JP3480670B2 - Light intensity distribution detection device - Google Patents

Light intensity distribution detection device

Info

Publication number
JP3480670B2
JP3480670B2 JP1540898A JP1540898A JP3480670B2 JP 3480670 B2 JP3480670 B2 JP 3480670B2 JP 1540898 A JP1540898 A JP 1540898A JP 1540898 A JP1540898 A JP 1540898A JP 3480670 B2 JP3480670 B2 JP 3480670B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
photoelectric conversion
light
conversion element
eb
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1540898A
Other languages
Japanese (ja)
Other versions
JPH11211651A (en )
Inventor
朋信 松田
Original Assignee
リオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、測定領域に照射した光の強度分布を検出する装置で、例えば流路を通過する粒子の個数を粒径を弁別してカウントする粒子計数装置に適用する光強度分布検出装置に関する。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention is a device for detecting the intensity distribution of the irradiated in the measurement area light valves particle size the number of particles passing through the example flow path Betsushite an optical intensity distribution detecting apparatus applied to a particle counting apparatus for counting. 【0002】 【従来の技術】従来の粒子計数装置としては、図18に示すように、レーザ光Laをフローセル100の内部流路に照射し、この内部流路を粒子が通過する際に、粒子が放出する散乱光Lsを集光光学系101によって光電変換素子102に集光させ、光電変換素子102の出力信号に基づき、比較回路103及びパルス計数回路10 2. Description of the Prior Art A conventional particle counting apparatus, as shown in FIG. 18, when the laser light La is irradiated to the internal flow path of the flow cell 100, the internal channel particles pass, particles There is converged scattered light Ls of emitting by the condensing optical system 101 to the photoelectric conversion element 102, based on the output signal of the photoelectric conversion element 102, comparator circuit 103 and the pulse counting circuit 10
4により、内部流路を通過する粒子の個数を粒径を弁別して計数する光散乱式粒子計数装置が知られている。 By 4, the light scattering particle counting apparatus for counting and discriminating the particle size and the number of particles passing through the internal flow path are known. 【0003】光電変換素子102は、粒子が内部流路を通過すると、粒子が放出する散乱光Lsに応じたパルス状の電圧を出力する。 [0003] The photoelectric conversion element 102, when particles pass through the internal channel, and outputs a pulse-shaped voltage corresponding to the scattered light Ls particles release. このパルス状の電圧の波高値は、 Peak value of the pulse voltages
粒子の粒径によって変化する。 It varies with the particle size of the particles. 比較回路103は、光電変換素子102の出力電圧を所定値と比較し、光電変換素子102の出力電圧が所定値より大きいとき、所定の粒径よりも大きいとしてパルス信号を出力する。 Comparator circuit 103, the output voltage of the photoelectric conversion element 102 is compared with a predetermined value, when the output voltage of the photoelectric conversion element 102 is greater than a predetermined value, and outputs a pulse signal to be greater than the predetermined particle size. このパルス信号をパルス計数回路104により計数して、粒子の個数を検出する。 This pulse signal is counted by the pulse counter circuit 104 detects the number of particles. 【0004】 【発明が解決しようとする課題】しかし、図18に示す光散乱式粒子計数装置においては、レーザ光Laを照射した内部流路のレーザ光強度が一定でない場合、粒径の弁別を誤って計数するという問題がある。 [0004] The present invention is to provide, however, in the light scattering particle counting apparatus shown in FIG. 18, when the laser beam intensity of the internal flow path is irradiated with laser light La is not constant, the discrimination of particle size there is a problem of counting by mistake. 内部流路のレーザ光強度は、一般にレーザ光束の中心部が最も高く、 Laser light intensity of the internal passage, generally in the center of the laser beam is the highest,
中心部からずれて端部に行くほど低くなるという分布(ほぼガウス分布)を示す場合が多い。 Often it shows a distribution that is lowered toward the end offset from the center (approximately Gaussian). 【0005】従って、粒子の粒径及び光学的性質は同じであっても、レーザ光束の端部を通過するときと、中心部を通過するときとでは、粒子の散乱光Lsの強度が異なり、光電変換素子102の出力電圧が異なる。 Accordingly, even with the same particle size and optical properties of the particles, and when passing through the ends of the laser beam, at the time of passing through the central portion, different intensity of the scattered light Ls of the particles, the output voltage of the photoelectric conversion element 102 is different. そのため、比較回路103の出力信号も異なり、パルス計数回路104が粒子を計数する場合としない場合がある。 Therefore, also different output signal of the comparator circuit 103, there is a case where the pulse counting circuit 104 is not the case for counting particles. 【0006】本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的とするところは、光の強度分布が分かれば、従来の問題点が解決される点に着目して、光を照射した測定領域の光強度分布を求めることができる光強度分布検出装置を提供しようとするものである。 [0006] The present invention has been made in view of the problems the prior art has, and has as its object, if the intensity distribution of the light is known, that the conventional problems can be solved focusing on, it is intended to provide a light intensity distribution detection device capable of determining the light intensity distribution of the measurement region irradiated with the light. 【0007】 【課題を解決するための手段】上記課題を解決すべく請求項1に係る発明は、透明部材で屈曲形状に形成したフローセルと、このフローセルの流路に光を照射して測定領域を形成する光源と、前記流路の中心軸と一致する光軸を有して前記測定領域で発生する粒子の散乱光を集光する集光手段と、この集光手段が集光した散乱光を受光する複数の光電変換素子から成る光検出手段と、前記複数の光電変換素子の出力信号を検出する電圧検出手段と、この電圧検出手段の出力信号を互いに比較して粒子が通過した前記測定領域の通過位置データと粒子の散乱光強度データを出力する粒子情報検出手段を備えるものである。 [0007] According to claim 1 to solve the above problems, there is provided a means for solving] invention includes a flow cell formed in bent shape by a transparent member, measured by irradiating light to the flow path of the flow cell area a light source for forming a focusing means for focusing the scattered light of the particles generated by the measurement has an optical axis region which coincides with the central axis of the flow path, the scattered light which the focusing means is condensed a light detecting means comprising a plurality of photoelectric conversion elements for receiving a voltage detecting means for detecting an output signal of said plurality of photoelectric conversion elements, the measurement particles are passed by comparing the output signal of the voltage detecting means with each other those with a particle information detection means for outputting the scattered light intensity data of the passing position data and the particle area. 【0008】請求項2に係る発明は、請求項1記載の光強度分布検出装置において、前記複数の光電変換素子から成る光検出手段は、各受光面が前記流路の中心軸に垂直で、且つ前記流路の中心軸と前記光源の光軸にほぼ垂直な方向に隣接して設けたN(Nは2以上の整数)個の光電変換素子から成る光電変換素子アレイである。 [0008] The invention according to claim 2 is the light intensity distribution detection device according to claim 1, the light detecting means comprising a plurality of photoelectric conversion elements, a respective light-receiving surface is perpendicular to the central axis of the flow path, and N provided adjacent in a direction substantially orthogonal to the optical axis of said the central axis of the channel sources (N is an integer of 2 or more) a photoelectric conversion element array consisting of pieces of photoelectric conversion elements. 【0009】請求項3に係る発明は、請求項1記載の光強度分布検出装置において、前記複数の光電変換素子から成る光検出手段は、縦と横がV個×H個(V、Hとも2以上の整数)の光電変換素子から成り、各受光面が前記流路の中心軸に垂直である。 [0009] The invention according to claim 3 is the light intensity distribution detection device according to claim 1, the light detecting means comprising a plurality of photoelectric conversion elements, vertical and horizontal are the V × H number (V, H both made from the photoelectric conversion element 2 or more integer), each of the light receiving surface is perpendicular to the central axis of the channel. 【0010】請求項4に係る発明は、透明部材で形成したフローセルと、このフローセルの流路に光を照射して測定領域を形成する光源と、前記光の中心軸と一致する光軸を有して前記測定領域で発生する粒子の散乱光を集光する集光手段と、この集光手段の光軸上に位置するトラップと、前記集光手段が集光した散乱光を受光する複数の光電変換素子から成る光検出手段と、前記複数の光電変換素子の出力信号を検出する電圧検出手段と、この電圧検出手段の出力信号を互いに比較して粒子が通過した前記測定領域の通過位置データと粒子の散乱光強度データを出力する粒子情報検出手段を備えるものである。 [0010] The invention according to claim 4, chromatic flow cell formed of a transparent member, a light source for forming a measurement region by irradiating light to the flow path of the flow cell, the optical axis coincides with the central axis of the light a focusing means for focusing the scattered light of the particles generated in the measurement region and the trap located on the optical axis of the focusing means, a plurality of the focusing means receives the scattered light condensed a light detection means comprising a photoelectric conversion element, a voltage detector for detecting an output signal of said plurality of photoelectric conversion elements, the passing position data of the measurement region in which the particles by comparing the output signal of the voltage detecting means with each other passes those with a particle information detection means for outputting the scattered light intensity data of particles. 【0011】請求項5に係る発明は、請求項4記載の光強度分布検出装置において、前記複数の光電変換素子から成る光検出手段は、各受光面が前記光源の光軸に垂直で、且つ前記流路の中心軸と前記光源の光軸にほぼ垂直な方向に隣接して設けたN(Nは2以上の整数)個の光電変換素子で成る光電変換素子アレイである。 [0011] The invention according to claim 5, in the light intensity distribution detection device according to claim 4, wherein the light detecting means comprising a plurality of photoelectric conversion elements, a respective light-receiving surface is perpendicular to the optical axis of the light source, and N provided adjacent in a direction substantially orthogonal to the optical axis of said the central axis of the channel sources (N is an integer of 2 or more) a photoelectric conversion element array made of pieces of photoelectric conversion elements. 【0012】 【発明の実施の形態】以下に本発明の実施の形態を添付図面に基づいて説明する。 [0012] be described with reference to embodiments of the present invention in the accompanying drawings DETAILED DESCRIPTION OF THE INVENTION. ここで、図1は本発明の第1 Here, the first 1 present invention
の実施の形態に係る光強度分布検出装置の構成図、図2 Configuration diagram of an optical intensity distribution detection device according to the embodiment, FIG. 2
は図1におけるレーザ光を照射した測定領域の平断面図、図3は図1におけるレーザ光を照射した測定領域の縦断面図、図4乃至図8は図1における光電変換素子アレイの受光状態(a)とそのときの出力波形(b)を示す図、図9は粒子情報参照テーブルを示す図、図10は本発明の第2の実施の形態に係る光強度分布検出装置の構成図、図11は本発明の第3の実施の形態に係る光強度分布検出装置の構成図、図12は図11におけるレーザ光を照射した測定領域の縦断面図、図13乃至図17 Cross-sectional plan view of a measurement region irradiated with the laser beam in FIG. 1, FIG. 3 is a vertical sectional view of the measurement region irradiated with the laser beam in FIG. 1, FIGS. 4 through 8 light receiving state of the photoelectric conversion element array shown in FIG. 1 shows (a) and the output waveform (b) at that time, FIG. 9 is a diagram showing the construction of a light intensity distribution detection device according to the second embodiment of FIG, 10 is the present invention showing the reference particle information table, Figure 11 is a diagram showing the construction of a light intensity distribution detection device according to a third embodiment of the present invention, FIG 12 is a longitudinal sectional view of the measurement region irradiated with the laser beam in FIG. 11, FIGS. 13 to 17
は図11における光電変換素子アレイの受光状態(a) Light receiving state of the photoelectric conversion element array in FIG. 11 (a)
とそのときの出力波形(b)を示す図である。 And is a diagram showing the output waveform of (b) at that time. 【0013】本発明の第1の実施の形態に係る光強度分布検出装置は、図1に示すように、フローセル1、レーザ光源2、集光光学系3、光電変換素子アレイ4及び処理装置5から成る。 [0013] Light intensity distribution detection device according to a first embodiment of the present invention, as shown in FIG. 1, the flow cell 1, the laser light source 2, focusing optical system 3, the photoelectric conversion element array 4 and the processing device 5 consisting of. 【0014】フローセル1は、透明部材から成り、所定長さの直線流路1aを有し、全体として屈曲している。 [0014] The flow cell 1 is made of a transparent member having a straight channel 1a of predetermined length is bent as a whole.
