17b. Further, in the arithmetic unit 17a, the output voltages Ea, E of the photoelectric conversion elements 14a, 14b, 14c are
The sum of b and Ec (Ea + Eb + Ec) is calculated, and for example,
0.2 is stored in the storage unit 17b.

【0075】また、粒子情報検出手段17では、図7
(a)に示すように、他端の光電変換素子14cのみに
スポットSが現れた場合、演算部17aにおいて、光電
変換素子14bのピーク電圧Ebに対する光電変換素子
14aのピーク電圧Eaの比Ea/Ebを演算し、Ea
≒Ebであるから、比Ea/Ebとして約1(Ea/E
b≒1)の値を出力し、記憶部17bに記憶する。
Further, in the particle information detecting means 17, as shown in FIG.
As shown in (a), when the spot S appears only in the photoelectric conversion element 14c at the other end, the ratio Ea / of the peak voltage Ea of the photoelectric conversion element 14a to the peak voltage Eb of the photoelectric conversion element 14b in the calculation unit 17a. Eb is calculated and Ea
Since ≈Eb, the ratio Ea / Eb is about 1 (Ea / Eb
The value of b≈1) is output and stored in the storage unit 17b.

【0076】同様に、光電変換素子14bのピーク電圧
Ebに対する光電変換素子14cのピーク電圧Ecの比
Ec/Ebを演算し、Ec>Ebであるから、比Ec/
Ebとして非常に大きな値(Ec/Eb≒∞)を出力
し、記憶部17bに記憶する。更に、演算部17aにお
いて、光電変換素子14a,14b,14cの出力電圧
Ea,Eb,Ecの和(Ea+Eb+Ec)を演算し、
例えば、0.2を記憶部17bに記憶する。
Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 14c to the peak voltage Eb of the photoelectric conversion element 14b is calculated. Since Ec> Eb, the ratio Ec / Eb
A very large value (Ec / Eb≈∞) is output as Eb and stored in the storage unit 17b. Further, in the arithmetic unit 17a, the sum (Ea + Eb + Ec) of the output voltages Ea, Eb, Ec of the photoelectric conversion elements 14a, 14b, 14c is calculated,
For example, 0.2 is stored in the storage unit 17b.

【0077】次に、粒子情報検出手段17では、図8
(a)に示すように、光電変換素子14aと光電変換素
子14bの境界にスポットSがまたがって現れた場合、
演算部17aにおいて、光電変換素子14bのピーク電
圧Ebに対する光電変換素子14aのピーク電圧Eaの
比Ea/Ebを演算し、Ea≒Ebであるから、比Ea
/Ebとして約1(Ea/Eb≒1)の値を出力し、記
憶部17bに記憶する。
Next, in the particle information detecting means 17, as shown in FIG.
As shown in (a), when the spot S appears across the boundary between the photoelectric conversion elements 14a and 14b,
In the calculation unit 17a, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 14a to the peak voltage Eb of the photoelectric conversion element 14b is calculated, and since Ea≈Eb, the ratio Ea
A value of about 1 (Ea / Eb≈1) is output as / Eb and stored in the storage unit 17b.

【0078】同様に、光電変換素子14bのピーク電圧
Ebに対する光電変換素子14cのピーク電圧Ecの比
Ec/Ebを演算し、Ec<Ebであるから、比Ec/
Ebとしてほぼゼロ(Ec/Eb≒0)の値を出力し、
記憶部17bに記憶する。更に、演算部17aにおい
て、光電変換素子14a,14b,14cの出力電圧E
a,Eb,Ecの和(Ea+Eb+Ec)を演算し、例
えば、0.75を記憶部17bに記憶する。
Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 14c to the peak voltage Eb of the photoelectric conversion element 14b is calculated. Since Ec <Eb, the ratio Ec / Eb /
A value of almost zero (Ec / Eb≈0) is output as Eb,
It is stored in the storage unit 17b. Further, in the calculation unit 17a, the output voltage E of the photoelectric conversion elements 14a, 14b, 14c is
The sum (Ea + Eb + Ec) of a, Eb, and Ec is calculated, and, for example, 0.75 is stored in the storage unit 17b.

【0079】また、粒子情報検出手段17では、図9
(a)に示すように、光電変換素子14bと光電変換素
子14cの境界にスポットSがまたがって現れた場合、
演算部17aにおいて、光電変換素子14bのピーク電
圧Ebに対する光電変換素子14aのピーク電圧Eaの
比Ea/Ebを演算し、Ea<Ebであるから、比Ea
/Ebとしてほぼゼロ(Ea/Eb≒0)の値を出力
し、記憶部17bに記憶する。
Further, in the particle information detecting means 17, FIG.
As shown in (a), when the spot S appears across the boundary between the photoelectric conversion elements 14b and 14c,
The calculation unit 17a calculates the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 14a to the peak voltage Eb of the photoelectric conversion element 14b. Since Ea <Eb, the ratio Ea
A value of substantially zero (Ea / Eb≈0) is output as / Eb and stored in the storage unit 17b.

【0080】同様に、光電変換素子14bのピーク電圧
Ebに対する光電変換素子14cのピーク電圧Ecの比
Ec/Ebを演算し、Ec≒Ebであるから、比Ec/
Ebとして約1(Ec/Eb≒1)の値を出力し、記憶
部17bに記憶する。更に、演算部17aにおいて、光
電変換素子14a,14b,14cの出力電圧Ea,E
b,Ecの和(Ea+Eb+Ec)を演算し、例えば、
0.75を記憶部17bに記憶する。
Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 14c to the peak voltage Eb of the photoelectric conversion element 14b is calculated. Since Ec≈Eb, the ratio Ec / Eb
A value of about 1 (Ec / Eb≈1) is output as Eb and stored in the storage unit 17b. Further, in the arithmetic unit 17a, the output voltages Ea, E of the photoelectric conversion elements 14a, 14b, 14c are
The sum of b and Ec (Ea + Eb + Ec) is calculated, and for example,
0.75 is stored in the storage unit 17b.

【0081】なお、基準とする電圧は、光電変換素子1
4bのピーク電圧Eb以外の他の光電変換素子14a,
14cのピーク電圧Ea,Ecでもよいし、また各ピー
ク電圧の和(Ea+Eb+Ec)でもよい。要は、光電
変換素子14a,14b,14cのピーク電圧の絶対値
ではなく、基準電圧に対する各光電変換素子14a,1
4b,14cのピーク電圧の比(割合)から標準粒子に
よる散乱光LsのスポットSの位置を求める方が確度が
高いからである。
The reference voltage is the photoelectric conversion element 1
Photoelectric conversion elements 14a other than the peak voltage Eb of 4b,
The peak voltages Ea and Ec of 14c may be used, or the sum of the peak voltages (Ea + Eb + Ec) may be used. The point is that not the absolute value of the peak voltage of the photoelectric conversion elements 14a, 14b, 14c, but the photoelectric conversion elements 14a, 1 with respect to the reference voltage.
This is because it is more accurate to obtain the position of the spot S of the scattered light Ls by the standard particles from the ratio (ratio) of the peak voltages of 4b and 14c.

【0082】以上のような5通りの場合について、図1
3に示すように、基準電圧を光電変換素子14bのピー
ク電圧Ebとした場合の標準粒子による粒子情報参照テ
ーブルが作成できる。従って、光電変換素子14bのピ
ーク電圧Ebに対する光電変換素子14aのピーク電圧
Eaの比Ea/Ebと、光電変換素子14bのピーク電
圧Ebに対する光電変換素子14cのピーク電圧Ecの
比Ec/Ebが分かれば、それらに対応する出力電圧の
和(Ea+Eb+Ec)を得ることにより、レーザ光L
aが照射されている測定領域Mのレーザ光強度分布を定
性的に知ることができる。
FIG. 1 shows the above five cases.
As shown in FIG. 3, a particle information reference table by standard particles can be created when the reference voltage is the peak voltage Eb of the photoelectric conversion element 14b. Therefore, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 14a to the peak voltage Eb of the photoelectric conversion element 14b and the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 14c to the peak voltage Eb of the photoelectric conversion element 14b are separated. For example, by obtaining the sum (Ea + Eb + Ec) of the output voltages corresponding to them, the laser light L
It is possible to qualitatively know the laser light intensity distribution of the measurement region M irradiated with a.

【0083】また、上記した5通りの通過パターン以外
で、光電変換素子14aと光電変換素子14bの境界又
は光電変換素子14bと光電変換素子14cの境界にス
ポットSがまたがって現れるような測定領域Mの経路を
通過した場合であっても、光電変換素子14bのピーク
電圧Ebに対する光電変換素子14aのピーク電圧Ea
の比Ea/Ebと、光電変換素子14bのピーク電圧E
bに対する光電変換素子14cのピーク電圧Ecの比E
c/Ebが分かれば、比Ea/Ebの値と比Ec/Eb
の値を粒子情報参照テーブルに当てはめることにより、
それらに対応する出力電圧の和(Ea+Eb+Ec)を
推定し、レーザ光Laが照射されている測定領域Mのレ
ーザ光強度分布を定性的に知ることができる。
In addition to the above-described five passage patterns, the measurement area M in which the spot S appears across the boundary between the photoelectric conversion element 14a and the photoelectric conversion element 14b or the boundary between the photoelectric conversion element 14b and the photoelectric conversion element 14c. Even when the photoelectric conversion element 14a passes through the path of the peak voltage Ea of the photoelectric conversion element 14a with respect to the peak voltage Eb of the photoelectric conversion element 14b.
Ratio Ea / Eb and the peak voltage E of the photoelectric conversion element 14b
Ratio E of peak voltage Ec of photoelectric conversion element 14c to b
If c / Eb is known, the value of the ratio Ea / Eb and the ratio Ec / Eb
By applying the value of to the particle information lookup table,
The sum (Ea + Eb + Ec) of the output voltages corresponding to them can be estimated to qualitatively know the laser light intensity distribution of the measurement region M irradiated with the laser light La.

【0084】次に、標準粒子による粒子情報参照テーブ
ルを利用して粒径が未知な粒子を計数する場合について
説明する。粒径が未知の粒子が測定領域Mを通過し、ス
ポットSの位置が図5(a)に示す位置であるとする。
すると、光電変換素子14bのピーク電圧Ebに対する
光電変換素子14aのピーク電圧Eaの比Ea/Ebは
ほぼゼロ(Ea/Eb≒0)であり、光電変換素子14
bのピーク電圧Ebに対する光電変換素子14cのピー
ク電圧Ecの比Ec/Ebもほぼゼロ(Ec/Eb≒
0)となる。そして、光電変換素子14a,14b,1
4cの出力電圧Ea,Eb,Ecの和(Ea+Eb+E
c)が、0.2であるとする。
Next, description will be made regarding the case of counting particles of unknown particle size by using the particle information reference table based on standard particles. It is assumed that particles of unknown particle size pass through the measurement area M and the position of the spot S is the position shown in FIG.
Then, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 14a to the peak voltage Eb of the photoelectric conversion element 14b is almost zero (Ea / Eb≈0).
The ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 14c to the peak voltage Eb of b is almost zero (Ec / Eb≈).
0). Then, the photoelectric conversion elements 14a, 14b, 1
4c sum of output voltages Ea, Eb, Ec (Ea + Eb + E
Let c) be 0.2.

【0085】このとき、正規化手段5は、図13に示す
粒子情報参照テーブルからピーク値検出手段16a,1
6b,16cの出力電圧Ea,Eb,Ecの和(Ea+
Eb+Ec)を読み込み、現在得られているピーク値検
出手段16a,16b,16cの出力電圧Ea,Eb,
Ecの和(Ea+Eb+Ec)に補正計数kを乗じる。
この補正計数kは、1を該当する粒子情報参照テーブル
のピーク値検出手段16a,16b,16cの出力電圧
Ea,Eb,Ecの和(Ea+Eb+Ec)で除した値
(1/(Ea+Eb+Ec))である。
At this time, the normalizing means 5 determines the peak value detecting means 16a, 1 from the particle information reference table shown in FIG.
Sum of output voltages Ea, Eb, Ec of 6b, 16c (Ea +
Eb + Ec) is read and the output voltage Ea, Eb, of the peak value detecting means 16a, 16b, 16c currently obtained is read.
The sum of Ec (Ea + Eb + Ec) is multiplied by the correction count k.
The correction count k is a value (1 / (Ea + Eb + Ec)) obtained by dividing 1 by the sum (Ea + Eb + Ec) of the output voltages Ea, Eb, Ec of the peak value detecting means 16a, 16b, 16c of the corresponding particle information reference table. .