フローセル1は、断面形状を四角形状とし、全体としてL型筒形状に形成したものである。 Flow cell 1 is a cross-sectional shape and a square shape, and is formed in an L-type cylindrical shape as a whole. 直線流路1aの中心軸は、X方向と一致している。 The central axis of the straight channel 1a coincides with the X direction. 【0015】所定長さの直線流路1aを設けた理由は、 [0015] reason for providing a straight channel 1a of predetermined length,
フローセル1に供試流体を流したとき、供試流体の流れを層流にするためである。 When shed subjected 試流 body to the flow cell 1 is to the flow of the test 試流 body laminar flow. なお、層流を得るための条件としては、供試流体の粘度、直線流路の長さ、流路の断面形状及び流速などが挙げられ、直線流路1aの長さ及び流路の断面形状については、供試流体の粘度と流速を勘案して決定している。 As the conditions for obtaining a laminar flow, the viscosity of the test 試流 body, the length of the straight channel, such as the cross-sectional shape and flow rate of the flow channel and the like, the sectional shape of the length and the channel of the straight channel 1a for it is determined in consideration of the viscosity and flow rate of the test 試流 body. 【0016】レーザ光源2は、フローセル1の直線流路1aの所定箇所にレーザ光Laを照射して照射領域を形成する。 [0016] The laser light source 2 forms the irradiation region is irradiated with a laser beam La at a predetermined position of the straight channel 1a of the flow cell 1. ここで、レーザ光Laの光軸は、Z方向と一致し、X方向と一致する直線流路1aの中心軸と直交している。 Here, the optical axis of the laser beam La is consistent with Z-direction is perpendicular to the central axis of the straight channel 1a that matches the X direction. 【0017】また、図2に示すように、レーザ光Laの光軸とフローセル1の外壁との成す角を所定角度θに設定してもよい。 Further, as shown in FIG. 2, may be set angle formed between the optical axis and the outer wall of the flow cell 1 of the laser beam La at a predetermined angle theta. これは、レーザ光Laがフローセル1の外壁に反射して反射光の一部がレーザ光源2に戻るのを防止するためである。 This is because the laser light La is prevented from part of reflected to the outer wall reflection light of the flow cell 1 is returned to the laser light source 2. 反射光の一部がレーザ光源2に戻ると、帰還ノイズがレーザ光Laに重畳するので好ましくないからである。 When a portion of the reflected light returns to the laser light source 2, is not preferable because the feedback noise is superimposed on the laser light La. 【0018】なお、レーザ光Laがフローセル1の外壁で反射しないように、例えばレーザ光Laをフローセル1の外壁と同じ物質中を通して直線流路1aの所定箇所に導くことができれば、所定角度θを設定する必要はない。 [0018] Incidentally, as the laser light La is not reflected by the outer wall of the flow cell 1, for example, if the laser beam La be guided to a predetermined place of the straight channel 1a through the same material in the outer wall of the flow cell 1, a predetermined angle θ it is not necessary to set. 【0019】集光光学系3は、フローセル1の直線流路1aの中心軸と一致する光軸を有し、図2に示す照射領域内の所定の領域M(以下、測定領域Mと呼ぶ)においてレーザ光Laを受けた粒子が発する散乱光Lsを集光する機能を備える。 The condensing optical system 3 has an optical axis coincident with the central axis of the straight channel 1a of the flow cell 1, a predetermined region M of the irradiation region shown in FIG. 2 (hereinafter, referred to as the measurement area M) a function for converging the scattered light Ls received particles emit laser light La in. 【0020】光電変換素子アレイ4は、3個の光電変換素子4a,4b,4cから成り、各受光面が流路の中心軸に垂直で、且つ流路の中心軸(X方向)とレーザ光軸(Z方向)に垂直なY方向に隣接して設けられている。 [0020] The photoelectric conversion element array 4, three photoelectric conversion elements 4a, 4b, consists 4c, perpendicular to the central axis of the light receiving surface flow path and the central axis of the flow channel (X-direction) and the laser beam It provided in the axial (Z direction) and adjacent to the vertical Y direction.
光電変換素子4a,4b,4cは、粒子が測定領域Mを通過する間に発する散乱光Lsを電圧に変換する。 The photoelectric conversion elements 4a, 4b, 4c converts the scattered light Ls emitted while the particles pass through the measurement area M in the voltage. 【0021】なお、レーザ光Laの光軸とフローセル1 [0021] In addition, the optical axis of the laser beam La and the flow cell 1
の外壁との成す角を、図2に示す所定角度θに設定した場合には、光電変換素子4a,4b,4cの受光面を、 Of the angle formed between the outer wall, when set to a predetermined angle θ shown in FIG. 2, the photoelectric conversion elements 4a, 4b, the light-receiving surface of 4c,
集光光学系3の光軸に垂直な面に対して所定角度θだけ傾けてもよい。 It may be inclined by a predetermined angle θ with respect to a plane perpendicular to the optical axis of the condensing optical system 3. 【0022】処理装置5は、粒子が測定領域Mを通過する間に3個の光電変換素子4a,4b,4cが夫々出力する電圧のピーク値(パルス高)Ea,Eb,Ecを検出するピーク値検出手段6a,6b,6cと、粒子情報参照テーブルを作成する粒子情報検出手段7から成る。 The processor 5, the peak for detecting the three photoelectric conversion elements 4a, 4b, 4c peak value of the voltage respectively output (pulse height) Ea, Eb, Ec while the particles pass through the measurement region M value detection unit 6a, 6b, and 6c, consists of particles information detecting unit 7 for creating a reference particle information table. 【0023】粒子情報検出手段7は、演算部7aと記憶部7bを備え、先ず演算部7aにおいて、次の(1)乃至(3)の演算処理を行い、その結果を記憶部7bに記憶して、粒子情報参照テーブルを作成する。 The particle information detection unit 7, an arithmetic unit 7a and the storage unit 7b, the first calculation unit 7a, performs arithmetic processing of the following (1) to (3), and stores the result in the storage unit 7b Te, to create a reference particle information table. (1)ピーク値検出手段6bの出力電圧Ebに対するピーク値検出手段6aの出力電圧Eaの比Ea/Ebを演算する。 (1) for calculating a ratio Ea / Eb of the output voltage Ea of the peak value detecting means 6a to the output voltage Eb of the peak value detecting means 6b. (2)ピーク値検出手段6bの出力電圧Ebに対するピーク値検出手段6cの出力電圧Ecの比Ec/Ebを演算する。 (2) calculating the ratio Ec / Eb of the output voltage Ec of the peak value detecting means 6c to the output voltage Eb of the peak value detecting means 6b. (3)ピーク値検出手段6a,6b,6cの出力電圧E (3) peak value detecting means 6a, 6b, 6c of the output voltage E
a,Eb,Ecの和(Ea+Eb+Ec)を演算する。 a, Eb, calculates the sum of Ec (Ea + Eb + Ec). 【0024】以上のように構成した本発明の第1の実施の形態に係る光強度分布検出装置の作用について説明する。 [0024] The operation of the light intensity distribution detection device according to a first embodiment of the present invention configured as described above will be described. 図3に示すように、矢印Aの方向から標準粒子(粒径が同一のもの)を多数含んだ流体をフローセル1に流し込む。 As shown in FIG. 3, pouring the standard particles (those particle diameters are the same) the number inclusive fluid to the flow cell 1 in the direction of arrow A. このとき、測定領域Mのどの位置を標準粒子が通過するかによって、光電変換素子アレイ4の各光電変換素子4a,4b,4cの出力波形は様々なものとなる。 At this time, depending the position of the measuring region M throat standard particles pass, each photoelectric conversion element 4a of the photoelectric conversion element array 4, 4b, the output waveform of 4c becomes different ones. そして、3個の光電変換素子4a,4b,4cから成る光電変換素子アレイ4の場合には、主な5通りの通過パターンが考えられる。 Then, the three photoelectric conversion elements 4a, 4b, in the case of the photoelectric conversion element array 4 composed of 4c, is considered passing pattern of the main five different. 【0025】先ず、標準粒子が、図3に示す測定領域M [0025] First, a standard particle, the measurement region M illustrated in FIG. 3
の中心Mcを通過する場合で、標準粒子による散乱光L In case of passing through the center Mc of the scattered light L by standard particle
sのスポットSは、図4(a)に示すように、光電変換素子アレイ4の中央の光電変換素子4bのみに現れる。 s of spots S, as shown in FIG. 4 (a), it appears only in the center of the photoelectric conversion element array 4 of the photoelectric conversion element 4b.