【0086】スポットSの位置が図5(a)に示す位置
の場合、該当する粒子情報参照テーブルのピーク値検出
手段16a,16b,16cの出力電圧Ea,Eb,E
cの和(Ea+Eb+Ec)は、1.0であるので、補
正計数kは、1(1/1.0)となり、正規化後のピー
ク値検出手段16a,16b,16cの出力電圧の和
は、0.2(0.2×1)のままである。これは粒径の
小さい粒子が図5(a)に示すスポットSの位置に対応
する測定領域Mを通過したこと意味する。
When the position of the spot S is the position shown in FIG. 5 (a), the output voltages Ea, Eb, E of the peak value detecting means 16a, 16b, 16c of the corresponding particle information reference table.
Since the sum of c (Ea + Eb + Ec) is 1.0, the correction count k becomes 1 (1 / 1.0), and the sum of the output voltages of the normalized peak value detecting means 16a, 16b, 16c is It remains 0.2 (0.2 × 1). This means that the particles having a small particle size have passed through the measurement region M corresponding to the position of the spot S shown in FIG.

【0087】次に、スポットSが図6(a)に示すよう
な位置に現れたとする。すると、光電変換素子14bの
ピーク電圧Ebに対する光電変換素子14aのピーク電
圧Eaの比Ea/Ebは非常に大きな値(Ea/Eb≒
∞)であり、光電変換素子14bのピーク電圧Ebに対
する光電変換素子14cのピーク電圧Ecの比Ec/E
bは約1(Ec/Eb≒1)となる。そして、光電変換
素子14a,14b,14cの出力電圧Ea,Eb,E
cの和(Ea+Eb+Ec)が、0.6であるとする。
Next, it is assumed that the spot S appears at the position shown in FIG. 6 (a). Then, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 14a to the peak voltage Eb of the photoelectric conversion element 14b is a very large value (Ea / Eb≈).
∞), which is the ratio Ec / E of the peak voltage Ec of the photoelectric conversion element 14c to the peak voltage Eb of the photoelectric conversion element 14b.
b becomes about 1 (Ec / Eb≈1). Then, output voltages Ea, Eb, E of the photoelectric conversion elements 14a, 14b, 14c
It is assumed that the sum of c (Ea + Eb + Ec) is 0.6.

【0088】このとき、正規化手段5は、図10に示す
粒子情報参照テーブルからピーク値検出手段16a,1
6b,16cの出力電圧Ea,Eb,Ecの和(Ea+
Eb+Ec)を読み込み、現在得られているピーク値検
出手段16a,16b,16cの出力電圧Ea,Eb,
Ecの和(Ea+Eb+Ec)に補正計数kを乗じる。
この補正計数kは、1を該当する粒子情報参照テーブル
のピーク値検出手段16a,16b,16cの出力電圧
Ea,Eb,Ecの和(Ea+Eb+Ec)で除した値
(1/(Ea+Eb+Ec))である。
At this time, the normalizing means 5 uses the particle information reference table shown in FIG.
Sum of output voltages Ea, Eb, Ec of 6b, 16c (Ea +
Eb + Ec) is read and the output voltage Ea, Eb, of the peak value detecting means 16a, 16b, 16c currently obtained is read.
The sum of Ec (Ea + Eb + Ec) is multiplied by the correction count k.
The correction count k is a value (1 / (Ea + Eb + Ec)) obtained by dividing 1 by the sum (Ea + Eb + Ec) of the output voltages Ea, Eb, Ec of the peak value detecting means 16a, 16b, 16c of the corresponding particle information reference table. .

【0089】スポットSが図6(a)に示すような位置
の場合、該当する粒子情報参照テーブルのピーク値検出
手段16a,16b,16cの出力電圧Ea,Eb,E
cの和(Ea+Eb+Ec)は、0.2であるので、補
正計数kは、5(1/0.2)となり、正規化後のピー
ク値検出手段16a,16b,16cの出力電圧の和
は、3.0(0.6×5)に正規化される。
When the spot S is at the position shown in FIG. 6A, the output voltages Ea, Eb, E of the peak value detecting means 16a, 16b, 16c of the corresponding particle information reference table are displayed.
Since the sum of c (Ea + Eb + Ec) is 0.2, the correction count k becomes 5 (1 / 0.2), and the sum of the output voltages of the normalized peak value detecting means 16a, 16b, 16c is It is normalized to 3.0 (0.6 × 5).

【0090】以上説明したように、正規化手段5は、測
定対象の粒子がレーザ光強度の低い測定領域Mを通過し
たとしても、予め作成しておいた標準粒子の粒子情報参
照テーブルにより、現在得られているピーク値検出手段
16a,16b,16cの出力電圧Ea,Eb,Ecの
和(Ea+Eb+Ec)に、補正計数kを乗ずることに
よって、測定対象の粒子がレーザ光強度の高い領域を通
過したものとする。
As described above, the normalizing means 5 uses the particle information reference table of the standard particles prepared in advance, even if the particles to be measured have passed through the measurement region M of low laser light intensity. By multiplying the sum (Ea + Eb + Ec) of the output voltages Ea, Eb, and Ec of the obtained peak value detecting means 16a, 16b, and 16c by the correction count k, the particles to be measured have passed through the region where the laser light intensity is high. I shall.

【0091】次いで、正規化手段5の出力信号((Ea
+Eb+Ec)×k)は、弁別手段6において、設定電
圧Erと比較され、設定電圧Erより大きい場合((E
a+Eb+Ec)×k>Er)には、弁別手段6は1個
の粒子に対し1個のパルス信号を出力する。すると、計
数手段7によって、パルス信号のカウントが行われ、設
定電圧Erに相当する粒径より大きい粒子の個数が検出
できる。従って、粒子計数装置は、粒径を高精度に弁別
して粒子の個数をカウントすることができる。
Then, the output signal ((Ea
+ Eb + Ec) × k) is compared with the set voltage Er in the discrimination means 6 and is larger than the set voltage Er ((E
When a + Eb + Ec) × k> Er), the discriminating means 6 outputs one pulse signal for one particle. Then, the counting means 7 counts the pulse signal, and the number of particles larger than the particle diameter corresponding to the set voltage Er can be detected. Therefore, the particle counting device can discriminate the particle size with high accuracy and count the number of particles.

【0092】本発明の第3の実施の形態に係る粒子計数
装置は、図14に示すように、フローセル21、レーザ
光源22、集光光学系23、光検出手段24及び処理装
置25から成る。ここで、フローセル21、レーザ光源
22、集光光学系23は、図2に示すものと同様の構成
であるので説明は省略する。
As shown in FIG. 14, the particle counting device according to the third embodiment of the present invention comprises a flow cell 21, a laser light source 22, a condensing optical system 23, a light detecting means 24 and a processing device 25. Here, the flow cell 21, the laser light source 22, and the condensing optical system 23 have the same configurations as those shown in FIG.

【0093】光検出手段24は、縦(Y方向)と横(Z
方向)が3個×3個のマトリックス状の光電変換素子D
11,D12,D13,D21,……D33から成り、各受光面が
流路21aの中心軸(X方向)に垂直なY・Z平面を形
成している。
The light detecting means 24 has a vertical (Y direction) and a horizontal (Z direction).
Direction) 3 × 3 matrix photoelectric conversion elements D
11 , D 12 , D 13 , D 21 , ... D 33 , and each light-receiving surface forms a YZ plane perpendicular to the central axis (X direction) of the flow path 21a.

【0094】処理装置25は、3個×3個の光電変換素
子D11,D12,D13,D21,……D33の夫々の出力電圧
のピーク値E11,E12,E13,E21,……E33を検出す
るピーク値検出手段26a,26b,26cと、ピーク
値E11,E12,E13,E21,……E33から粒子の位置を
検出する粒子情報検出手段27と、正規化手段5と、弁
別手段6と、計数手段7から成る。
The processing device 25 includes the peak values E 11 , E 12 , E 13 , of the output voltages of the three photoelectric conversion elements D 11 , D 12 , D 13 , D 21 , ... D 33 . E 21 , ... E 33 peak value detecting means 26 a, 26 b, 26 c and particle information detecting means for detecting particle position from peak values E 11 , E 12 , E 13 , E 21 , ... E 33. 27, a normalizing means 5, a discriminating means 6, and a counting means 7.

【0095】ピーク値検出手段26aは光電変換素子D
11,D12,D13の出力電圧を時分割でサンプリングして
そのピーク値E11,E12,E13を検出し、ピーク値検出
手段26bは光電変換素子D21,D22,D23の出力電圧
を時分割でサンプリングしてそのピーク値E21,E22
23を検出し、ピーク値検出手段26cは光電変換素子
31,D32,D33の出力電圧を時分割でサンプリングし
てピーク値E31,E32,E33を検出する。
The peak value detecting means 26a is a photoelectric conversion element D.
The output voltages of 11 , D 12 and D 13 are sampled in a time division manner to detect their peak values E 11 , E 12 and E 13 , and the peak value detecting means 26b detects the photoelectric conversion elements D 21 , D 22 and D 23 . The output voltage is sampled in a time division manner and its peak values E 21 , E 22 ,
Detecting the E 23, a peak value detecting means 26c detects the photoelectric conversion element D 31, D 32, the peak value is sampled in a time division output voltage of the D 33 E 31, E 32, E 33.

【0096】なお、ピーク値検出手段を光電変換素子の
個数分設け、測定領域Mをある時間で通過する粒子の散
乱光Lsによる出力電圧を常時サンプリングしてピーク
値を検出してもよい。
It is also possible to provide the peak value detecting means for the number of photoelectric conversion elements and detect the peak value by constantly sampling the output voltage of the scattered light Ls of the particles passing through the measurement region M at a certain time.

【0097】粒子情報検出手段27は、演算部27aと
記憶部27bを備え、先ず演算部27aにおいて、ピー
ク値検出手段26a,26b,26cが検出したピーク
値E11,E12,E13,E21,……E33の中から一の電圧
(例えば、ピーク値E22)を選択し、この電圧を基準に
して他のピーク値との比(E11/E22、E12/E22
…)を演算し、その結果を記憶部27bに記憶する。更
に、演算部27aにおいて、ピーク値E11,E12
13,E21,……E33の和(E11+E12+E13+E21
……+E33)を演算し、例えば、1.0を記憶部27b
に記憶する。
The particle information detecting means 27 is provided with a computing section 27a and a storage section 27b. First, in the computing section 27a, the peak values E 11 , E 12 , E 13 , E detected by the peak value detecting means 26a, 26b, 26c are detected. 21 , ... One voltage (for example, peak value E 22 ) is selected from E 33 , and the ratio with other peak values based on this voltage (E 11 / E 22 , E 12 / E 22 ...
...) is calculated and the result is stored in the storage unit 27b. Further, in the calculation unit 27a, the peak values E 11 , E 12 ,
E 13, E 21, the sum of ...... E 33 (E 11 + E 12 + E 13 + E 21 +
... + E 33 ) is calculated, and for example, 1.0 is stored in the storage unit 27b.
Remember.

【0098】そして、図14に示すように、矢印Aの方
向から標準粒子(粒径が同一のもの)を多数含んだ流体
をフローセル21に流し込み、粒子情報検出手段27に
おいて、スポットSが、9個の光電変換素子D11
12,D13,D21,……D33のうち互いに隣接する部
位、例えば光電変換素子D11と光電変換素子D12の接す
る部位や、9個の光電変換素子D11,D12,D13
21,……D33のうち4個の光電変換素子のコーナ部が
接する部位、例えば4個の光電変換素子D11,D12,D
21,D22のコーナ部が接する部位に現れるような測定領
域Mの経路を通過した場合も考慮して、図13と同様な
標準粒子の粒子情報参照テーブルを作成する。
Then, as shown in FIG. 14, a fluid containing a large number of standard particles (having the same particle diameter) is flown into the flow cell 21 from the direction of arrow A, and the spot S becomes 9 in the particle information detecting means 27. Photoelectric conversion elements D 11 ,
D 12, D 13, D 21 , portions which are adjacent to each other among ...... D 33, such as site or in contact with the photoelectric conversion element D 11 and the photoelectric conversion element D 12, 9 pieces of photoelectric conversion elements D 11, D 12, D 13 ,
D 21 , ... D 33 is a portion where the corner portions of four photoelectric conversion elements are in contact, for example, four photoelectric conversion elements D 11 , D 12 , D
A particle information reference table similar to that of FIG. 13 is created in consideration of the case where the path of the measurement region M that appears at the portions where the corner portions of 21 and D 22 come into contact is passed.

【0099】また、演算部27aにおいて、ピーク値検
出手段26a,26b,26cが検出したピーク値
11,E12,E13,E21,……E33の中から最も大きい
ピーク値を選択し、その結果を記憶部27bに記憶して
もよい。
Further, the arithmetic unit 27a selects the largest peak value from the peak values E 11 , E 12 , E 13 , E 21 , ... E 33 detected by the peak value detecting means 26a, 26b, 26c. The result may be stored in the storage unit 27b.

【0100】以上のように構成した本発明の第3の実施
の形態に係る粒子計数装置の作用について説明する。図
14に示すように、矢印Aの方向から未知の粒子を含ん
だ流体をフローセル21に流し込む。このとき、測定領
域Mのどの位置を粒子が通過するかによって、光検出手
段24の光電変換素子D11,D12,D13,D21,……D
33の出力波形は様々なものとなる。
The operation of the particle counting device according to the third embodiment of the present invention constructed as above will be described. As shown in FIG. 14, a fluid containing unknown particles is poured into the flow cell 21 from the direction of arrow A. At this time, the photoelectric conversion elements D 11 , D 12 , D 13 , D 21 , ... D of the photo-detecting means 24 depend on which position of the measurement region M the particles pass through.
The output waveform of 33 is various.

【0101】例えば、粒子が光検出手段24の中で光電
変換素子D22の受光面に対応する測定領域Mの経路を通
過すると、ピーク値検出手段26a,26b,26cは
粒子が測定領域Mを通過する間、粒子の散乱光Lsに応
じた光電変換素子D11,D12,D13,D21,……D33
出力電圧をサンプリングしてピーク値を検出する。
For example, when the particles pass through the path of the measurement area M corresponding to the light receiving surface of the photoelectric conversion element D 22 in the light detection means 24, the peak value detection means 26a, 26b, 26c cause the particles to move in the measurement area M. While passing, the output voltage of the photoelectric conversion elements D 11 , D 12 , D 13 , D 21 , ... D 33 according to the scattered light Ls of the particles is sampled to detect the peak value.

【0102】この場合に、測定領域Mのレーザ光強度
は、中心部が最も強く、中心部からずれて端部に行くほ
ど弱くなるという分布(ほぼガウス分布)をしているの
で、粒子はレーザ光強度の弱い部分から中心部の強い部
分を通り再び弱い部分を通るため、光電変換素子D22
みが略パルス状の電圧を出力し、他の光電変換素子は、
ノイズに応じたレベル電圧しか出力しない。
In this case, the laser light intensity in the measurement region M has a distribution that the intensity is strongest in the central portion and weakens toward the end portion deviating from the central portion (almost Gaussian distribution). Since the light intensity weak portion passes through the strong central portion and the weak portion again, only the photoelectric conversion element D 22 outputs a substantially pulsed voltage, and the other photoelectric conversion elements are
Only the level voltage corresponding to the noise is output.

【0103】従って、光電変換素子D22のピーク値E22
を基準にした場合に、他のピーク値との比(E11
22、E12/E22……)が分かれば、粒子情報参照テー
ブルを参照することにより、レーザ光Laが照射されて
いる測定領域Mのレーザ光強度分布を定性的に知ること
ができる。
Therefore, the peak value E 22 of the photoelectric conversion element D 22 is
When compared with other peak values, the ratio (E 11 /
E 22, E 12 / E 22 ......) if is known, it can be known by referring to the particle information reference table, qualitatively the laser light intensity distribution in the measurement region M where the laser beam La is irradiated.

【0104】次に、標準粒子による粒子情報参照テーブ
ルを利用して粒径が未知な粒子を計数する場合について
は、図12に示す本発明の第2の実施の形態に係る粒子
計数装置と同様であるので説明は省略する。
Next, in the case of counting particles of unknown particle size using the particle information reference table based on standard particles, it is the same as the particle counting device according to the second embodiment of the present invention shown in FIG. Therefore, the description is omitted.

【0105】本発明の第4の実施の形態に係る粒子計数
装置は、図15に示すように構成されている。光強度分
布検出手段1は、フローセル31、レーザ光源32、集
光光学系33、光電変換素子アレイ34、ピーク値検出
手段36a,36b,36c及び粒子情報検出手段37
から構成される。粒子位置検出手段2は、フローセル3
1、レーザ光源32、集光光学系33、光電変換素子ア
レイ34、ピーク値検出手段36a,36b,36c及
び位置検出手段38から構成される。
The particle counting device according to the fourth embodiment of the present invention is constructed as shown in FIG. The light intensity distribution detecting means 1 includes a flow cell 31, a laser light source 32, a condensing optical system 33, a photoelectric conversion element array 34, peak value detecting means 36a, 36b, 36c and a particle information detecting means 37.
Composed of. The particle position detecting means 2 is a flow cell 3
1, a laser light source 32, a condensing optical system 33, a photoelectric conversion element array 34, peak value detecting means 36a, 36b, 36c, and a position detecting means 38.

【0106】散乱光検出手段3は、集光光学系33、光
電変換素子アレイ34、ピーク値検出手段36a,36
b,36c及び粒子情報検出手段37から構成される。
参照手段4は、粒子情報検出手段37により構成され
る。
The scattered light detecting means 3 comprises a condensing optical system 33, a photoelectric conversion element array 34, and peak value detecting means 36a, 36.
b, 36c and particle information detecting means 37.
The reference unit 4 is composed of a particle information detection unit 37.

【0107】フローセル31は、透明部材から成り、所
定長さの直線流路31a(Y方向)を有する。ここで
は、フローセル31の断面形状は角筒形状としている。
所定の長さの直線流路31aを設けた理由は、本発明の
第1の実施の形態に係る粒子計数装置のフローセル11
の場合と同様である。
The flow cell 31 is made of a transparent member and has a linear flow path 31a (Y direction) of a predetermined length. Here, the cross-sectional shape of the flow cell 31 is a rectangular tube shape.
The reason for providing the linear flow path 31a having a predetermined length is that the flow cell 11 of the particle counting device according to the first embodiment of the present invention.
It is similar to the case of.

【0108】レーザ光源32は、フローセル31の直線
流路31aの所定の箇所にレーザ光Laを照射して照射
領域を形成する。ここで、レーザ光Laの光軸(X方
向)と直線流路21a(Y方向)は交差している。
The laser light source 32 irradiates a predetermined portion of the linear flow path 31a of the flow cell 31 with the laser light La to form an irradiation area. Here, the optical axis (X direction) of the laser beam La and the linear flow path 21a (Y direction) intersect.

【0109】集光光学系33は、レーザ光源32の光軸
と一致する光軸(X方向)を有し、図12に示す照射領
域内の所定の領域M(以下、測定領域Mと呼ぶ)におい
て発生する散乱光Lsを集光する機能を備える。
The condensing optical system 33 has an optical axis (X direction) that coincides with the optical axis of the laser light source 32, and has a predetermined area M (hereinafter referred to as measurement area M) in the irradiation area shown in FIG. It has a function of condensing the scattered light Ls generated in.

【0110】光電変換素子アレイ34は、3個の光電変
換素子34a,34b,34cから成り、各受光面が集
光光学系33の光軸(X方向)に垂直で、且つ流路の中
心軸(Y方向)とレーザ光軸(X方向)に垂直なZ方向
に隣接して設けられている。光電変換素子34a,34
b,34cは、粒子が測定領域Mを通過する間に発する
散乱光Lsを電圧に変換する。
The photoelectric conversion element array 34 is composed of three photoelectric conversion elements 34a, 34b, 34c, each light-receiving surface is perpendicular to the optical axis (X direction) of the condensing optical system 33, and the central axis of the flow path. They are provided adjacent to each other in the Z direction perpendicular to the (Y direction) and the laser optical axis (X direction). Photoelectric conversion elements 34a, 34
b and 34c convert the scattered light Ls emitted while the particles pass through the measurement region M into a voltage.

【0111】集光光学系33の光軸上に位置するトラッ
プ30は、レーザ光源32の光源光Laが直接、光電変
換素子アレイ34に入射するのを阻止する。これによ
り、光電変換素子34には、流路31a内を通過する粒
子が発する散乱光Lsのみが入射することになる。
The trap 30 located on the optical axis of the condensing optical system 33 blocks the light source light La of the laser light source 32 from directly entering the photoelectric conversion element array 34. As a result, only the scattered light Ls emitted by the particles passing through the flow path 31a is incident on the photoelectric conversion element 34.

【0112】処理装置35は、粒子が測定領域Mを通過
する間に3個の光電変換素子34a,34b,34cが
夫々出力する電圧のピーク値(パルス高)Ea,Eb,
Ecを検出するピーク値検出手段36a,36b,36
cと、粒子情報参照テーブルを作成する粒子情報検出手
段37と位置検出手段38、正規化手段5、弁別手段6
及び計数手段7から成る。
The processing device 35 includes the peak values (pulse heights) Ea, Eb, of the voltages output by the three photoelectric conversion elements 34a, 34b, 34c while the particles pass through the measurement region M.
Peak value detecting means 36a, 36b, 36 for detecting Ec
c, particle information detection means 37 and position detection means 38 for creating a particle information reference table, normalization means 5, discrimination means 6
And counting means 7.

【0113】粒子情報検出手段37と位置検出手段38
は、ともに演算部37aと記憶部37bからなる。粒子
情報検出手段37と位置検出手段38では、先ず演算部
37aにおいて、下記の(1)と(2)の演算処理を行
い、その結果を記憶部37bに記憶し、更に粒子情報検
出手段37では、下記の(3)の演算処理も行い、その
結果を記憶部37bに記憶して、粒子情報参照テーブル
を作成する。
Particle information detecting means 37 and position detecting means 38
Are both composed of a calculation unit 37a and a storage unit 37b. In the particle information detecting means 37 and the position detecting means 38, first, in the calculating part 37a, the following calculation processes (1) and (2) are performed and the result is stored in the storing part 37b. The following calculation processing (3) is also performed, the result is stored in the storage unit 37b, and the particle information reference table is created.

【0114】(1)ピーク値検出手段36bの出力電圧
Ebに対するピーク値検出手段36aの出力電圧Eaの
比Ea/Ebを演算する。 (2)ピーク値検出手段36bの出力電圧Ebに対する
ピーク値検出手段36cの出力電圧Ecの比Ec/Eb
を演算する。 (3)ピーク値検出手段36a,36b,36cの出力
電圧Ea,Eb,Ecの和(Ea+Eb+Ec)を演算
する。
(1) The ratio Ea / Eb of the output voltage Ea of the peak value detecting means 36a to the output voltage Eb of the peak value detecting means 36b is calculated. (2) Ratio Ec / Eb of the output voltage Ec of the peak value detecting means 36c to the output voltage Eb of the peak value detecting means 36b.
Is calculated. (3) The sum (Ea + Eb + Ec) of the output voltages Ea, Eb, Ec of the peak value detecting means 36a, 36b, 36c is calculated.