このとき、各光電変換素子4a,4b,4cの出力波形(時間tと電圧Eとの関係)は、図4(b)に示すようになる。 At this time, the photoelectric conversion elements 4a, 4b, 4c of the output waveform (the relationship between the time t and the voltage E) is as shown in Figure 4 (b). 【0026】即ち、光電変換素子4bのみが測定領域M [0026] That is, only the photoelectric conversion element 4b is measured region M
の中心Mcをある時間の間(時間t1から時間t2)に通過する標準粒子の散乱光Lsに応じた略パルス状の電圧(ピーク値Eb)を出力し、他の光電変換素子4a,4 Outputs during a center Mc of time substantially pulse-like voltage corresponding to the scattered light Ls of the standard particles passing (from the time t1 time t2) (the peak value Eb), other photoelectric conversion elements 4a, 4
cはノイズに応じた略レベル電圧(ピーク値Ea,E c is substantially level voltage corresponding to the noise (peak value Ea, E
c)しか出力しない。 c) only to output. 【0027】次に、標準粒子が、図3に示す測定領域M Next, a standard particle, the measurement region M shown in FIG. 3
の一端部Msを通過する場合で、標準粒子による散乱光LsのスポットSは、図5(a)に示すように、光電変換素子アレイ4の一端の光電変換素子4aのみに現れる。 In case of passing the one end portion Ms, spots S of the scattered light Ls with standard particles, as shown in FIG. 5 (a), appears only in the photoelectric conversion element 4a of one end of the photoelectric conversion element array 4. このとき、各光電変換素子4a,4b,4cの出力波形(時間tと電圧Eとの関係)は、図5(b)に示すようになる。 At this time, the photoelectric conversion elements 4a, 4b, 4c of the output waveform (the relationship between the time t and the voltage E) is as shown in Figure 5 (b). 【0028】即ち、光電変換素子4aのみが測定領域M [0028] That is, only the photoelectric conversion element 4a is measurement area M
の一端部Msをある時間の間(時間t3から時間t4)に通過する標準粒子の散乱光Lsに応じた略パルス状の電圧(ピーク値Ea)を出力し、他の光電変換素子4b, During the time that the one end Ms outputs a substantially pulse-like voltage (peak value Ea) according to the scattered light Ls of the standard particles passing (from the time t3 time t4), the other photoelectric conversion element 4b,
4cはノイズに応じた略レベル電圧(ピーク値Eb,E 4c substantially level voltage (peak value Eb corresponding to the noise, E
c)しか出力しない。 c) only to output. 【0029】同様に、標準粒子が、図3に示す測定領域Mの他端部Ms(一端部Msと対称)を通過する場合で、標準粒子による散乱光LsのスポットSは、図6 [0029] Similarly, the standard particles, when passing through the other end portion Ms of the measuring region M shown in FIG. 3 (end Ms symmetric), the spot S of the scattered light Ls by standard particle, FIG. 6
(a)に示すように、光電変換素子アレイ4の他端の光電変換素子4cのみに現れる。 (A), the only appears in the photoelectric conversion element 4c of the other end of the photoelectric conversion element array 4. このとき、各光電変換素子4a,4b,4cの出力波形(時間tと電圧Eとの関係)は、図6(b)に示すようになる。 At this time, the photoelectric conversion elements 4a, 4b, 4c of the output waveform (the relationship between the time t and the voltage E) is as shown in Figure 6 (b). 【0030】即ち、光電変換素子4cのみが測定領域M [0030] That is, only the photoelectric conversion element 4c is measured region M
の他端部Msをある時間の間(時間t3から時間t4)に通過する標準粒子の散乱光Lsに応じた略パルス状の電圧(ピーク値Ec)を出力し、他の光電変換素子4a, During the time that the other end Ms outputs a substantially pulse-like voltage (peak value Ec) corresponding to the scattered light Ls of the standard particles passing (from the time t3 time t4), the other photoelectric conversion element 4a,
4bはノイズに応じた略レベル電圧(ピーク値Ea,E 4b substantially level voltage (peak value Ea corresponding to noise, E
b)しか出力しない。 b) only to output. 【0031】更に、標準粒子が、図3に示す測定領域M Furthermore, the standard particles, measurement region M shown in FIG. 3
の一経路Mmを通過する場合で、標準粒子による散乱光LsのスポットSは、図7(a)に示すように、光電変換素子4aと光電変換素子4bの境界にまたがって現れる。 In case of passing through one path Mm of the spot S of the scattered light Ls with standard particles, as shown in FIG. 7 (a), it appears across the boundary of the photoelectric conversion element 4a and the photoelectric conversion element 4b. このとき、各光電変換素子4a,4b,4cの出力波形(時間tと電圧Eとの関係)は、図7(b)に示すようになる。 At this time, the photoelectric conversion elements 4a, 4b, 4c of the output waveform (the relationship between the time t and the voltage E) is as shown in FIG. 7 (b). 【0032】即ち、光電変換素子4a,4bが測定領域Mの一経路Mmをある時間の間(時間t5から時間t6) [0032] That is, the photoelectric conversion elements 4a, during the time that 4b is an path Mm measurement region M (time t6 from the time t5)
に通過する標準粒子の散乱光Lsに応じた略パルス状の電圧(ピーク値Ea,Eb)を出力し、光電変換素子4 Substantially pulse-like voltage corresponding to the scattered light Ls of the standard particles that pass through the (peak value Ea, Eb) output a photoelectric conversion element 4
cはノイズに応じた略レベル電圧(ピーク値Ec)しか出力しない。 c is substantially level voltage (peak value Ec) corresponding to the noise only output. 【0033】同様に、標準粒子が、図3に示す測定領域Mの他経路Mm(一経路Mmと対称)を通過する場合で、標準粒子による散乱光LsのスポットSは、図8 [0033] Similarly, the standard particles, when passing through the other path Mm (one path Mm symmetric) measurement areas M shown in FIG. 3, the spot S of the scattered light Ls by standard particle, FIG. 8
(a)に示すように、光電変換素子4bと光電変換素子4cの境界にまたがって現れる。 (A), the appearing across the boundary of the photoelectric conversion elements 4b and the photoelectric conversion element 4c. このとき、各光電変換素子4a,4b,4cの出力波形(時間tと電圧Eとの関係)は、図8(b)に示すようになる。 At this time, the photoelectric conversion elements 4a, 4b, 4c of the output waveform (the relationship between the time t and the voltage E) is as shown in Figure 8 (b). 【0034】即ち、光電変換素子4b,4cが測定領域Mの他経路Mmをある時間の間(時間t5から時間t6) [0034] That is, the photoelectric conversion element 4b, during the time that 4c is another route Mm in the measurement region M (t6 from the time t5 Time)
に通過する標準粒子の散乱光Lsに応じた略パルス状の電圧(ピーク値Eb,Ec)を出力し、光電変換素子4 Substantially pulse-like voltage corresponding to the scattered light Ls of the standard particles that pass through the (peak value Eb, Ec) and outputs a photoelectric conversion element 4
aはノイズに応じた略レベル電圧(ピーク値Ea)しか出力しない。 a is substantially level voltage (peak value Ea) according to the noise only output. 【0035】そして、粒子情報検出手段7では、図4 [0035] Then, the particle information detecting unit 7, 4
(a)に示すように、中央の光電変換素子4bのみにスポットSが現れた場合、演算部7aにおいて、光電変換素子4bのピーク電圧Ebに対する光電変換素子4aのピーク電圧Eaの比Ea/Ebを演算し、Ea<Ebであるから、比Ea/Ebとしてほぼゼロ(Ea/Eb≒ (A), the case where only the center of the photoelectric conversion element 4b spot S appeared, the operation unit 7a, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 4a with respect to the peak voltage Eb of the photoelectric conversion element 4b calculating a, because it is Ea <Eb, almost zero (Ea / Eb ≒ as the ratio Ea / Eb
0)の値を出力し、記憶部7bに記憶する。 Outputs a value of 0), the storage unit 7b. 【0036】また、演算部7aにおいて、光電変換素子4bのピーク電圧Ebに対する光電変換素子4cのピーク電圧Ecの比Ec/Ebを演算し、Ec<Ebであるから、比Ec/Ebとしてほぼゼロ(Ec/Eb≒0) Further, in the arithmetic unit 7a, and it calculates the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 4c with respect to the peak voltage Eb of the photoelectric conversion element 4b, because it is Ec <Eb, almost zero as the ratio Ec / Eb (Ec / Eb ≒ 0)
の値を出力し、記憶部7bに記憶する。 Outputs value stored in the storage unit 7b. 更に、演算部7 Further, the arithmetic unit 7
aにおいて、光電変換素子4a,4b,4cの出力電圧Ea,Eb,Ecの和(Ea+Eb+Ec)を演算し、 In a, the photoelectric conversion elements 4a, 4b, the output voltage Ea of 4c, Eb, the sum of Ec and (Ea + Eb + Ec) is calculated,
例えば、1.0を記憶部7bに記憶する。 For example, to store the 1.0 in the storage unit 7b. 【0037】また、粒子情報検出手段7では、図5 Further, the particle information detecting unit 7, 5
(a)に示すように、一端の光電変換素子4aのみにスポットSが現れた場合、演算部7aにおいて、光電変換素子4bのピーク電圧Ebに対する光電変換素子4aのピーク電圧Eaの比Ea/Ebを演算し、Ea>Ebであるから、比Ea/Ebとして非常に大きな値(Ea/ (A), the case where only the photoelectric conversion element 4a of the end spots S appeared, the operation unit 7a, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 4a with respect to the peak voltage Eb of the photoelectric conversion element 4b calculating a, Ea> because it is Eb, very large value as the ratio Ea / Eb (Ea /
Eb≒∞)を出力し、記憶部7bに記憶する。 Eb ≒ ∞) outputs, to the storage unit 7b. 【0038】同様に、光電変換素子4bのピーク電圧E [0038] Similarly, the photoelectric conversion element 4b peak voltage E
bに対する光電変換素子4cのピーク電圧Ecの比Ec The ratio Ec peak voltage Ec of the photoelectric conversion element 4c for b
/Ebを演算し、Ec≒Ebであるから、比Ea/Eb / Eb is calculated, and because it is Ec ≒ Eb, the ratio Ea / Eb
として約1(Ea/Eb≒1)の値を出力し、記憶部7 Outputs a value of about 1 (Ea / Eb ≒ 1) as the storage unit 7
bに記憶する。 And stores it in the b. 更に、演算部7aにおいて、光電変換素子4a,4b,4cの出力電圧Ea,Eb,Ecの和(Ea+Eb+Ec)を演算し、例えば、0.2を記憶部7bに記憶する。 Furthermore, the calculation unit 7a, the photoelectric conversion elements 4a, 4b, the output voltage Ea of 4c, Eb, the sum of Ec and (Ea + Eb + Ec) is calculated, for example, stores a 0.2 in the storage unit 7b. 【0039】また、粒子情報検出手段7では、図6 Further, the particle information detecting unit 7, FIG. 6
(a)に示すように、他端の光電変換素子4cのみにスポットSが現れた場合、演算部7aにおいて、光電変換素子4bのピーク電圧Ebに対する光電変換素子4aのピーク電圧Eaの比Ea/Ebを演算し、Ea≒Ebであるから、比Ea/Ebとして約1(Ea/Eb≒1) (A), the case where only the spot S appeared in the photoelectric conversion element 4c of the other end, the computing section 7a, the ratio of the peak voltage Ea of the photoelectric conversion element 4a with respect to the peak voltage Eb of the photoelectric conversion element 4b Ea / calculates the Eb, since it is Ea ≒ Eb, about 1 as a ratio Ea / Eb (Ea / Eb ≒ 1)
の値を出力し、記憶部7bに記憶する。 Outputs value stored in the storage unit 7b. 【0040】同様に、光電変換素子4bのピーク電圧E [0040] Similarly, the photoelectric conversion element 4b peak voltages E
bに対する光電変換素子4cのピーク電圧Ecの比Ec The ratio Ec peak voltage Ec of the photoelectric conversion element 4c for b
/Ebを演算し、Ec>Ebであるから、比Ec/Eb / Eb is calculated, and because it is Ec> Eb, the ratio Ec / Eb
として非常に大きな値(Ec/Eb≒∞)を出力し、記憶部7bに記憶する。 It outputs a very large value (Ec / Eb ≒ ∞) as in the storage unit 7b. 更に、演算部7aにおいて、光電変換素子4a,4b,4cの出力電圧Ea,Eb,Ec Furthermore, the calculation unit 7a, the photoelectric conversion elements 4a, 4b, 4c output voltage Ea of, Eb, Ec