【0115】従って、粒子情報検出手段37の機能は、
位置検出手段38の機能を全て包含することになる。
Therefore, the function of the particle information detecting means 37 is as follows.
All the functions of the position detecting means 38 are included.

【0116】正規化手段5は、予めフローセル31に標
準粒子を流して作成する粒子情報参照テーブルに基づい
て、測定対象となる未知の粒子から得られるピーク値検
出手段36a,36b,36cの出力電圧の和(Ea+
Eb+Ec)に補正計数kを乗じ、その電圧((Ea+
Eb+Ec)×k)を出力するものである。
The normalizing means 5 outputs the output voltage of the peak value detecting means 36a, 36b, 36c obtained from unknown particles to be measured, based on a particle information reference table created by flowing standard particles in the flow cell 31 in advance. Sum of (Ea +
Eb + Ec) is multiplied by the correction count k, and the voltage ((Ea +
Eb + Ec) × k) is output.

【0117】弁別手段6は、粒径の大きさを、設定自在
な設定電圧Erの大きさに対応させ、正規化手段5の出
力信号((Ea+Eb+Ec)×k)が設定電圧Erよ
りも大きい場合((Ea+Eb+Ec)×k>Er)
に、パルス信号を出力する。計数手段7は、弁別手段6
が出力するパルス信号の数をカウントし、そのカウント
数が粒子の個数となる。
The discriminating means 6 makes the size of the particle diameter correspond to the freely settable voltage Er, and the output signal ((Ea + Eb + Ec) × k) of the normalizing means 5 is larger than the set voltage Er. ((Ea + Eb + Ec) × k> Er)
Then, the pulse signal is output. The counting means 7 is the discrimination means 6
The number of pulse signals output by is counted, and the counted number is the number of particles.

【0118】以上のように構成した本発明の第4の実施
の形態に係る粒子計数装置の作用について説明する。図
15に示すように、矢印Aの方向から標準粒子(粒径が
同一のもの)を多数含んだ流体をフローセル31に流し
込む。このとき、測定領域Mのどの位置を粒子が通過す
るかによって、光電変換素子アレイ34の各光電変換素
子34a,34b,34c出力波形は様々なものとな
る。そして、3個の光電変換素子34a,34b,34
cから成る光電変換素子アレイ34の場合には、主な5
通りの通過パターンが考えられる。
The operation of the particle counting device according to the fourth embodiment of the present invention configured as above will be described. As shown in FIG. 15, a fluid containing a large number of standard particles (having the same particle size) is poured into the flow cell 31 from the direction of arrow A. At this time, the output waveforms of the photoelectric conversion elements 34a, 34b, 34c of the photoelectric conversion element array 34 vary depending on which position in the measurement region M the particles pass through. Then, the three photoelectric conversion elements 34a, 34b, 34
In the case of the photoelectric conversion element array 34 composed of
Street passage patterns are possible.

【0119】先ず、標準粒子が、図16に示す測定領域
Mの中心Mcを通過する場合で、標準粒子による散乱光
LsのスポットSは、図17(a)に示すように、光電
変換素子アレイ34の中央の光電変換素子34bのみに
現れ、矢印方向に移動する。このとき、各光電変換素子
34a,34b,34cの出力波形(時間tと電圧Eと
の関係)は、図17(b)に示すようになる。
First, when the standard particles pass through the center Mc of the measurement region M shown in FIG. 16, the spot S of the scattered light Ls by the standard particles shows the photoelectric conversion element array as shown in FIG. 17 (a). It appears only in the photoelectric conversion element 34b at the center of 34, and moves in the arrow direction. At this time, the output waveform of each photoelectric conversion element 34a, 34b, 34c (relationship between time t and voltage E) is as shown in FIG. 17 (b).

【0120】即ち、光電変換素子34bのみが測定領域
Mの中心Mcをある時間の間(時間t1から時間t2)に
通過する標準粒子の散乱光Lsに応じた略パルス状の電
圧(ピーク値Eb)を出力し、他の光電変換素子34
a,34cはノイズに応じた略レベル電圧(ピーク値E
a,Ec)しか出力しない。
That is, only the photoelectric conversion element 34b passes through the center Mc of the measurement region M for a certain time (time t1 to time t2) and has a substantially pulsed voltage (peak value Eb) corresponding to the scattered light Ls of the standard particles. ) Is output, and another photoelectric conversion element 34
a and 34c are substantially level voltages (peak value E corresponding to noise).
Only a, Ec) are output.

【0121】次に、標準粒子が、図16に示す測定領域
Mの一端部Msを通過する場合で、標準粒子による散乱
光LsのスポットSは、図18(a)に示すように、光
電変換素子アレイ34の一端の光電変換素子34aのみ
に現れ、矢印方向に移動する。このとき、各光電変換素
子34a,34b,34cの出力波形(時間tと電圧E
との関係)は、図18(b)に示すようになる。
Next, when the standard particles pass through one end Ms of the measurement area M shown in FIG. 16, the spot S of the scattered light Ls by the standard particles is photoelectrically converted as shown in FIG. 18 (a). It appears only in the photoelectric conversion element 34a at one end of the element array 34, and moves in the arrow direction. At this time, the output waveforms of the photoelectric conversion elements 34a, 34b, 34c (time t and voltage E
18) is as shown in FIG.

【0122】即ち、光電変換素子34aのみが測定領域
Mの一端部Msをある時間の間(時間t3から時間t4)
に通過する標準粒子の散乱光Lsに応じた略パルス状の
電圧(ピーク値Ea)を出力し、他の光電変換素子34
b,34cはノイズに応じた略レベル電圧(ピーク値E
b,Ec)しか出力しない。
That is, only the photoelectric conversion element 34a moves the one end Ms of the measurement region M for a certain time (time t3 to time t4).
Outputs a substantially pulsed voltage (peak value Ea) according to the scattered light Ls of the standard particles passing through the other photoelectric conversion element 34.
b and 34c are substantially level voltages (peak value E corresponding to noise)
b, Ec) only.

【0123】同様に、標準粒子が、図16に示す測定領
域Mの他端部Ms(一端部Msと対称の位置)を通過す
る場合で、標準粒子による散乱光LsのスポットSは、
図19(a)に示すように、光電変換素子アレイ34の
他端の光電変換素子34cのみに現れ、矢印方向に移動
する。このとき、各光電変換素子34a,34b,34
cの出力波形(時間tと電圧Eとの関係)は、図19
(b)に示すようになる。
Similarly, when the standard particle passes through the other end Ms (position symmetrical to the one end Ms) of the measurement area M shown in FIG. 16, the spot S of the scattered light Ls by the standard particle is
As shown in FIG. 19A, it appears only in the photoelectric conversion element 34c at the other end of the photoelectric conversion element array 34, and moves in the arrow direction. At this time, the photoelectric conversion elements 34a, 34b, 34
The output waveform of c (relationship between time t and voltage E) is shown in FIG.
As shown in (b).

【0124】即ち、光電変換素子34cのみが測定領域
Mの他端部Msをある時間の間(時間t3から時間t4)
に通過する標準粒子の散乱光Lsに応じた略パルス状の
電圧(ピーク値Ec)を出力し、他の光電変換素子34
a,34bはノイズに応じた略レベル電圧(ピーク値E
a,Eb)しか出力しない。
That is, only the photoelectric conversion element 34c moves the other end Ms of the measurement region M for a certain period of time (time t3 to time t4).
A substantially pulse-shaped voltage (peak value Ec) corresponding to the scattered light Ls of the standard particles passing through is output, and the other photoelectric conversion element 34 is output.
a and 34b are substantially level voltages (peak value E corresponding to noise).
Only a, Eb) are output.

【0125】更に、標準粒子が、図16に示す測定領域
Mの一経路Mmを通過する場合で、標準粒子による散乱
光LsのスポットSは、図20(a)に示すように、光
電変換素子34aと光電変換素子34bの境界にまたが
って現れ、矢印方向に移動する。このとき、各光電変換
素子34a,34b,34cの出力波形(時間tと電圧
Eとの関係)は、図20(b)に示すようになる。
Further, when the standard particles pass through one path Mm of the measurement region M shown in FIG. 16, the spot S of the scattered light Ls due to the standard particles is, as shown in FIG. It appears across the boundary between 34a and the photoelectric conversion element 34b, and moves in the direction of the arrow. At this time, the output waveform of each photoelectric conversion element 34a, 34b, 34c (relationship between time t and voltage E) is as shown in FIG.

【0126】即ち、光電変換素子34a,34bが測定
領域Mの一経路Mmをある時間の間(時間t5から時間
t6)に通過する標準粒子の散乱光Lsに応じた略パル
ス状の電圧(ピーク値Ea,Eb)を出力し、光電変換
素子34cはノイズに応じた略レベル電圧(ピーク値E
c)しか出力しない。
That is, the photoelectric conversion elements 34a and 34b pass through the one path Mm of the measurement region M for a certain time (time t5 to time t6) and have a substantially pulse-like voltage (peak) according to the scattered light Ls of the standard particles. The values Ea, Eb) are output, and the photoelectric conversion element 34c outputs a substantially level voltage (peak value E) corresponding to noise.
Only output c).

【0127】同様に、標準粒子が、図16に示す測定領
域Mの他経路Mm(一経路Mmと対称の位置)を通過す
る場合で、標準粒子による散乱光LsのスポットSは、
図21(a)に示すように、光電変換素子34bと光電
変換素子34cの境界に均等にまたがって現れ、矢印方
向に移動する。このとき、各光電変換素子34a,34
b,34cの出力波形(時間tと電圧Eとの関係)は、
図21(b)に示すようになる。
Similarly, when the standard particles pass the other path Mm of the measurement region M shown in FIG. 16 (a position symmetrical to the one path Mm), the spot S of the scattered light Ls by the standard particles is
As shown in FIG. 21 (a), the photoelectric conversion element 34b and the photoelectric conversion element 34c appear evenly over the boundary and move in the arrow direction. At this time, the photoelectric conversion elements 34a, 34
The output waveforms of b and 34c (relationship between time t and voltage E) are
It becomes as shown in FIG.

【0128】即ち、光電変換素子34b,34cが測定
領域Mの他経路Mmをある時間の間(時間t5から時間
t6)に通過する標準粒子の散乱光Lsに応じた略パル
ス状の電圧(ピーク値Eb,Ec)を出力し、光電変換
素子34aはノイズに応じた略レベル電圧(ピーク値E
a)しか出力しない。
That is, the photoelectric conversion elements 34b and 34c pass through the other path Mm of the measurement region M for a certain time (time t5 to time t6) in accordance with the scattered light Ls of the standard particles and have a substantially pulse-like voltage (peak The values Eb, Ec) are output, and the photoelectric conversion element 34a outputs a substantially level voltage (peak value E) corresponding to noise.
Only a) is output.

【0129】そして、粒子情報検出手段37では、図1
7(a)に示すように、中央の光電変換素子34bのみ
にスポットSが現れた場合、演算部37aにおいて、光
電変換素子34bのピーク電圧Ebに対する光電変換素
子34aのピーク電圧Eaの比Ea/Ebを演算し、E
a<Ebであるから、比Ea/Ebとしてほぼゼロ(E
a/Eb≒0)の値を出力し、記憶部37bに記憶す
る。
In the particle information detecting means 37, as shown in FIG.
As shown in 7 (a), when the spot S appears only in the central photoelectric conversion element 34b, the ratio Ea / of the peak voltage Ea of the photoelectric conversion element 34a to the peak voltage Eb of the photoelectric conversion element 34b in the calculation unit 37a. Eb is calculated and E
Since a <Eb, the ratio Ea / Eb is almost zero (E
The value of a / Eb≈0) is output and stored in the storage unit 37b.

【0130】また、演算部37aにおいて、光電変換素
子34bのピーク電圧Ebに対する光電変換素子34c
のピーク電圧Ecの比Ec/Ebを演算し、Ec<Eb
であるから、比Ec/Ebとしてほぼゼロ(Ec/Eb
≒0)の値を出力し、記憶部37bに記憶する。更に、
演算部37aにおいて、光電変換素子34a,34b,
34cの出力電圧Ea,Eb,Ecの和(Ea+Eb+
Ec)を演算し、例えば、1.0を記憶部37bに記憶
する。
In addition, in the calculation unit 37a, the photoelectric conversion element 34c for the peak voltage Eb of the photoelectric conversion element 34b.
Of the peak voltage Ec of Ec / Eb is calculated, and Ec <Eb
Therefore, the ratio Ec / Eb is almost zero (Ec / Eb
A value of ≈0) is output and stored in the storage unit 37b. Furthermore,
In the calculation unit 37a, the photoelectric conversion elements 34a, 34b,
Sum of output voltages Ea, Eb, Ec of 34c (Ea + Eb +
Ec) is calculated and, for example, 1.0 is stored in the storage unit 37b.

【0131】また、粒子情報検出手段37では、図18
(a)に示すように、一端の光電変換素子34aのみに
スポットSが現れた場合、演算部37aにおいて、光電
変換素子34bのピーク電圧Ebに対する光電変換素子
34aのピーク電圧Eaの比Ea/Ebを演算し、Ea
>Ebであるから、比Ea/Ebとして非常に大きい値
(Ea/Eb≒∞)を出力し、記憶部37bに記憶す
る。
Further, in the particle information detecting means 37, as shown in FIG.
As shown in (a), when the spot S appears only in the photoelectric conversion element 34a at one end, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 34a to the peak voltage Eb of the photoelectric conversion element 34b in the calculation unit 37a. To calculate Ea
Since> Eb, a very large value (Ea / Eb≈∞) as the ratio Ea / Eb is output and stored in the storage unit 37b.

【0132】同様に、光電変換素子34bのピーク電圧
Ebに対する光電変換素子34cのピーク電圧Ecの比
Ec/Ebを演算し、Ec≒Ebであるから、比Ec/
Ebとして約1(Ec/Eb≒1)の値を出力し、記憶
部37bに記憶する。更に、演算部37aにおいて、光
電変換素子34a,34b,34cの出力電圧Ea,E
b,Ecの和(Ea+Eb+Ec)を演算し、例えば、
0.2を記憶部27bに記憶する。
Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 34c to the peak voltage Eb of the photoelectric conversion element 34b is calculated. Since Ec≈Eb, the ratio Ec / Eb
A value of about 1 (Ec / Eb≈1) is output as Eb and stored in the storage unit 37b. Further, in the calculation unit 37a, the output voltages Ea, E of the photoelectric conversion elements 34a, 34b, 34c are
The sum of b and Ec (Ea + Eb + Ec) is calculated, and for example,
0.2 is stored in the storage unit 27b.

【0133】また、粒子情報検出手段37では、図19
(a)に示すように、他端の光電変換素子34cのみに
スポットSが現れた場合、演算部37aにおいて、光電
変換素子34bのピーク電圧Ebに対する光電変換素子
34aのピーク電圧Eaの比Ea/Ebを演算し、Ea
≒Ebであるから、比Ea/Ebとして約1(Ea/E
b≒1)の値を出力し、記憶部37bに記憶する。
Further, in the particle information detecting means 37, as shown in FIG.
As shown in (a), when the spot S appears only on the photoelectric conversion element 34c at the other end, the ratio Ea / of the peak voltage Ea of the photoelectric conversion element 34a to the peak voltage Eb of the photoelectric conversion element 34b is calculated in the calculation unit 37a. Eb is calculated and Ea
Since ≈Eb, the ratio Ea / Eb is about 1 (Ea / Eb
The value of b≈1) is output and stored in the storage unit 37b.

【0134】同様に、光電変換素子34bのピーク電圧
Ebに対する光電変換素子34cのピーク電圧Ecの比
Ec/Ebを演算し、Ec>Ebであるから、比Ec/
Ebとして非常に大きい値(Ec/Eb≒∞)を出力
し、記憶部37bに記憶する。更に、演算部37aにお
いて、光電変換素子34a,34b,34cの出力電圧
Ea,Eb,Ecの和(Ea+Eb+Ec)を演算し、
例えば、0.2を記憶部37bに記憶する。
Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 34c to the peak voltage Eb of the photoelectric conversion element 34b is calculated. Since Ec> Eb, the ratio Ec / Eb
A very large value (Ec / Eb≈∞) is output as Eb and stored in the storage unit 37b. Further, in the calculation unit 37a, the sum (Ea + Eb + Ec) of the output voltages Ea, Eb, Ec of the photoelectric conversion elements 34a, 34b, 34c is calculated,
For example, 0.2 is stored in the storage unit 37b.

【0135】次に、粒子情報検出手段37では、図20
(a)に示すように、光電変換素子34aと光電変換素
子34bの境界にスポットSがまたがって現れた場合、
演算部37aにおいて、光電変換素子34bのピーク電
圧Ebに対する光電変換素子34aのピーク電圧Eaの
比Ea/Ebを演算し、Ea≒Ebであるから、比Ea
/Ebとして約1(Ea/Eb≒1)の値を出力し、記
憶部37bに記憶する。
Next, in the particle information detecting means 37, as shown in FIG.
As shown in (a), when the spot S appears across the boundary between the photoelectric conversion elements 34a and 34b,
In the calculation unit 37a, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 34a to the peak voltage Eb of the photoelectric conversion element 34b is calculated, and since Ea≈Eb, the ratio Ea
A value of about 1 (Ea / Eb≈1) is output as / Eb and stored in the storage unit 37b.

【0136】同様に、光電変換素子34bのピーク電圧
Ebに対する光電変換素子34cのピーク電圧Ecの比
Ec/Ebを演算し、Ec<Ebであるから、比Ec/
Ebとしてほぼゼロ(Ec/Eb≒0)の値を出力し、
記憶部37bに記憶する。更に、演算部37aにおい
て、光電変換素子34a,34b,34cの出力電圧E
a,Eb,Ecの和(Ea+Eb+Ec)を演算し、例
えば、0.75を記憶部37bに記憶する。
Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 34c to the peak voltage Eb of the photoelectric conversion element 34b is calculated. Since Ec <Eb, the ratio Ec / Eb
A value of almost zero (Ec / Eb≈0) is output as Eb,
It is stored in the storage unit 37b. Further, in the arithmetic unit 37a, the output voltage E of the photoelectric conversion elements 34a, 34b, 34c is
The sum (Ea + Eb + Ec) of a, Eb, and Ec is calculated, and 0.75 is stored in the storage unit 37b, for example.

【0137】また、粒子情報検出手段37では、図21
(a)に示すように、光電変換素子34bと光電変換素
子34cの境界にスポットSがまたがって現れた場合、
演算部37aにおいて、光電変換素子34bのピーク電
圧Ebに対する光電変換素子34aのピーク電圧Eaの
比Ea/Ebを演算し、Ea<Ebであるから、比Ea
/Ebとしてほぼゼロ(Ea/Eb≒0)の値を出力
し、記憶部37bに記憶する。
Further, in the particle information detecting means 37, as shown in FIG.
As shown in (a), when the spot S appears across the boundary between the photoelectric conversion elements 34b and 34c,
The calculation unit 37a calculates the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 34a to the peak voltage Eb of the photoelectric conversion element 34b. Since Ea <Eb, the ratio Ea
A value of substantially zero (Ea / Eb≈0) is output as / Eb and stored in the storage unit 37b.

【0138】同様に、光電変換素子34bのピーク電圧
Ebに対する光電変換素子34cのピーク電圧Ecの比
Ec/Ebを演算し、Ec≒Ebであるから、比Ec/
Ebとして約1(Ec/Eb≒1)の値を出力し、記憶
部37bに記憶する。更に、演算部37aにおいて、光
電変換素子34a,34b,34cの出力電圧Ea,E
b,Ecの和(Ea+Eb+Ec)を演算し、例えば、
0.75を記憶部37bに記憶する。
Similarly, the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 34c to the peak voltage Eb of the photoelectric conversion element 34b is calculated. Since Ec≈Eb, the ratio Ec / Eb
A value of about 1 (Ec / Eb≈1) is output as Eb and stored in the storage unit 37b. Further, in the calculation unit 37a, the output voltages Ea, E of the photoelectric conversion elements 34a, 34b, 34c are
The sum of b and Ec (Ea + Eb + Ec) is calculated, and for example,
0.75 is stored in the storage unit 37b.

【0139】なお、基準とする電圧は、光電変換素子3
4bのピーク電圧Eb以外の他の光電変換素子34a,
34cのピーク電圧Ea,Ecでもよいし、また各ピー
ク電圧の和(Ea+Eb+Ec)でもよい。要は、光電
変換素子34a,34b,34cのピーク電圧の絶対値
ではなく、基準電圧に対する各光電変換素子34a,3
4b,34cのピーク電圧の比(割合)から標準粒子に
よる散乱光LsのスポットSの位置を求める方が確度が
高いからである。
Incidentally, the reference voltage is the photoelectric conversion element 3
Photoelectric conversion elements 34a other than the peak voltage Eb of 4b,
The peak voltages Ea and Ec of 34c may be used, or the sum (Ea + Eb + Ec) of each peak voltage may be used. The point is not the absolute value of the peak voltage of the photoelectric conversion elements 34a, 34b, 34c, but the respective photoelectric conversion elements 34a, 3 with respect to the reference voltage.
This is because it is more accurate to obtain the position of the spot S of the scattered light Ls by the standard particles from the ratio (ratio) of the peak voltages of 4b and 34c.

【0140】以上のような5通りの場合について、図1
3に示す粒子情報参照テーブルと同様な、基準電圧を光
電変換素子34bのピーク電圧Ebとした場合の粒子情
報参照テーブルが作成できる。従って、光電変換素子3
4bのピーク電圧Ebに対する光電変換素子34aのピ
ーク電圧Eaの比Ea/Ebと、光電変換素子34bの
ピーク電圧Ebに対する光電変換素子34cのピーク電
圧Ecの比Ec/Ebが分かれば、それらに対応する出
力電圧の和(Ea+Eb+Ec)を得ることにより、レ
ーザ光Laが照射されている測定領域Mのレーザ光強度
分布を定性的に知ることができる。
FIG. 1 shows the above five cases.
Similar to the particle information reference table shown in FIG. 3, a particle information reference table when the reference voltage is the peak voltage Eb of the photoelectric conversion element 34b can be created. Therefore, the photoelectric conversion element 3
If the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 34a with respect to the peak voltage Eb of 4b and the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 34c with respect to the peak voltage Eb of the photoelectric conversion element 34b are known, they correspond to them. By obtaining the sum of the output voltages (Ea + Eb + Ec), the laser light intensity distribution of the measurement region M irradiated with the laser light La can be qualitatively known.

【0141】また、上記した5通りの通過パターン以外
で、光電変換素子34aと光電変換素子34bの境界又
は光電変換素子34bと光電変換素子34cの境界にス
ポットSがまたがって現れるような測定領域Mの経路を
通過した場合であっても、光電変換素子34bのピーク
電圧Ebに対する光電変換素子34aのピーク電圧Ea
の比Ea/Ebと、光電変換素子34bのピーク電圧E
bに対する光電変換素子34cのピーク電圧Ecの比E
c/Ebが分かれば、比Ea/Ebの値と比Ec/Eb
の値を粒子情報参照テーブルに当てはめることにより、
それらに対応する出力電圧の和(Ea+Eb+Ec)を
推定し、レーザ光Laが照射されている測定領域Mのレ
ーザ光強度分布を定性的に知ることができる。
In addition to the above-mentioned five passage patterns, the measurement area M where the spot S appears across the boundary between the photoelectric conversion element 34a and the photoelectric conversion element 34b or the boundary between the photoelectric conversion element 34b and the photoelectric conversion element 34c. Even when passing through the path of, the peak voltage Ea of the photoelectric conversion element 34a with respect to the peak voltage Eb of the photoelectric conversion element 34b.
Ratio Ea / Eb and the peak voltage E of the photoelectric conversion element 34b
Ratio E of peak voltage Ec of photoelectric conversion element 34c to b
If c / Eb is known, the value of the ratio Ea / Eb and the ratio Ec / Eb
By applying the value of to the particle information lookup table,
The sum (Ea + Eb + Ec) of the output voltages corresponding to them can be estimated to qualitatively know the laser light intensity distribution of the measurement region M irradiated with the laser light La.