の和(Ea+Eb+Ec)を演算し、例えば、0.2を記憶部7bに記憶する。 We calculate the sum of (Ea + Eb + Ec), for example, stores a 0.2 in the storage unit 7b. 【0041】次に、粒子情報検出手段7では、図7 Next, the particle information detecting means 7, 7
(a)に示すように、光電変換素子4aと光電変換素子4bの境界にスポットSがまたがって現れた場合、演算部7aにおいて、光電変換素子4bのピーク電圧Ebに対する光電変換素子4aのピーク電圧Eaの比Ea/E (A), the case where the boundary on the spot S of the photoelectric conversion element 4a and the photoelectric conversion element 4b has appeared across, the computing section 7a, the photoelectric conversion element 4a of the peak voltage with respect to the peak voltage Eb of the photoelectric conversion element 4b Ea ratio Ea / E
bを演算し、Ea≒Ebであるから、比Ea/Ebとして約1(Ea/Eb≒1)の値を出力し、記憶部7bに記憶する。 Calculating a b, because it is Ea ≒ Eb, and outputs a value of about 1 (Ea / Eb ≒ 1) as a ratio Ea / Eb, and stored in the storage unit 7b. 【0042】同様に、光電変換素子4bのピーク電圧E [0042] Similarly, the photoelectric conversion element 4b peak voltage E
bに対する光電変換素子4cのピーク電圧Ecの比Ec The ratio Ec peak voltage Ec of the photoelectric conversion element 4c for b
/Ebを演算し、Ec<Ebであるから、比Ec/Eb / Eb is calculated, and because it is Ec <Eb, the ratio Ec / Eb
としてほぼゼロ(Ec/Eb≒0)の値を出力し、記憶部7bに記憶する。 Outputs a value of approximately zero (Ec / Eb ≒ 0) as in the storage unit 7b. 更に、演算部7aにおいて、光電変換素子4a,4b,4cの出力電圧Ea,Eb,Ecの和(Ea+Eb+Ec)を演算し、例えば、0.75を記憶部7bに記憶する。 Furthermore, the calculation unit 7a, calculates the photoelectric conversion elements 4a, 4b, the output voltage Ea of 4c, Eb, the sum of Ec and (Ea + Eb + Ec), for example, stores a 0.75 in the storage unit 7b. 【0043】また、粒子情報検出手段7では、図8 [0043] Further, the particle information detecting means 7, 8
(a)に示すように、光電変換素子4bと光電変換素子4cの境界にスポットSがまたがって現れた場合、演算部7aにおいて、光電変換素子4bのピーク電圧Ebに対する光電変換素子4aのピーク電圧Eaの比Ea/E (A), the case where the boundary on the spot S of the photoelectric conversion elements 4b and the photoelectric conversion element 4c is appeared across, the computing section 7a, the photoelectric conversion element 4a of the peak voltage with respect to the peak voltage Eb of the photoelectric conversion element 4b Ea ratio Ea / E
bを演算し、Ea<Ebであるから、比Ea/Ebとしてほぼゼロ(Ec/Eb≒0)の値を出力し、記憶部7 Calculating a b, because it is Ea <Eb, and outputs a value of approximately zero (Ec / Eb ≒ 0) as the ratio Ea / Eb, storage 7
bに記憶する。 And stores it in the b. 【0044】同様に、光電変換素子4bのピーク電圧E [0044] Similarly, the photoelectric conversion element 4b peak voltage E
bに対する光電変換素子4cのピーク電圧Ecの比Ec The ratio Ec peak voltage Ec of the photoelectric conversion element 4c for b
/Ebを演算し、Ec≒Ebであるから、比Ec/Eb / Eb is calculated, and because it is Ec ≒ Eb, the ratio Ec / Eb
として約1(Ec/Eb≒1)の値を出力し、記憶部7 Outputs a value of about 1 (Ec / Eb ≒ 1) as the storage unit 7
bに記憶する。 And stores it in the b. 更に、演算部7aにおいて、光電変換素子4a,4b,4cの出力電圧Ea,Eb,Ecの和(Ea+Eb+Ec)を演算し、例えば、0.75を記憶部7bに記憶する。 Furthermore, the calculation unit 7a, calculates the photoelectric conversion elements 4a, 4b, the output voltage Ea of 4c, Eb, the sum of Ec and (Ea + Eb + Ec), for example, stores a 0.75 in the storage unit 7b. 【0045】なお、基準とする電圧は、光電変換素子4 [0045] The voltage of the reference photoelectric conversion element 4
bのピーク電圧Eb以外の他の光電変換素子4a,4c b Other photoelectric conversion elements 4a other than the peak voltage Eb of, 4c
のピーク電圧Ea,Ecでもよいし、また各ピーク電圧の和(Ea+Eb+Ec)でもよい。 Peak voltage Ea, may be the Ec, also may be the sum of the peak voltage (Ea + Eb + Ec). 要は、光電変換素子4a,4b,4cのピーク電圧の絶対値ではなく、基準電圧に対する各光電変換素子4a,4b,4cのピーク電圧の比(割合)から標準粒子による散乱光LsのスポットSの位置を求める方が確度が高いからである。 In short, the photoelectric conversion elements 4a, 4b, rather than the absolute value of the peak voltage of 4c, each photoelectric conversion element 4a with respect to the reference voltage, 4b, the peak voltage 4c from the ratio (percentage) of the scattered light Ls by standard particle spots S it is better to seek the position is because accuracy is high. 【0046】以上のような5通りの場合について、図9 [0046] For the case of five kinds, such as the above, as shown in FIG. 9
に示すように、基準電圧を光電変換素子4bのピーク電圧Ebとした場合の粒子情報参照テーブルが作成できる。 As shown in the reference voltage can be created particles information reference table in the case where the peak voltage Eb of the photoelectric conversion element 4b. 従って、光電変換素子4bのピーク電圧Ebに対する光電変換素子4aのピーク電圧Eaの比Ea/Eb Accordingly, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 4a with respect to the peak voltage Eb of the photoelectric conversion element 4b
と、光電変換素子4bのピーク電圧Ebに対する光電変換素子4cのピーク電圧Ecの比Ec/Ebが分かれば、それらに対応する出力電圧の和(Ea+Eb+E If, when the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 4c with respect to the peak voltage Eb of the photoelectric conversion element 4b is known, the sum of the output voltages corresponding to them (Ea + Eb + E
c)を得ることにより、レーザ光Laが照射されている測定領域Mのレーザ光強度分布を定性的に知ることができる。 By obtaining c), the laser beam La can know qualitatively laser light intensity distribution in the measurement region M being irradiated. 【0047】また、上記した5通りの通過パターン以外で、光電変換素子4aと光電変換素子4bの境界又は光電変換素子4bと光電変換素子4cの境界にスポットS Further, other than the passage pattern of five types as described above, the spot on the boundary of the photoelectric conversion element 4a and the photoelectric conversion element 4b of the boundary or the photoelectric conversion element 4b and the photoelectric conversion element 4c S
が均等でなくまたがって現れるような測定領域Mの経路を通過した場合であっても、光電変換素子4bのピーク電圧Ebに対する光電変換素子4aのピーク電圧Eaの比Ea/Ebと、光電変換素子4bのピーク電圧Ebに対する光電変換素子4cのピーク電圧Ecの比Ec/E Even when passes through the path of the measurement area M as it appears across unequal, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 4a with respect to the peak voltage Eb of the photoelectric conversion element 4b, the photoelectric conversion element the ratio Ec / E of the peak voltage Ec of the photoelectric conversion element 4c with respect to the peak voltage Eb of 4b
bが分かれば、比Ea/Ebの値と比Ec/Ebの値を粒子情報参照テーブルに当てはめることにより、それらに対応する出力電圧の和(Ea+Eb+Ec)を推定し、レーザ光Laが照射されている測定領域Mのレーザ光強度分布を定性的に知ることができる。 If b is known, by fitting the values ​​of the ratio Ec / Eb ratio Ea / Eb to the particle information reference table, and the estimated sum of the output voltages corresponding to them (Ea + Eb + Ec), the laser light La is irradiated laser light intensity distribution are measured region M can be known qualitatively. 【0048】本発明の第2の実施の形態に係る光強度分布検出装置は、図10に示すように、フローセル11、 The light intensity distribution detection device according to a second embodiment of the present invention, as shown in FIG. 10, the flow cell 11,
レーザ光源12、集光光学系13、光検出手段14及び処理装置15から成る。 Laser light source 12, focusing optical system 13, and an optical detection unit 14 and the processor 15. ここで、フローセル11、レーザ光源12、集光光学系13は、図1に示すものと同様の構成であるので説明は省略する。 Here, the flow cell 11, the laser light source 12, focusing optical system 13, described the same structure as that shown in FIG. 1 will be omitted. 【0049】光検出手段14は、縦(Y方向)と横(Z The light detection means 14, the vertical (Y-direction) and horizontal (Z
方向)が3個×3個のマトリックス状の光電変換素子D The photoelectric conversion element D direction) is three × 3 pieces of matrix
11 ,D 12 ,D 13 ,D 21 ,……D 33から成り、各受光面が流路11aの中心軸(X方向)に垂直なY・Z平面を形成している。 11, D 12, D 13, D 21, consists ...... D 33, the light receiving surface forms a vertical Y · Z plane to the central axis of the flow channel 11a (X direction). 【0050】処理装置15は、3個×3個の光電変換素子D 11 ,D 12 ,D 13 ,D 21 ,……D 33の夫々の出力電圧のピーク値E 11 ,E 12 ,E 13 ,E 21 ,……E 33を検出するピーク値検出手段16a,16b,16cと、ピーク値E 11 ,E 12 ,E 13 ,E 21 ,……E 33から粒子の位置を検出する粒子情報検出手段17から成る。 The processor 15, three × 3 pieces of photoelectric conversion elements D 11, D 12, D 13 , D 21, ...... peak value E 11 of each of the output voltage of the D 33, E 12, E 13 , E 21, ...... peak value detecting means 16a for detecting the E 33, 16b, 16c and the peak value E 11, E 12, E 13 , E 21, the particle information detecting means for detecting the position of the particle from ...... E 33 consisting of 17. 【0051】ピーク値検出手段16aは光電変換素子D The peak value detecting means 16a is a photoelectric conversion element D
11 ,D 12 ,D 13の出力電圧を時分割でサンプリングしてそのピーク値E 11 ,E 12 ,E 13を検出し、ピーク値検出手段16bは光電変換素子D 21 ,D 22 ,D 23の出力電圧を時分割でサンプリングしてそのピーク値E 21 ,E 22 11, D 12, is sampled in a time division output voltage of the D 13 detects the peak value E 11, E 12, E 13 , the peak value detecting means 16b is a photoelectric conversion element D 21, D 22, D 23 the peak value E 21, E 22 sampling by time division output voltage,
23を検出し、ピーク値検出手段16cは光電変換素子D 31 ,D 32 ,D 33の出力電圧を時分割でサンプリングしてピーク値E 31 ,E 32 ,E 33を検出する。 Detecting the E 23, a peak value detecting means 16c detects the photoelectric conversion element D 31, D 32, the peak value is sampled in a time division output voltage of the D 33 E 31, E 32, E 33. 【0052】なお、ピーク値検出手段を光電変換素子の個数分設け、測定領域Mをある時間で通過する粒子の散乱光Lsによる出力電圧を常時サンプリングしてピーク値を検出してもよい。 It should be noted, provided the number fraction of the photoelectric conversion element peak value detecting means, an output voltage due to the scattered light Ls of particles passing through a time with the measurement region M may detect the peak value is sampled at all times. 【0053】粒子情報検出手段17は、演算部17aと記憶部17bを備え、先ず演算部17aにおいて、ピーク値検出手段16a,16b,16cが検出したピーク値E 11 ,E 12 ,E 13 ,E 21 ,……E 33の中から一の電圧(例えば、ピーク値E 22 )を選択し、この電圧を基準にして他のピーク値との比(E 11 /E 22 、E 12 /E 22 [0053] particles information detecting unit 17, an arithmetic unit 17a and a storage unit 17b, first the computing section 17a, the peak value detecting means 16a, 16b, 16c peak value detected is E 11, E 12, E 13 , E 21, one voltage among ...... E 33 (e.g., a peak value E 22) is selected, the ratio of the other peak value by the voltage reference (E 11 / E 22, E 12 / E 22 ...