【0142】次に、標準粒子による粒子情報参照テーブ
ルを利用して粒径が未知な粒子を計数する場合について
説明する。粒径が未知の粒子が測定領域Mを通過し、ス
ポットSの位置が図17(a)に示す位置であるとす
る。すると、光電変換素子34bのピーク電圧Ebに対
する光電変換素子34aのピーク電圧Eaの比Ea/E
bはほぼゼロ(Ea/Eb≒0)であり、光電変換素子
34bのピーク電圧Ebに対する光電変換素子34cの
ピーク電圧Ecの比Ec/Ebもほぼゼロ(Ec/Eb
≒0)となる。そして、光電変換素子14a,14b,
14cの出力電圧Ea,Eb,Ecの和(Ea+Eb+
Ec)が、0.2であるとする。
Next, description will be made regarding the case of counting particles of unknown particle size using the particle information reference table based on standard particles. It is assumed that particles of unknown particle size pass through the measurement area M and the position of the spot S is the position shown in FIG. Then, the ratio Ea / E of the peak voltage Ea of the photoelectric conversion element 34a to the peak voltage Eb of the photoelectric conversion element 34b.
b is substantially zero (Ea / Eb≈0), and the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 34c to the peak voltage Eb of the photoelectric conversion element 34b is also substantially zero (Ec / Eb).
≈0). Then, the photoelectric conversion elements 14a, 14b,
14c output voltage Ea, Eb, Ec sum (Ea + Eb +
Ec) is assumed to be 0.2.

【0143】このとき、正規化手段5は、図13に示す
粒子情報参照テーブルからピーク値検出手段36a,3
6b,36cの出力電圧Ea,Eb,Ecの和(Ea+
Eb+Ec)を読み込み、現在得られているピーク値検
出手段36a,36b,36cの出力電圧Ea,Eb,
Ecの和(Ea+Eb+Ec)に補正計数kを乗じる。
この補正計数kは、1を該当する粒子情報参照テーブル
のピーク値検出手段36a,36b,36cの出力電圧
Ea,Eb,Ecの和(Ea+Eb+Ec)で除した値
(1/(Ea+Eb+Ec))である。
At this time, the normalizing means 5 uses the particle information reference table shown in FIG. 13 to determine the peak value detecting means 36a, 36a.
Sum of output voltages Ea, Eb, Ec of 6b, 36c (Ea +
Eb + Ec) is read, and the output voltages Ea, Eb, of the peak value detecting means 36a, 36b, 36c currently obtained are read.
The sum of Ec (Ea + Eb + Ec) is multiplied by the correction count k.
The correction count k is a value (1 / (Ea + Eb + Ec)) obtained by dividing 1 by the sum (Ea + Eb + Ec) of the output voltages Ea, Eb, Ec of the peak value detecting means 36a, 36b, 36c of the corresponding particle information reference table. .

【0144】スポットSの位置が図17(a)に示す位
置の場合、該当する粒子情報参照テーブルのピーク値検
出手段36a,36b,36cの出力電圧Ea,Eb,
Ecの和(Ea+Eb+Ec)は、1.0であるので、
補正計数kは、1(1/1.0)となり、正規化後のピ
ーク値検出手段36a,36b,36cの出力電圧の和
は、0.2(0.2×1)のままである。これは粒径の
小さい粒子が図17(a)に示すスポットSの位置に対
応する測定領域Mを通過したこと意味する。
When the position of the spot S is the position shown in FIG. 17A, the output voltages Ea, Eb, Eb, Eb, Ec of the peak value detecting means 36a, 36b, 36c of the corresponding particle information reference table.
Since the sum of Ec (Ea + Eb + Ec) is 1.0,
The correction count k becomes 1 (1 / 1.0), and the sum of the output voltages of the normalized peak value detecting means 36a, 36b, 36c remains 0.2 (0.2 × 1). This means that particles having a small particle size have passed the measurement region M corresponding to the position of the spot S shown in FIG.

【0145】次に、スポットSが図18(a)に示すよ
うな位置に現れたとする。すると、光電変換素子34b
のピーク電圧Ebに対する光電変換素子34aのピーク
電圧Eaの比Ea/Ebは非常に大きな値(Ea/Eb
≒∞)であり、光電変換素子34bのピーク電圧Ebに
対する光電変換素子34cのピーク電圧Ecの比Ec/
Ebは約1(Ec/Eb≒1)となる。そして、光電変
換素子34a,34b,34cの出力電圧Ea,Eb,
Ecの和(Ea+Eb+Ec)が、0.6であるとす
る。
Next, it is assumed that the spot S appears at the position shown in FIG. Then, the photoelectric conversion element 34b
The ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 34a to the peak voltage Eb of Ea / Eb is very large (Ea / Eb
≈∞), and the ratio Ec / of the peak voltage Ec of the photoelectric conversion element 34c to the peak voltage Eb of the photoelectric conversion element 34b.
Eb is about 1 (Ec / Eb≈1). Then, the output voltages Ea, Eb of the photoelectric conversion elements 34a, 34b, 34c,
It is assumed that the sum of Ec (Ea + Eb + Ec) is 0.6.

【0146】このとき、正規化手段5は、図13に示す
粒子情報参照テーブルからピーク値検出手段36a,3
6b,36cの出力電圧Ea,Eb,Ecの和(Ea+
Eb+Ec)を読み込み、現在得られているピーク値検
出手段36a,36b,36cの出力電圧Ea,Eb,
Ecの和(Ea+Eb+Ec)に補正計数kを乗じる。
この補正計数kは、1を該当する粒子情報参照テーブル
のピーク値検出手段36a,36b,36cの出力電圧
Ea,Eb,Ecの和(Ea+Eb+Ec)で除した値
(1/(Ea+Eb+Ec))である。
At this time, the normalizing means 5 uses the particle information reference table shown in FIG. 13 to determine the peak value detecting means 36a, 36a.
Sum of output voltages Ea, Eb, Ec of 6b, 36c (Ea +
Eb + Ec) is read, and the output voltages Ea, Eb, of the peak value detecting means 36a, 36b, 36c currently obtained are read.
The sum of Ec (Ea + Eb + Ec) is multiplied by the correction count k.
The correction count k is a value (1 / (Ea + Eb + Ec)) obtained by dividing 1 by the sum (Ea + Eb + Ec) of the output voltages Ea, Eb, Ec of the peak value detecting means 36a, 36b, 36c of the corresponding particle information reference table. .

【0147】スポットSが図18(a)に示すような位
置の場合、該当する粒子情報参照テーブルのピーク値検
出手段36a,36b,36cの出力電圧Ea,Eb,
Ecの和(Ea+Eb+Ec)は、0.2であるので、
補正計数kは、5(1/0.2)となり、正規化後のピ
ーク値検出手段36a,36b,36cの出力電圧の和
は、3.0(0.6×5)に正規化される。
When the spot S is at the position shown in FIG. 18A, the output voltages Ea, Eb, Eb, Eb, Ec of the peak value detecting means 36a, 36b, 36c of the corresponding particle information reference table are shown.
Since the sum of Ec (Ea + Eb + Ec) is 0.2,
The correction count k becomes 5 (1 / 0.2), and the sum of the output voltages of the peak value detecting means 36a, 36b, 36c after normalization is normalized to 3.0 (0.6 × 5). .

【0148】以上説明したように、正規化手段5は、測
定対象の粒子がレーザ光強度の低い測定領域Mを通過し
たとしても、予め作成しておいた標準粒子の粒子情報参
照テーブルにより、現在得られているピーク値検出手段
36a,36b,36cの出力電圧Ea,Eb,Ecの
和(Ea+Eb+Ec)に、補正計数kを乗ずることに
よって、測定対象の粒子がレーザ光強度の高い領域を通
過したものとする。
As described above, the normalizing means 5 uses the particle information reference table of the standard particles prepared in advance, even if the particles to be measured pass through the measurement region M having a low laser light intensity. By multiplying the sum (Ea + Eb + Ec) of the output voltages Ea, Eb, Ec of the obtained peak value detecting means 36a, 36b, 36c by the correction count k, the particles to be measured have passed through the region where the laser light intensity is high. I shall.

【0149】次いで、正規化手段5の出力信号((Ea
+Eb+Ec)×k)は、弁別手段6において、設定電
圧Erと比較され、設定電圧Erより大きい場合((E
a+Eb+Ec)×k>Er)には、弁別手段6は1個
の粒子に対し1個のパルス信号を出力する。すると、計
数手段7によって、パルス信号のカウントが行われ、設
定電圧Erに相当する粒径より大きい粒子の個数が検出
できる。従って、粒子計数装置は、粒径を高精度に弁別
して粒子の個数をカウントすることができる。
Then, the output signal ((Ea
+ Eb + Ec) × k) is compared with the set voltage Er in the discrimination means 6 and is larger than the set voltage Er ((E
When a + Eb + Ec) × k> Er), the discriminating means 6 outputs one pulse signal for one particle. Then, the counting means 7 counts the pulse signal, and the number of particles larger than the particle diameter corresponding to the set voltage Er can be detected. Therefore, the particle counting device can discriminate the particle size with high accuracy and count the number of particles.

【0150】本発明は、上述の発明の実施の形態に限定
されるものではなく、例えば、フローセルの全体形状と
しては、L型のフローセル11,21や直線状のフロー
セル31を用いたが、要は流路の中心軸と集光光学系の
光軸が一致するように配置できる形状であればよい。従
って、レーザ光Laと散乱光Lsとの光学的な関わりに
影響を与えなければ、フローセルの全体形状は、屈曲又
は湾曲形状であってもよい。
The present invention is not limited to the above-described embodiments of the present invention. For example, as the overall shape of the flow cell, L-shaped flow cells 11 and 21 and linear flow cell 31 are used. May have a shape that can be arranged so that the central axis of the flow path and the optical axis of the condensing optical system coincide with each other. Therefore, the overall shape of the flow cell may be a bent or curved shape as long as it does not affect the optical relationship between the laser light La and the scattered light Ls.

【0151】また、フローセルの断面形状として、上述
の発明の実施の形態では、矩形のものを用いたが、円形
のものでもよい。
Although the flow cell has a rectangular cross section in the above-described embodiment of the invention, it may have a circular cross section.

【0152】[0152]

【発明の効果】以上説明したように請求項1に係る発明
によれば、粒子が通過する流路の位置を判別し、照射領
域のうち光強度の差が少ない中心部を通過する粒子のみ
を測定対象とするので、照射領域における光強度分布
が、一様でなくても、正確に粒径を弁別して粒子の個数
を計数することができる。
As described above, according to the invention of claim 1, the position of the flow path through which the particles pass is discriminated, and only the particles passing through the central portion of the irradiation region where the difference in light intensity is small are detected. Since the measurement target is used, even if the light intensity distribution in the irradiation region is not uniform, the particle size can be accurately discriminated and the number of particles can be counted.

【0153】請求項2に係る発明によれば、光を照射し
た測定領域を通過する粒子の散乱光強度分布とその粒子
が通過した流路の位置から、測定領域の光強度分布を知
ることができるので、測定領域における光強度分布が、
一様でなくても、正確に粒径を弁別して粒子の個数を計
数することができる。
According to the second aspect of the invention, the light intensity distribution of the measurement region can be known from the scattered light intensity distribution of the particles passing through the measurement region irradiated with light and the position of the flow path through which the particles pass. Therefore, the light intensity distribution in the measurement area is
Even if it is not uniform, it is possible to accurately discriminate the particle size and count the number of particles.

【0154】請求項3に係る発明によれば、光を照射し
た測定領域を通過する粒子の散乱光強度分布とその粒子
が通過した流路の位置から、測定領域の光強度分布を知
ることができるので、測定領域における光強度分布が、
一様でなくても、正確に粒径を弁別して粒子の個数を計
数することができる。
According to the third aspect of the invention, the light intensity distribution of the measurement region can be known from the scattered light intensity distribution of the particles passing through the measurement region irradiated with light and the position of the flow path through which the particles pass. Therefore, the light intensity distribution in the measurement area is
Even if it is not uniform, it is possible to accurately discriminate the particle size and count the number of particles.

【0155】請求項4に係る発明によれば、光を照射し
た測定領域を通過する粒子の散乱光強度分布とその粒子
が通過した流路の位置から、測定領域の光強度分布を知
ることができるので、測定領域における光強度分布が、
一様でなくても、正確に粒径を弁別して粒子の個数を計
数することができる。
According to the invention of claim 4, it is possible to know the light intensity distribution of the measurement region from the scattered light intensity distribution of the particles passing through the measurement region irradiated with light and the position of the flow path through which the particles pass. Therefore, the light intensity distribution in the measurement area is
Even if it is not uniform, it is possible to accurately discriminate the particle size and count the number of particles.

【0156】請求項5に係る発明によれば、光を照射し
た測定領域を通過する粒子の散乱光強度分布とその粒子
が通過した流路の位置から、測定領域の光強度分布を知
ることができるので、測定領域における光強度分布が、
一様でなくても、正確に粒径を弁別して粒子の個数を計
数することができる。
According to the invention of claim 5, the light intensity distribution of the measurement region can be known from the scattered light intensity distribution of particles passing through the measurement region irradiated with light and the position of the flow path through which the particles pass. Therefore, the light intensity distribution in the measurement area is
Even if it is not uniform, it is possible to accurately discriminate the particle size and count the number of particles.

【0157】請求項6に係る発明によれば、光を照射し
た測定領域を通過する粒子の散乱光強度分布とその粒子
が通過した流路の位置から、測定領域の光強度分布をよ
り細かく知ることができるので、測定領域における光強
度分布が、一様でなくても、正確に粒径を弁別して粒子
の個数を計数することができる。
According to the invention of claim 6, the light intensity distribution of the measurement region can be known more finely from the scattered light intensity distribution of the particles passing through the measurement region irradiated with light and the position of the flow path through which the particles pass. Therefore, even if the light intensity distribution in the measurement region is not uniform, the particle size can be accurately discriminated and the number of particles can be counted.

【0158】請求項7に係る発明によれば、光を照射し
た測定領域を通過する粒子の散乱光強度分布とその粒子
が通過した流路の位置から、測定領域の光強度分布を知
ることができるので、測定領域における光強度分布が、
一様でなくても、正確に粒径を弁別して粒子の個数を計
数することができる。
According to the invention of claim 7, the light intensity distribution of the measurement region can be known from the scattered light intensity distribution of the particles passing through the measurement region irradiated with light and the position of the flow path through which the particles pass. Therefore, the light intensity distribution in the measurement area is
Even if it is not uniform, it is possible to accurately discriminate the particle size and count the number of particles.

【0159】請求項8に係る発明によれば、光を照射し
た測定領域を通過する粒子の散乱光強度分布とその粒子
が通過した流路の位置から、測定領域の光強度分布を知
ることができるので、測定領域における光強度分布が、
一様でなくても、正確に粒径を弁別して粒子の個数を計
数することができる。
According to the invention of claim 8, the light intensity distribution of the measurement region can be known from the scattered light intensity distribution of the particles passing through the measurement region irradiated with light and the position of the flow path through which the particles pass. Therefore, the light intensity distribution in the measurement area is
Even if it is not uniform, it is possible to accurately discriminate the particle size and count the number of particles.

【0160】請求項9に係る発明によれば、光を照射し
た測定領域を通過する粒子の散乱光強度分布とその粒子
が通過した流路の位置から、測定領域の光強度分布を知
ることができるので、測定領域における光強度分布が、
一様でなくても、正確に粒径を弁別して粒子の個数を計
数することができる。
According to the invention of claim 9, the light intensity distribution of the measurement region can be known from the scattered light intensity distribution of the particles passing through the measurement region irradiated with light and the position of the flow path through which the particles pass. Therefore, the light intensity distribution in the measurement area is
Even if it is not uniform, it is possible to accurately discriminate the particle size and count the number of particles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る粒子計数装置の概念構成図FIG. 1 is a conceptual configuration diagram of a particle counting device according to the present invention.

【図2】本発明の第1の実施の形態に係る粒子計数装置
の構成図
FIG. 2 is a configuration diagram of a particle counting device according to a first embodiment of the present invention.

【図3】図2におけるレーザ光を照射した測定領域の平
断面図
FIG. 3 is a plan sectional view of a measurement region irradiated with laser light in FIG.

【図4】図2におけるレーザ光を照射した測定領域の縦
断面図
FIG. 4 is a vertical cross-sectional view of a measurement region irradiated with laser light in FIG.

【図5】図2における光電変換素子アレイの受光状態
(a)とそのときの出力波形(b)を示す図
5 is a diagram showing a light receiving state (a) of the photoelectric conversion element array in FIG. 2 and an output waveform (b) at that time.

【図6】図2における光電変換素子アレイの受光状態
(a)とそのときの出力波形(b)を示す図
6 is a diagram showing a light receiving state (a) of the photoelectric conversion element array in FIG. 2 and an output waveform (b) at that time.

【図7】図2における光電変換素子アレイの受光状態
(a)とそのときの出力波形(b)を示す図
7 is a diagram showing a light receiving state (a) of the photoelectric conversion element array in FIG. 2 and an output waveform (b) at that time.

【図8】図2における光電変換素子アレイの受光状態
(a)とそのときの出力波形(b)を示す図
8 is a diagram showing a light receiving state (a) of the photoelectric conversion element array in FIG. 2 and an output waveform (b) at that time.

【図9】図2における光電変換素子アレイの受光状態
(a)とそのときの出力波形(b)を示す図
9 is a diagram showing a light receiving state (a) of the photoelectric conversion element array in FIG. 2 and an output waveform (b) at that time.

【図10】粒子情報参照テーブルを示す図FIG. 10 is a diagram showing a particle information reference table.

【図11】本発明に係る粒子計数装置の概念構成図FIG. 11 is a conceptual configuration diagram of a particle counting device according to the present invention.

【図12】本発明の第2の実施の形態に係る粒子計数装
置の構成図
FIG. 12 is a configuration diagram of a particle counting device according to a second embodiment of the present invention.

【図13】粒子情報参照テーブルを示す図FIG. 13 is a diagram showing a particle information reference table.

【図14】本発明の第3の実施の形態に係る粒子計数装
置の構成図
FIG. 14 is a configuration diagram of a particle counting device according to a third embodiment of the present invention.

【図15】本発明の第4の実施の形態に係る粒子計数装
置の構成図
FIG. 15 is a configuration diagram of a particle counting device according to a fourth embodiment of the present invention.

【図16】図15におけるレーザ光を照射した測定領域
の縦断面図
16 is a vertical cross-sectional view of the measurement region irradiated with laser light in FIG.

【図17】図15における光電変換素子アレイの受光状
態(a)とそのときの出力波形(b)を示す図
17 is a diagram showing a light receiving state (a) of the photoelectric conversion element array in FIG. 15 and an output waveform (b) at that time.

【図18】図15における光電変換素子アレイの受光状
態(a)とそのときの出力波形(b)を示す図
FIG. 18 is a diagram showing a light receiving state (a) of the photoelectric conversion element array in FIG. 15 and an output waveform (b) at that time.

【図19】図15における光電変換素子アレイの受光状
態(a)とそのときの出力波形(b)を示す図
19 is a diagram showing a light receiving state (a) of the photoelectric conversion element array in FIG. 15 and an output waveform (b) at that time.

【図20】図15における光電変換素子アレイの受光状
態(a)とそのときの出力波形(b)を示す図
20 is a diagram showing a light receiving state (a) of the photoelectric conversion element array in FIG. 15 and an output waveform (b) at that time.

【図21】図15における光電変換素子アレイの受光状
態(a)とそのときの出力波形(b)を示す図
21 is a diagram showing a light receiving state (a) of the photoelectric conversion element array in FIG. 15 and an output waveform (b) at that time.

【図22】従来の光散乱式粒子計数装置の構成図FIG. 22 is a configuration diagram of a conventional light scattering type particle counting device.

【符号の説明】[Explanation of symbols]

1…光強度分布検出手段、2…粒子位置検出手段、3…
散乱光検出手段、4…参照手段、5…正規化手段、6…
弁別手段、7…計数手段、8…判別手段、11,21,
31…フローセル、11a,21a,31a…直線流
路、12,22,32…レーザ光源(光源)、13,2
3,33…集光光学系、14,34…光電変換素子アレ
イ、14a,14b,14c,34a,34b,34c
…光電変換素子、15,25,35…処理装置、16
a,16b,16c,26a,26b,26c,36
a,36b,36c…ピーク値検出手段、17,27,
37…粒子情報検出手段、18,28,38…位置検出
手段、24…光検出手段、30…トラップ、La…レー
ザ光、Ls…散乱光、M…測定領域。
1 ... Light intensity distribution detecting means, 2 ... Particle position detecting means, 3 ...
Scattered light detection means, 4 ... Reference means, 5 ... Normalization means, 6 ...
Discrimination means, 7 ... Counting means, 8 ... Discrimination means 11, 21, 21
31 ... Flow cell, 11a, 21a, 31a ... Linear flow path, 12, 22, 32 ... Laser light source (light source), 13, 2
3, 33 ... Condensing optical system, 14, 34 ... Photoelectric conversion element array, 14a, 14b, 14c, 34a, 34b, 34c
... Photoelectric conversion element, 15, 25, 35 ... Processing device, 16
a, 16b, 16c, 26a, 26b, 26c, 36
a, 36b, 36c ... Peak value detecting means, 17, 27,
37 ... Particle information detecting means, 18, 28, 38 ... Position detecting means, 24 ... Photodetecting means, 30 ... Trap, La ... Laser light, Ls ... Scattered light, M ... Measuring area.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01N 15/14 G01N 15/02 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) G01N 15/14 G01N 15/02