…)を演算し、その結果を記憶部17bに記憶する。 ...) is calculated and the result is stored in the storage unit 17b. 更に、演算部17aにおいて、ピーク値E 11 ,E 12 Further, the calculating unit 17a, a peak value E 11, E 12,
13 ,E 21 ,……E 33の和(E 11 +E 12 +E 13 +E 21 E 13, E 21, the sum of ...... E 33 (E 11 + E 12 + E 13 + E 21 +
……+E 33 )を演算し、例えば、1.0を記憶部7bに記憶する。 ...... + E 33) calculates, for example, stores a 1.0 in the storage unit 7b. 【0054】そして、粒子情報検出手段17において、 [0054] Then, the particle information detecting means 17,
スポットSが、9個の光電変換素子D 11 ,D 12 ,D 13 Spot S, nine photoelectric conversion element D 11, D 12, D 13 ,
21 ,……D 33のうち互いに隣接する部位、例えば光電変換素子D 11と光電変換素子D 12の接する部位や、9個の光電変換素子D 11 ,D 12 ,D 13 ,D 21 ,……D 33のうち4個の光電変換素子のコーナ部が接する部位、例えば4個の光電変換素子D 11 ,D 12 ,D 21 ,D 22のコーナ部が接する部位に現れるような測定領域Mの経路を通過した場合も考慮して、図9と同様な粒子情報参照テーブルを作成する。 D 21, portions which are adjacent to each other among ...... D 33, and sites for example in contact with the photoelectric conversion element D 11 and the photoelectric conversion element D 12, 9 pieces of photoelectric conversion elements D 11, D 12, D 13 , D 21, ... ... four sites corners of the photoelectric conversion element is in contact of D 33, for example of the four photoelectric conversion element D 11, D 12, D 21 , the measurement region M as corner appears at a portion contacting the D 22 in consideration of the case that have passed through the path, create a particle information reference table similar to FIG. 【0055】また、演算部17aにおいて、ピーク値検出手段16a,16b,16cが検出したピーク値E 11 ,E 12 ,E 13 ,E 21 ,……E 33の中から最も大きいピーク値を選択し、その結果を記憶部17bに記憶してもよい。 [0055] Further, the calculating unit 17a, the peak value detecting means 16a, 16b, 16c peak value E 11 which detects, E 12, E 13, E 21, selects the largest peak value among ...... E 33 it may store the result in the storage unit 17b. 【0056】以上のように構成した本発明の第2の実施の形態に係る光強度分布検出装置の作用について説明する。 [0056] The operation of the light intensity distribution detection device according to a second embodiment of the present invention configured as described above will be described. 図10に示すように、矢印Aの方向から標準粒子(粒径が同一のもの)を多数含んだ流体をフローセル1 Fig As shown in 10, the flow cell a fluid containing a large number of standard particles (those particle size of the same) in the direction of the arrow A 1
1に流し込む。 It poured into 1. このとき、測定領域Mのどの位置を粒子が通過するかによって、光検出手段14の光電変換素子D 11 ,D 12 ,D 13 ,D 21 ,……D 33の出力波形は様々なものとなる。 At this time, depending the position of the measuring region M throat particles pass through the photoelectric conversion element D 11 of the light detecting means 14, D 12, D 13, D 21, the output waveform of the ...... D 33 becomes Various . 【0057】例えば、粒子が光検出手段14の中で光電変換素子D 22の受光面に対応する測定領域Mの経路を通過すると、ピーク値検出手段16a,16b,16cは粒子が測定領域Mを通過する間、粒子の散乱光Lsに応じた光電変換素子D 11 ,D 12 ,D 13 ,D 21 ,……D 33の出力電圧をサンプリングしてピーク値を検出する。 [0057] For example, when particles pass through the path of the measurement area M corresponding to the light receiving surface of the photoelectric conversion element D 22 in the light detection means 14, the peak value detecting means 16a, 16b, 16c are particles the measurement region M while passing through the photoelectric conversion element D 11 corresponding to the scattered light Ls of the particles, D 12, D 13, D 21, samples the output voltage of the ...... D 33 detects a peak value. 【0058】この場合に、測定領域Mのレーザ光強度は、中心部が最も強く、中心部からずれて端部に行くほど弱くなるという分布(ほぼガウス分布)をしているので、粒子はレーザ光強度の弱い部分から中心部の強い部分を通り再び弱い部分を通るため、光電変換素子D 22のみが略パルス状の電圧を出力し、他の光電変換素子は、 [0058] In this case, the laser light intensity of the measurement region M in the center is the strongest, since the distribution (approximately Gaussian) that becomes weaker toward the end portion displaced from the center, particles laser because through the strong portions through again weak portions of the heart from the weak light intensity, the photoelectric conversion element D 22 Nomigaryaku pulsed voltage output and the other photoelectric conversion element,
ノイズに応じたレベル電圧しか出力しない。 Level voltage corresponding to the noise only output. 【0059】従って、光電変換素子D 22のピーク値E 22 [0059] Therefore, the peak value of the photoelectric conversion element D 22 E 22
を基準にした場合に、他のピーク値との比(E 11 The ratio of the when the reference, and the other peak value (E 11 /
22 、E 12 /E 22 ……)が分かれば、粒子情報参照テーブルを参照することにより、レーザ光Laが照射されている測定領域Mのレーザ光強度分布を定性的に知ることができる。 E 22, E 12 / E 22 ......) if is known, it can be known by referring to the particle information reference table, qualitatively the laser light intensity distribution in the measurement region M where the laser beam La is irradiated. 【0060】本発明の第3の実施の形態に係る光強度分布検出装置は、図11に示すように、フローセル21、 [0060] Light intensity distribution detection device according to a third embodiment of the present invention, as shown in FIG. 11, the flow cell 21,
レーザ光源22、集光光学系23、トラップ20、光電変換素子アレイ24及び処理装置25から成る。 Laser light source 22, focusing optical system 23, the trap 20, a photoelectric conversion element array 24 and the processor 25. 【0061】フローセル21は、透明部材から成り、所定長さの直線流路21a(Y方向)を有する。 [0061] The flow cell 21 is made of a transparent member, having a predetermined length of the straight channel 21a (Y-direction). ここでは、フローセル21の断面形状は角筒形状としている。 Here, the sectional shape of the flow cell 21 is a square tube shape.
所定の長さの直線流路21aを設けた理由は、請求項2 Reason for providing a predetermined length of the straight channel 21a is claim 2
に係る光強度分布検出装置のフローセル1の場合と同様である。 Is the same as that of the flow cell 1 of the light intensity distribution detection device according to the. 【0062】レーザ光源22は、フローセル21の直線流路21aの所定の箇所にレーザ光Laを照射して照射領域を形成する。 [0062] The laser light source 22 forms an irradiation region is irradiated with a laser beam La at a predetermined point straight channel 21a of the flow cell 21. ここで、レーザ光Laの光軸(X方向)と直線流路21a(Y方向)は交差している。 Here, the optical axis of the laser beam La (X direction) and the straight channel 21a (Y-direction) intersect. 【0063】集光光学系23は、レーザ光源22の光軸と一致する光軸(X方向)を有し、図12に示す照射領域内の所定の領域M(以下、測定領域Mと呼ぶ)において発生する散乱光Lsを集光する機能を備える。 [0063] condensing optical system 23 has an optical axis which is coincident with the optical axis of the laser light source 22 (X direction), a predetermined region within the irradiation region shown in FIG. 12 M (hereinafter, referred to as the measurement area M) a function for converging the scattered light Ls generated in. 【0064】光電変換素子アレイ24は、3個の光電変換素子24a,24b,24cから成り、各受光面が集光光学系23の光軸(X方向)に垂直で、且つ流路の中心軸(Y方向)とレーザ光軸(X方向)に垂直なZ方向に隣接して設けられている。 [0064] The photoelectric conversion element array 24, three photoelectric conversion elements 24a, 24b, consists 24c, each light receiving surface is perpendicular to the optical axis of the condensing optical system 23 (X direction), and the flow path center axis of the (Y direction) are provided adjacent to the Z-direction perpendicular to the laser optical axis (X direction). 光電変換素子24a,24 The photoelectric conversion element 24a, 24
b,24cは、粒子が測定領域Mを通過する間に発する散乱光Lsを電圧に変換する。 b, 24c converts the scattered light Ls emitted while the particles pass through the measurement area M in the voltage. 【0065】集光光学系23の光軸上に位置するトラップ20は、レーザ光源22の光源光Laが直接、光電変換素子アレイ24に入射するのを阻止する。 [0065] traps located on the optical axis of the focusing optical system 23 20 includes a light source light La of the laser light source 22 is directly prevents from entering the photoelectric conversion element array 24. これにより、光電変換素子24には、流路21a内を通過する粒子が発する散乱光Lsのみが入射することになる。 Thus, the photoelectric conversion element 24, and only the scattered light Ls particles passing through the flow path 21a emitted is incident. 【0066】処理装置25は、粒子が測定領域Mを通過する間に3個の光電変換素子24a,24b,24cが夫々出力する電圧のピーク値(パルス高)Ea,Eb, [0066] processing apparatus 25, three photoelectric conversion elements 24a, 24b, 24c peak value of the voltage respectively output while the particles pass through the measurement region M (pulse height) Ea, Eb,
Ecを検出するピーク値検出手段26a,26b,26 Peak detecting the Ec value detecting means 26a, 26b, 26
cと、粒子情報参照テーブルを作成する粒子情報検出手段27から成る。 And c, consisting of particles information detecting means 27 to create a reference particle information table. 【0067】粒子情報検出手段27は、演算部27aと記憶部27bを備え、先ず演算部27aにおいて、次の(1)乃至(3)の演算処理を行い、その結果を記憶部27bに記憶して、粒子情報参照テーブルを作成する。 [0067] particles information detecting means 27, an arithmetic unit 27a and a storage unit 27b, first the computing section 27a, performs arithmetic processing of the following (1) to (3), and stores the result in the storage unit 27b Te, to create a reference particle information table. (1)ピーク値検出手段26bの出力電圧Ebに対するピーク値検出手段26aの出力電圧Eaの比Ea/Eb (1) the ratio of the output voltage Ea of the peak value detecting means 26a to the output voltage Eb of the peak value detecting means 26b Ea / Eb
を演算する。 To calculate the. (2)ピーク値検出手段26bの出力電圧Ebに対するピーク値検出手段26cの出力電圧Ecの比Ec/Eb (2) the ratio Ec / Eb of the output voltage Ec of the peak value detecting means 26c to the output voltage Eb of the peak value detecting means 26b
を演算する。 To calculate the. (3)ピーク値検出手段26a,26b,26cの出力電圧Ea,Eb,Ecの和(Ea+Eb+Ec)を演算する。 (3) calculating a peak value detecting means 26a, 26b, the output voltage Ea of 26c, Eb, the sum of Ec and (Ea + Eb + Ec). 【0068】以上のように構成した本発明の第3の実施の形態に係る光強度分布検出装置の作用について説明する。 [0068] The operation of the light intensity distribution detection device according to a third embodiment of the present invention configured as described above will be described. 図12に示すように、矢印Aの方向から標準粒子(粒径が同一のもの)を多数含んだ流体をフローセル2 Figure 12 As shown, the arrow standard particles from the direction of A flow cell fluid containing a large number of (particle size same thing) 2
1に流し込む。 It poured into 1. このとき、測定領域Mのどの位置を粒子が通過するかによって、光電変換素子アレイ24の各光電変換素子24a,24b,24c出力波形は様々なものとなる。 At this time, depending the position of the measuring region M throat particles pass, each photoelectric conversion element 24a of the photoelectric conversion element array 24, 24b, 24c output waveform becomes different ones. そして、3個の光電変換素子24a,24 Then, the three photoelectric conversion elements 24a, 24
b,24cから成る光電変換素子アレイ24の場合には、主な5通りの通過パターンが考えられる。 b, and when the photoelectric conversion element array 24 is composed of 24c, it is considered passing pattern of the main five different. 【0069】先ず、標準粒子が、図12に示す測定領域Mの中心Mcを通過する場合で、標準粒子による散乱光LsのスポットSは、図13(a)に示すように、光電変換素子アレイ24の中央の光電変換素子24bのみに現れ、矢印方向に移動する。 [0069] First, standard particles, when passing through the center Mc of the measurement region M shown in FIG. 12, the spot S of the scattered light Ls with standard particles, as shown in FIG. 13 (a), the photoelectric conversion element array appeared only in the center of the photoelectric conversion element 24b of 24, it moves in the arrow direction. このとき、各光電変換素子24a,24b,24cの出力波形(時間tと電圧Eとの関係)は、図13(b)に示すようになる。 At this time, the photoelectric conversion elements 24a, 24b, 24c of the output waveform (the relationship between the time t and the voltage E) is as shown in Figure 13 (b). 【0070】即ち、光電変換素子24bのみが測定領域Mの中心Mcをある時間の間(時間t1から時間t2)に通過する標準粒子の散乱光Lsに応じた略パルス状の電圧(ピーク値Eb)を出力し、他の光電変換素子24 [0070] That is, the photoelectric conversion element 24b only the measurement area M substantially pulse-like voltage (peak value Eb which (from the time t1 time t2) center for a period of time the Mc corresponding to the scattered light Ls of the standard particle which passes the ) outputs, other photoelectric conversion element 24
a,24cはノイズに応じた略レベル電圧(ピーク値E a, substantially level voltage 24c is in accordance with the noise (peak value E
a,Ec)しか出力しない。 a, Ec) only and does not output. 【0071】次に、標準粒子が、図12に示す測定領域Mの一端部Msを通過する場合で、標準粒子による散乱光LsのスポットSは、図14(a)に示すように、光電変換素子アレイ24の一端の光電変換素子24aのみに現れ、矢印方向に移動する。 Next, standard particles, when passing through the end portion Ms of the measuring region M shown in FIG. 12, the spot S of the scattered light Ls with standard particles, as shown in FIG. 14 (a), the photoelectric conversion appeared only in the photoelectric conversion element 24a of the one end of the array 24, moves in the arrow direction. このとき、各光電変換素子24a,24b,24cの出力波形(時間tと電圧E At this time, the photoelectric conversion elements 24a, 24b, 24c of the output waveform (time t and the voltage E
との関係)は、図14(b)に示すようになる。 Relationship with) is as shown in FIG. 14 (b). 【0072】即ち、光電変換素子24aのみが測定領域Mの一端部Msをある時間の間(時間t3から時間t4) [0072] That is, during the time that only the photoelectric conversion element 24a is one end portion Ms of the measuring region M (time t4 from the time t3)
に通過する標準粒子の散乱光Lsに応じた略パルス状の電圧(ピーク値Ea)を出力し、他の光電変換素子24 Outputs substantially pulse-like voltage (peak value Ea) according to the scattered light Ls of the standard particles passing through the other photoelectric conversion element 24
b,24cはノイズに応じた略レベル電圧(ピーク値E b, substantially level voltage 24c is in accordance with the noise (peak value E
b,Ec)しか出力しない。 b, Ec) only and does not output. 【0073】同様に、標準粒子が、図12に示す測定領域Mの他端部Ms(一端部Msと対称の位置)を通過する場合で、標準粒子による散乱光LsのスポットSは、 [0073] Similarly, the standard particles, when passing through the other end portion Ms of the measuring region M illustrated in FIG. 12 (the position of the one end portion Ms symmetric), the spot S of the scattered light Ls with standard particles,
図15(a)に示すように、光電変換素子アレイ24の他端の光電変換素子24cのみに現れ、矢印方向に移動する。 As shown in FIG. 15 (a), appears only in the photoelectric conversion element 24c of the other end of the photoelectric conversion element array 24, it moves in the arrow direction. このとき、各光電変換素子24a,24b,24 At this time, the photoelectric conversion elements 24a, 24b, 24
cの出力波形(時間tと電圧Eとの関係)は、図15 c of the output waveform (the relationship between the time t and the voltage E) is 15
(b)に示すようになる。 As shown in (b). 【0074】即ち、光電変換素子24cのみが測定領域Mの他端部Msをある時間の間(時間t3から時間t4) [0074] That is, during the time that only the photoelectric conversion element 24c is the other part Ms of the measurement area M (time t4 from the time t3)
に通過する標準粒子の散乱光Lsに応じた略パルス状の電圧(ピーク値Ec)を出力し、他の光電変換素子24 Outputs substantially pulse-like voltage (peak value Ec) corresponding to the scattered light Ls of the standard particles passing through the other photoelectric conversion element 24
a,24bはノイズに応じた略レベル電圧(ピーク値E a, substantially level voltage 24b is in accordance with the noise (peak value E
a,Eb)しか出力しない。 a, Eb) only and does not output. 【0075】更に、標準粒子が、図12に示す測定領域Mの一経路Mmを通過する場合で、標準粒子による散乱光LsのスポットSは、図16(a)に示すように、光電変換素子24aと光電変換素子24bの境界にまたがって現れ、矢印方向に移動する。 [0075] Additionally, standard particles, when passing through one path Mm measurement area M illustrated in FIG. 12, the spot S of the scattered light Ls with standard particles, as shown in FIG. 16 (a), the photoelectric conversion element appear across the boundary 24a and the photoelectric conversion element 24b, is moved in the direction of the arrow. このとき、各光電変換素子24a,24b,24cの出力波形(時間tと電圧Eとの関係)は、図16(b)に示すようになる。 At this time, the photoelectric conversion elements 24a, 24b, 24c of the output waveform (the relationship between the time t and the voltage E) is as shown in FIG. 16 (b). 【0076】即ち、光電変換素子24a,24bが測定領域Mの一経路Mmをある時間の間(時間t5から時間t6)に通過する標準粒子の散乱光Lsに応じた略パルス状の電圧(ピーク値Ea,Eb)を出力し、光電変換素子24cはノイズに応じた略レベル電圧(ピーク値E [0076] That is, the photoelectric conversion elements 24a, 24b is substantially pulse-like voltage (peak corresponding to the scattered light Ls of the standard particles passing between the time that an route Mm (time t6 from the time t5) of the measurement region M values ​​Ea, outputs Eb), the photoelectric conversion element 24c substantially level voltage according to noise (peak value E
c)しか出力しない。 c) only to output. 【0077】同様に、標準粒子が、図12に示す測定領域Mの他経路Mm(一経路Mmと対称の位置)を通過する場合で、標準粒子による散乱光LsのスポットSは、 [0077] Similarly, the standard particles, when passing through the other path Mm (one path Mm symmetrical positions) of the measurement region M shown in FIG. 12, the spot S of the scattered light Ls with standard particles,
図17(a)に示すように、光電変換素子24bと光電変換素子24cの境界にまたがって現れ、矢印方向に移動する。 As shown in FIG. 17 (a), it appears across the boundary of the photoelectric conversion element 24b and the photoelectric conversion elements 24c, moves in the arrow direction. このとき、各光電変換素子24a,24b,2 At this time, the photoelectric conversion elements 24a, 24b, 2
4cの出力波形(時間tと電圧Eとの関係)は、図17 4c the output waveform of (relationship between time t and the voltage E), FIG. 17
(b)に示すようになる。 As shown in (b). 【0078】即ち、光電変換素子24b,24cが測定領域Mの他経路Mmをある時間の間(時間t5から時間t6)に通過する標準粒子の散乱光Lsに応じた略パルス状の電圧(ピーク値Eb,Ec)を出力し、光電変換素子24aはノイズに応じた略レベル電圧(ピーク値E [0078] That is, the photoelectric conversion elements 24b, 24c are other routes for a period of time the Mm substantially pulse-like voltage corresponding to the scattered light Ls of the standard particles passing (from time t5 time t6) to (peak of the measurement region M value Eb, and outputs the Ec), the photoelectric conversion element 24a substantially level voltage according to noise (peak value E
a)しか出力しない。 a) only output. 【0079】そして、粒子情報検出手段27では、図1 [0079] Then, the particle information detecting means 27, FIG. 1
3(a)に示すように、中央の光電変換素子24bのみにスポットSが現れた場合、演算部17aにおいて、光電変換素子24bのピーク電圧Ebに対する光電変換素子24aのピーク電圧Eaの比Ea/Ebを演算し、E As shown in 3 (a), when only the center of the photoelectric conversion element 24b is spot S appeared, the arithmetic unit 17a, the ratio of the peak voltage Ea of the photoelectric conversion element 24a with respect to the peak voltage Eb of the photoelectric conversion element 24b Ea / It calculates the Eb, E
a<Ebであるから、比Ea/Ebとしてほぼゼロ(E Because it is a <Eb, almost zero (E as the ratio Ea / Eb
a/Eb≒0)の値を出力し、記憶部27bに記憶する。 Outputs the value of a / Eb ≒ 0), the storage unit 27b. 【0080】また、演算部27aにおいて、光電変換素子24bのピーク電圧Ebに対する光電変換素子24c [0080] Further, the calculating unit 27a, the photoelectric conversion element 24c to the peak voltage Eb of the photoelectric conversion element 24b
のピーク電圧Ecの比Ec/Ebを演算し、Ec<Eb Of calculating the ratio Ec / Eb peak voltage Ec, Ec <Eb
であるから、比Ec/Ebとしてほぼゼロ(Ec/Eb Since it is nearly zero as the ratio Ec / Eb (Ec / Eb
≒0)の値を出力し、記憶部27bに記憶する。 ≒ outputs the value of 0), the storage unit 27b. 更に、 In addition,
演算部27aにおいて、光電変換素子24a,24b, The calculating unit 27a, the photoelectric conversion elements 24a, 24b,
24cの出力電圧Ea,Eb,Ecの和(Ea+Eb+ Output voltage Ea of 24c, Eb, the sum of Ec (Ea + Eb +
Ec)を演算し、例えば、1.0を記憶部27bに記憶する。 Ec) is calculated, for example, stores a 1.0 in the storage unit 27b. 【0081】また、粒子情報検出手段27では、図14 [0081] In the particle information detecting means 27, FIG. 14
(a)に示すように、一端の光電変換素子24aのみにスポットSが現れた場合、演算部27aにおいて、光電変換素子24bのピーク電圧Ebに対する光電変換素子24aのピーク電圧Eaの比Ea/Ebを演算し、Ea (A), the case where only the photoelectric conversion element 24a of the end spots S appeared, the arithmetic unit 27a, the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 24a with respect to the peak voltage Eb of the photoelectric conversion element 24b It calculates the, Ea
>Ebであるから、比Ea/Ebとして非常に大きい値(Ea/Eb≒∞)を出力し、記憶部27bに記憶する。 > Because it is Eb, and outputs a very large value as the ratio Ea / Eb (Ea / Eb ≒ ∞), the storage unit 27b. 【0082】同様に、光電変換素子24bのピーク電圧Ebに対する光電変換素子24cのピーク電圧Ecの比Ec/Ebを演算し、Ec≒Ebであるから、比Ea/ [0082] Similarly, to calculate the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 24c to the peak voltage Eb of the photoelectric conversion element 24b, because it is Ec ≒ Eb, the ratio Ea /
Ebとして約1(Ea/Eb≒1)の値を出力し、記憶部27bに記憶する。 About 1 value outputs of (Ea / Eb ≒ 1) as eb, the storage unit 27b. 更に、演算部27aにおいて、光電変換素子24a,24b,24cの出力電圧Ea,E Further, the calculating unit 27a, the photoelectric conversion elements 24a, 24b, the output voltage Ea of 24c, E
b,Ecの和(Ea+Eb+Ec)を演算し、例えば、 b, the sum of the Ec and (Ea + Eb + Ec) is calculated, for example,
0.2を記憶部27bに記憶する。 Storing 0.2 in the storage unit 27b. 【0083】また、粒子情報検出手段27では、図15 [0083] Further, the particle information detecting means 27, FIG. 15
(a)に示すように、他端の光電変換素子24cのみにスポットSが現れた場合、演算部27aにおいて、光電変換素子24bのピーク電圧Ebに対する光電変換素子24aのピーク電圧Eaの比Ea/Ebを演算し、Ea (A), the case where only the spot S appeared in the photoelectric conversion element 24c of the other end, the calculating unit 27a, the ratio of the peak voltage Ea of the photoelectric conversion element 24a with respect to the peak voltage Eb of the photoelectric conversion element 24b Ea / It calculates the Eb, Ea
≒Ebであるから、比Ea/Ebとして約1(Ea/E Because it is ≒ Eb, as the ratio Ea / Eb about 1 (Ea / E
b≒1)の値を出力し、記憶部27bに記憶する。 It outputs the value of b ≒ 1), stored in the storage unit 27b. 【0084】同様に、光電変換素子24bのピーク電圧Ebに対する光電変換素子24cのピーク電圧Ecの比Ec/Ebを演算し、Ec>Ebであるから、比Ec/ [0084] Similarly, to calculate the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 24c to the peak voltage Eb of the photoelectric conversion element 24b, because it is Ec> Eb, the ratio Ec /
Ebとして非常に大きい値(Ec/Eb≒∞)を出力し、記憶部27bに記憶する。 It outputs a very large value (Ec / Eb ≒ ∞) as Eb, stored in the storage unit 27b. 更に、演算部27aにおいて、光電変換素子24a,24b,24cの出力電圧Ea,Eb,Ecの和(Ea+Eb+Ec)を演算し、 Further, the calculating unit 27a, the photoelectric conversion elements 24a, 24b, the output voltage Ea of 24c, Eb, the sum of Ec and (Ea + Eb + Ec) is calculated,
例えば、0.2を記憶部27bに記憶する。 For example, to store the 0.2 in the storage unit 27b. 【0085】次に、粒子情報検出手段27では、図16 Next, the particle information detecting means 27, FIG. 16
(a)に示すように、光電変換素子24aと光電変換素子24bの境界にスポットSがまたがって現れた場合、 (A), the case where the boundary on the spot S of the photoelectric conversion element 24a and the photoelectric conversion element 24b has appeared across,
演算部27aにおいて、光電変換素子24bのピーク電圧Ebに対する光電変換素子24aのピーク電圧Eaの比Ea/Ebを演算し、Ea≒Ebであるから、比Ea The computing section 27a, calculates a ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 24a with respect to the peak voltage Eb of the photoelectric conversion element 24b, because it is Ea ≒ Eb, the ratio Ea
/Ebとして約1(Ea/Eb≒1)の値を出力し、記憶部27bに記憶する。 / Eb as to output the value of about 1 (Ea / Eb ≒ 1), stored in the storage unit 27b. 【0086】同様に、光電変換素子24bのピーク電圧Ebに対する光電変換素子24cのピーク電圧Ecの比Ec/Ebを演算し、Ec<Ebであるから、比Ec/ [0086] Similarly, to calculate the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 24c to the peak voltage Eb of the photoelectric conversion element 24b, because it is Ec <Eb, the ratio Ec /
Ebとしてほぼゼロ(Ec/Eb≒0)の値を出力し、 Outputs a value of approximately zero (Ec / Eb ≒ 0) as Eb,
記憶部27bに記憶する。 Stored in the storage unit 27b. 更に、演算部27aにおいて、光電変換素子24a,24b,24cの出力電圧E Further, the calculating unit 27a, the photoelectric conversion elements 24a, 24b, 24c of the output voltage E
a,Eb,Ecの和(Ea+Eb+Ec)を演算し、例えば、0.75を記憶部27bに記憶する。 a, Eb, and calculates the sum of Ec (Ea + Eb + Ec), for example, stores a 0.75 in the storage unit 27b. 【0087】また、粒子情報検出手段27では、図17 [0087] In the particle information detecting means 27, FIG. 17
(a)に示すように、光電変換素子24bと光電変換素子24cの境界にスポットSがまたがって現れた場合、 (A), the case where the boundary on the spot S of the photoelectric conversion element 24b and the photoelectric conversion element 24c has appeared across,
演算部27aにおいて、光電変換素子24bのピーク電圧Ebに対する光電変換素子24aのピーク電圧Eaの比Ea/Ebを演算し、Ea<Ebであるから、比Ea The computing section 27a, calculates a ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 24a with respect to the peak voltage Eb of the photoelectric conversion element 24b, because it is Ea <Eb, the ratio Ea
/Ebとしてほぼゼロ(Ec/Eb≒0)の値を出力し、記憶部27bに記憶する。 / Outputs a value of approximately zero (Ec / Eb ≒ 0) as Eb, stored in the storage unit 27b. 【0088】同様に、光電変換素子24bのピーク電圧Ebに対する光電変換素子24cのピーク電圧Ecの比Ec/Ebを演算し、Ec≒Ebであるから、比Ec/ [0088] Similarly, to calculate the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 24c to the peak voltage Eb of the photoelectric conversion element 24b, because it is Ec ≒ Eb, the ratio Ec /
Ebとして約1(Ec/Eb≒1)の値を出力し、記憶部27bに記憶する。 About 1 value outputs of (Ec / Eb ≒ 1) as eb, the storage unit 27b. 更に、演算部27aにおいて、光電変換素子24a,24b,24cの出力電圧Ea,E Further, the calculating unit 27a, the photoelectric conversion elements 24a, 24b, the output voltage Ea of 24c, E
b,Ecの和(Ea+Eb+Ec)を演算し、例えば、 b, the sum of the Ec and (Ea + Eb + Ec) is calculated, for example,
0.75を記憶部27bに記憶する。 Stores 0.75 in the storage unit 27b. 【0089】なお、基準とする電圧は、光電変換素子2 [0089] The voltage of the reference photoelectric conversion element 2
4bのピーク電圧Eb以外の他の光電変換素子24a, Other photoelectric conversion elements 24a other than the peak voltage Eb of 4b,
24cのピーク電圧Ea,Ecでもよいし、また各ピーク電圧の和(Ea+Eb+Ec)でもよい。 24c peak voltage Ea, may be the Ec, also may be the sum of the peak voltage (Ea + Eb + Ec). 要は、光電変換素子24a,24b,24cのピーク電圧の絶対値ではなく、基準電圧に対する各光電変換素子24a,2 In short, the photoelectric conversion elements 24a, 24b, rather than the absolute value of the peak voltage of 24c, the photoelectric respect to the reference voltage conversion element 24a, 2
4b,24cのピーク電圧の比(割合)から標準粒子による散乱光LsのスポットSの位置を求める方が確度が高いからである。 4b, those seeking the position of the spot S of the scattered light Ls by standard particle from the ratio of the peak voltage of 24c (ratio) is because accuracy is high. 【0090】以上のような5通りの場合について、図9 [0090] For the case of five kinds, such as the above, as shown in FIG. 9
に示す粒子情報参照テーブルと同様な、基準電圧を光電変換素子24bのピーク電圧Ebとした場合の粒子情報参照テーブルが作成できる。 As with the particle information reference table shown in a, the reference voltage can be created particles information reference table in the case where the peak voltage Eb of the photoelectric conversion element 24b. 従って、光電変換素子24 Accordingly, the photoelectric conversion element 24
bのピーク電圧Ebに対する光電変換素子24aのピーク電圧Eaの比Ea/Ebと、光電変換素子24bのピーク電圧Ebに対する光電変換素子24cのピーク電圧Ecの比Ec/Ebが分かれば、それらに対応する出力電圧の和(Ea+Eb+Ec)を得ることにより、レーザ光Laが照射されている測定領域Mのレーザ光強度分布を定性的に知ることができる。 b the ratio Ea / Eb of the peak voltage Ea of the photoelectric conversion element 24a with respect to the peak voltage Eb of, if the ratio Ec / Eb of the peak voltage Ec of the photoelectric conversion element 24c to the peak voltage Eb of the photoelectric conversion element 24b is divided, their corresponding by obtaining the sum of the output voltage (Ea + Eb + Ec), the laser beam La can know qualitatively laser light intensity distribution in the measurement region M being irradiated. 【0091】また、上記した5通りの通過パターン以外で、光電変換素子24aと光電変換素子24bの境界又は光電変換素子24bと光電変換素子24cの境界にスポットSがまたがって現れるような測定領域Mの経路を通過した場合であっても、光電変換素子24bのピーク電圧Ebに対する光電変換素子24aのピーク電圧Ea [0091] Further, other than the passage pattern of five types as described above, the photoelectric conversion element 24a and the photoelectric conversion element 24b of the boundary or the photoelectric conversion element 24b and the measurement area such as the boundary of the photoelectric conversion elements 24c appears across the spot S M even when the route passes the peak voltage Ea of the photoelectric conversion element 24a with respect to the peak voltage Eb of the photoelectric conversion element 24b
の比Ea/Ebと、光電変換素子24bのピーク電圧E The ratio Ea / Eb of the peak of the photoelectric conversion element 24b voltage E
bに対する光電変換素子24cのピーク電圧Ecの比E The ratio E of the peak voltage Ec of the photoelectric conversion element 24c for b
c/Ebが分かれば、比Ea/Ebの値と比Ec/Eb If c / Eb is known, the value of the ratio Ea / Eb and the ratio Ec / Eb
の値を粒子情報参照テーブルに当てはめることにより、 By fitting the values ​​for the particle information reference table,
それらに対応する出力電圧の和(Ea+Eb+Ec)を推定し、レーザ光Laが照射されている測定領域Mのレーザ光強度分布を定性的に知ることができる。 Estimating the sum of the output voltages corresponding to them (Ea + Eb + Ec), the laser beam La can know qualitatively laser light intensity distribution in the measurement region M being irradiated. 【0092】本発明は、上述の発明の実施の形態に限定されるものではなく、例えば、フローセルの全体形状としては、L型のフローセル1,11や直線状のフローセル21を用いたが、要は流路の中心軸と集光光学系の光軸が一致するように配置できる形状であればよい。 [0092] The present invention is not intended to be limited to the embodiments of the invention described above, for example, the overall shape of the flow cell, but using L-shaped flow cell 1, 11 and linear flow cell 21, a main it may be any shape that can be arranged so that the center axis and the optical axis of the converging optical system of the flow path coincides. 従って、レーザ光Laと散乱光Lsとの光学的な関わりに影響を与えなければ、フローセルの全体形状は、屈曲又は湾曲形状であってもよい。 Therefore, unless affect the optical relationship between the laser beam La and the scattered light Ls, the overall shape of the flow cell may be a bent or curved shape. 【0093】また、フローセルの断面形状として、上述の発明の実施の形態では、矩形のものを用いたが、円形のものでもよい。 [0093] Further, as the cross-sectional shape of the flow cell, in the embodiment of the foregoing invention has a rectangular ones, it may be of a circular shape. 【0094】 【発明の効果】以上説明したように請求項1に係る発明によれば、光を照射した測定領域を通過する粒子の散乱光強度分布とその粒子が通過した流路の位置から、測定領域の光強度分布を知ることができる。 [0094] According to the first aspect as described above invention, according to the present invention, the position of the channel scattered light intensity distribution and the particles of a particle has passed through passing a measurement region irradiated with the light, the light intensity distribution of the measurement area can be known. 【0095】請求項2に係る発明によれば、光を照射した測定領域を通過する粒子の散乱光強度分布とその粒子が通過した流路の位置から、測定領域の光強度分布を知ることができる。 [0095] According to the invention of claim 2, the position of the channel scattered light intensity distribution and the particles of a particle has passed through passing a measurement region irradiated with the light, to know the light intensity distribution of the measurement region it can. 【0096】請求項3に係る発明によれば、光を照射した測定領域を通過する粒子の散乱光強度分布とその粒子が通過した流路の位置から、測定領域の光強度分布をより細かく知ることができる。 [0096] According to the invention of claim 3, the position of the channel scattered light intensity distribution and the particles of a particle has passed through passing a measurement region irradiated with the light, know the light intensity distribution of the measurement region finer be able to. 【0097】請求項4に係る発明によれば、光を照射した測定領域を通過する粒子の散乱光強度分布とその粒子が通過した流路の位置から、測定領域の光強度分布を知ることができる。 [0097] According to the invention of claim 4, the position of the channel scattered light intensity distribution and the particles of a particle has passed through passing a measurement region irradiated with the light, to know the light intensity distribution of the measurement region it can. 【0098】請求項5に係る発明によれば、光を照射した測定領域を通過する粒子の散乱光強度分布とその粒子が通過した流路の位置から、測定領域の光強度分布を知ることができる。 [0098] According to the invention of claim 5, the position of the channel scattered light intensity distribution and the particles of a particle has passed through passing a measurement region irradiated with the light, to know the light intensity distribution of the measurement region it can.

【図面の簡単な説明】 【図1】本発明の第1の実施の形態に係る光強度分布検出装置の構成図【図2】図1におけるレーザ光を照射した測定領域の平断面図【図3】図1におけるレーザ光を照射した測定領域の縦断面図【図4】図1における光電変換素子アレイの受光状態(a)とそのときの出力波形(b)を示す図【図5】図1における光電変換素子アレイの受光状態(a)とそのときの出力波形(b)を示す図【図6】図1における光電変換素子アレイの受光状態(a)とそのときの出力波形(b)を示す図【図7】図1における光電変換素子アレイの受光状態(a)とそのときの出力波形(b)を示す図【図8】図1における光電変換素子アレイの受光状態(a)とそのときの出力波形(b)を示す図【図9】粒子情報参照テーブル示 Cross-sectional plan view and FIG measurement region irradiated with the laser light in the configuration diagram of the light intensity distribution detection device [2] Figure 1 according to a first embodiment of BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] The present invention 3 is a longitudinal sectional view of the measurement region irradiated with the laser beam in FIG. 1 [4] FIG. [5] showing an output waveform with that when the light receiving state (a) of the photoelectric conversion element array (b) in FIG. 1 FIG. light receiving state of the photoelectric conversion element array in 1 (a) and its Fig. 6 showing the output waveform (b) in the case in FIG. 1 and the light receiving state of the photoelectric conversion element array (a) an output waveform of the time (b) a light receiving state of the photoelectric conversion element array (a) in FIG. 8 is a diagram 1 illustrating a light receiving state of the photoelectric conversion element array (a) and the output waveform (b) at that time in FIG. 7 is a diagram 1 showing a Figure 9 particles information reference table shows showing an output waveform (b) at that time す図【図10】本発明の第2の実施の形態に係る光強度分布検出装置の構成図【図11】本発明の第3の実施の形態に係る光強度分布検出装置の構成図【図12】図11におけるレーザ光を照射した測定領域の縦断面図【図13】図11における光電変換素子アレイの受光状態(a)とそのときの出力波形(b)を示す図【図14】図11における光電変換素子アレイの受光状態(a)とそのときの出力波形(b)を示す図【図15】図11における光電変換素子アレイの受光状態(a)とそのときの出力波形(b)を示す図【図16】図11における光電変換素子アレイの受光状態(a)とそのときの出力波形(b)を示す図【図17】図11における光電変換素子アレイの受光状態(a)とそのときの出力波形(b)を示す図【図18】 Diagram Figure of the light intensity distribution detection device according to the third embodiment of the block diagram FIG. 11 the present invention of the light intensity distribution detection device according to a second embodiment of to FIG. [10] The present invention 12] Figure 14 illustrates the output waveform of (b) of the longitudinal sectional view [13] in FIG. 11 and the light receiving state of the photoelectric conversion element array (a) the time of the measurement region irradiated with the laser beam in FIG. 11 light receiving state of the photoelectric conversion element array in the 11 (a) and its Fig. [15] showing the output waveform (b) in the case in FIG. 11 