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 光の照射領域を通過する粒子の通過位置
を検出する粒子位置検出手段と、前記粒子が発する散乱
光の強度を検出する散乱光検出手段と、前記粒子位置検
出手段の出力信号が前記照射領域の所定範囲内であるか
否かを判断すると共に、前記散乱光検出手段の出力信号
が所定値以上であるか否かを判断し、前記所定範囲内で
且つ所定値以上の場合にパルス信号を出力する判別手段
と、この判別手段が出力するパルス信号をカウントする
計数手段を備えることを特徴とする粒子計数装置。
1. A particle position detecting means for detecting a passage position of a particle passing through a light irradiation area, a scattered light detecting means for detecting an intensity of scattered light emitted by the particle, and an output signal of the particle position detecting means. Is within a predetermined range of the irradiation area, and whether the output signal of the scattered light detecting means is a predetermined value or more, and within the predetermined range and a predetermined value or more A particle counting device, comprising: a discriminating means for outputting a pulse signal to the first and a counting means for counting the pulse signal output by the discriminating means.
【請求項2】 光を照射する測定領域の光強度分布を検
出する光強度分布検出手段と、前記測定領域を通過する
粒子の通過位置を検出する粒子位置検出手段と、前記粒
子が発する散乱光の強度を検出する散乱光検出手段と、
標準粒子を使用して前記光強度分布検出手段の出力信号
をテーブルとした粒子情報参照テーブルと前記粒子位置
検出手段の出力信号に基づいて前記粒子の散乱光強度の
補正値を算出する参照手段と、前記補正値に基づいて前
記散乱光検出手段の出力信号を補正する正規化手段と、
この正規化手段の出力信号が所定値以上のときにパルス
信号を出力する弁別手段と、この弁別手段が出力するパ
ルス信号をカウントする計数手段を備えることを特徴と
する粒子計数装置。
2. A light intensity distribution detecting means for detecting a light intensity distribution of a measurement area for irradiating light, a particle position detecting means for detecting a passage position of a particle passing through the measurement area, and a scattered light emitted by the particle. Scattered light detection means for detecting the intensity of
Output signal of the light intensity distribution detecting means using standard particles
Reference table for calculating a correction value of scattered light intensity of the particles based on an output signal of the particle position reference means and a particle information reference table, and an output signal of the scattered light detection means based on the correction value. Normalizing means for correcting
A particle counting device comprising: a discriminating means for outputting a pulse signal when the output signal of the normalizing means is equal to or more than a predetermined value; and a counting means for counting the pulse signal output by the discriminating means.
【請求項3】 前記光強度分布検出手段は、透明部材で
屈曲形状に形成したフローセルと、このフローセルの流
路に光を照射して測定領域を形成する光源と、前記流路
の中心軸と一致する光軸を有して前記測定領域で発生す
る粒子の散乱光を集光する集光手段と、この集光手段が
集光した散乱光を受光する複数の光電変換素子から成る
光検出手段と、前記複数の光電変換素子の出力信号を検
出する電圧検出手段と、この電圧検出手段の出力信号を
互いに比較して粒子が通過した前記測定領域の通過位置
データと粒子の散乱光強度データを出力する粒子情報検
出手段を備える請求項2記載の粒子計数装置。
3. The light intensity distribution detection means includes a flow cell formed of a transparent member in a bent shape, a light source that irradiates light to a flow path of the flow cell to form a measurement region, and a central axis of the flow path. Light detecting means comprising a condensing means for condensing scattered light of particles generated in the measurement region with coincident optical axes, and a plurality of photoelectric conversion elements for receiving the scattered light condensed by the condensing means. A voltage detecting means for detecting the output signals of the plurality of photoelectric conversion elements, and comparing the output signals of the voltage detecting means with each other, the passing position data of the measurement region where the particles have passed and the scattered light intensity data of the particles. The particle counting device according to claim 2, further comprising particle information detecting means for outputting.
【請求項4】 前記粒子位置検出手段は、透明部材で屈
曲形状に形成したフローセルと、このフローセルの流路
に光を照射して測定領域を形成する光源と、前記流路の
中心軸と一致する光軸を有して前記測定領域で発生する
粒子の散乱光を集光する集光手段と、この集光手段が集
光した散乱光を受光する複数の光電変換素子から成る光
検出手段と、前記複数の光電変換素子の出力信号を検出
する電圧検出手段と、この電圧検出手段の出力信号を互
いに比較して粒子が通過した前記測定領域の通過位置デ
ータを出力する位置検出手段を備える請求項1、請求項
2又は請求項3記載の粒子計数装置。
4. The particle position detecting means includes a flow cell formed of a transparent member in a bent shape, a light source for irradiating light to a flow path of the flow cell to form a measurement region, and a central axis of the flow path. A condensing means for condensing scattered light of particles generated in the measurement region having an optical axis, and a light detecting means comprising a plurality of photoelectric conversion elements for receiving the scattered light condensed by the condensing means. And a voltage detecting means for detecting output signals of the plurality of photoelectric conversion elements, and position detecting means for comparing output signals of the voltage detecting means with each other and outputting passage position data of the measurement region where particles have passed. The particle counting device according to claim 1, claim 2 or claim 3.
【請求項5】 前記複数の光電変換素子から成る光検出
手段は、各受光面が前記流路の中心軸に垂直で、且つ前
記流路の中心軸と前記光源の光軸にほぼ垂直な方向に隣
接して設けたN(Nは2以上の整数)個の光電変換素子
から成る光電変換素子アレイである請求項3又は請求項
4記載の粒子計数装置。
5. The light detecting means including the plurality of photoelectric conversion elements has a direction in which each light receiving surface is perpendicular to a central axis of the flow path and substantially perpendicular to a central axis of the flow path and an optical axis of the light source. The particle counting device according to claim 3 or 4, which is a photoelectric conversion element array including N (N is an integer of 2 or more) photoelectric conversion elements provided adjacent to each other.
【請求項6】 前記複数の光電変換素子から成る光検出
手段は、縦と横がV個×H個(V、Hとも2以上の整
数)の光電変換素子から成り、各受光面が前記流路の中
心軸に垂直である請求項3又は請求項4記載の粒子計数
装置。
6. The photo-detecting means composed of the plurality of photoelectric conversion elements is composed of V × H (vertical and horizontal) photoelectric conversion elements in the vertical and horizontal directions (both V and H are integers of 2 or more), and each light receiving surface is the above-mentioned light-receiving surface. A particle counter according to claim 3 or 4, which is perpendicular to the central axis of the path.
【請求項7】 前記光強度分布検出手段は、は、透明部
材で形成したフローセルと、このフローセルの流路に光
を照射して測定領域を形成する光源と、前記光の中心軸
と一致する光軸を有して前記測定領域で発生する粒子の
散乱光を集光する集光手段と、この集光手段の光軸上に
位置するトラップと、前記集光手段が集光した散乱光を
受光する複数の光電変換素子から成る光検出手段と、前
記複数の光電変換素子の出力信号を検出する電圧検出手
段と、この電圧検出手段の出力信号を互いに比較して粒
子が通過した前記測定領域の通過位置データと粒子の散
乱光強度データを出力する粒子情報検出手段を備える請
求項2記載の粒子計数装置。
7. The light intensity distribution detecting means includes a flow cell formed of a transparent member, a light source that irradiates a flow path of the flow cell with light to form a measurement region, and a central axis of the light. The light collecting means having an optical axis for collecting scattered light of particles generated in the measurement region, the trap located on the optical axis of the light collecting means, and the scattered light collected by the light collecting means Light detection means composed of a plurality of photoelectric conversion elements for receiving light, voltage detection means for detecting output signals of the plurality of photoelectric conversion elements, and the measurement area where particles have passed by comparing the output signals of the voltage detection means with each other. The particle counting device according to claim 2, further comprising particle information detecting means for outputting the passing position data of the particle and the scattered light intensity data of the particle.
【請求項8】 前記粒子位置検出手段は、透明部材で形
成したフローセルと、このフローセルの流路に光を照射
して測定領域を形成する光源と、前記光の中心軸と一致
する光軸を有して前記測定領域で発生する粒子の散乱光
を集光する集光手段と、この集光手段の光軸上に位置す
るトラップと、前記集光手段が集光した散乱光を受光す
る複数の光電変換素子から成る光検出手段と、前記複数
の光電変換素子の出力信号を検出する電圧検出手段と、
この電圧検出手段の出力信号を互いに比較して粒子が通
過した前記測定領域の通過位置データを出力する位置検
出手段を備える請求項1、請求項2又は請求項7記載の
粒子計数装置。
8. The particle position detecting means includes a flow cell formed of a transparent member, a light source that irradiates light to a flow path of the flow cell to form a measurement region, and an optical axis that coincides with a central axis of the light. Condensing means for collecting the scattered light of particles generated in the measurement region, a trap located on the optical axis of the condensing means, and a plurality of light receiving means for receiving the scattered light collected by the collecting means. Photodetection means comprising a photoelectric conversion element of, and voltage detection means for detecting the output signal of the plurality of photoelectric conversion elements,
8. The particle counting device according to claim 1, comprising a position detecting means for comparing output signals of the voltage detecting means with each other and outputting passage position data of the measurement region where particles have passed.
【請求項9】 前記複数の光電変換素子から成る光検出
手段は、各受光面が前記光源の光軸に垂直で、且つ前記
流路の中心軸と前記光源の光軸にほぼ垂直な方向に隣接
して設けたN(Nは2以上の整数)個の光電変換素子で
成る光電変換素子アレイである請求項7又は請求項8記
載の粒子計数装置。
9. A light detecting means comprising a plurality of photoelectric conversion elements, wherein each light receiving surface is in a direction perpendicular to an optical axis of the light source and substantially perpendicular to a central axis of the flow path and an optical axis of the light source. The particle counting device according to claim 7 or 8, which is a photoelectric conversion element array including N (N is an integer of 2 or more) photoelectric conversion elements provided adjacent to each other.
JP04006198A 1998-02-23 1998-02-23 Particle counting device Expired - Fee Related JP3521381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04006198A JP3521381B2 (en) 1998-02-23 1998-02-23 Particle counting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04006198A JP3521381B2 (en) 1998-02-23 1998-02-23 Particle counting device

Publications (2)

Publication Number Publication Date
JPH11237329A JPH11237329A (en) 1999-08-31
JP3521381B2 true JP3521381B2 (en) 2004-04-19

Family

ID=12570418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04006198A Expired - Fee Related JP3521381B2 (en) 1998-02-23 1998-02-23 Particle counting device

Country Status (1)

Country Link
JP (1) JP3521381B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030988A (en) * 2007-07-24 2009-02-12 Rion Co Ltd Particle counting apparatus
WO2022066309A1 (en) * 2020-09-25 2022-03-31 Applied Materials, Inc. Method and apparatus for detection of particle size in a fluid
US11442000B2 (en) 2019-12-16 2022-09-13 Applied Materials, Inc. In-situ, real-time detection of particulate defects in a fluid

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3818867B2 (en) * 2000-05-12 2006-09-06 リオン株式会社 Light scattering particle detector
JP4555664B2 (en) * 2004-11-01 2010-10-06 神栄株式会社 Particle counter
JP2009115672A (en) * 2007-11-08 2009-05-28 Sony Corp Optical measurement method and dispensing method for fine particle, and passage used for this optical measurement method and preparative method, and optical measurement device and flow cytometer
KR101225296B1 (en) 2011-02-21 2013-01-23 성균관대학교산학협력단 Method for real-time measuring particles with signal analysis
CN105259086B (en) * 2015-10-29 2018-03-27 广东美的制冷设备有限公司 The detection method and detecting system of dust concentration
CN106950162B (en) 2017-04-12 2023-07-21 江苏苏净集团有限公司 Particle counting method and system
CN112557281B (en) * 2020-11-23 2022-06-24 深圳市科曼医疗设备有限公司 PLT particle detection method and device of blood cell analyzer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030988A (en) * 2007-07-24 2009-02-12 Rion Co Ltd Particle counting apparatus
US11442000B2 (en) 2019-12-16 2022-09-13 Applied Materials, Inc. In-situ, real-time detection of particulate defects in a fluid
TWI779421B (en) * 2019-12-16 2022-10-01 美商應用材料股份有限公司 In-situ, real-time detection of particulate defects in a fluid
WO2022066309A1 (en) * 2020-09-25 2022-03-31 Applied Materials, Inc. Method and apparatus for detection of particle size in a fluid
US11353389B2 (en) 2020-09-25 2022-06-07 Applied Materials, Inc. Method and apparatus for detection of particle size in a fluid

Also Published As

Publication number Publication date
JPH11237329A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
JP2899360B2 (en) Method and apparatus for measuring particles in fluid
US5166537A (en) Particle analyzing method and device for realizing same
JP2641927B2 (en) Particle measurement device
US20120236291A1 (en) Differentiation of flow cytometry pulses and applications
JP3521381B2 (en) Particle counting device
Charpak et al. Location of the position of a particle trajectory in a scintillator
CN108956402B (en) High-sensitivity dust concentration detection method with composite multi-photosensitive-area structure
US5793478A (en) Apparatus for measuring particle properties
JP4981569B2 (en) Particle counter
US7362421B2 (en) Analysis of signal oscillation patterns
JP3532274B2 (en) Particle detector
JP3480670B2 (en) Light intensity distribution detector
JP3480669B2 (en) Particle passing position detector
US20020030815A1 (en) Light scattering type particle detector
JPH0786455B2 (en) Particle measuring method and apparatus
JPH06221989A (en) Light-scattering fine-particle detector
JPS6138447A (en) Particle analyser
JPH0277636A (en) Particle measuring device
JPS6135335A (en) Particle analyzing device
JPH0220674Y2 (en)
JPS62151742A (en) Analyzing and selecting device for corpuscle
JPH0718788B2 (en) Optical particle measuring device
JPH0226054Y2 (en)
JP2001330551A (en) Particle measuring instrument
JP3091276B2 (en) Displacement measuring device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040129

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees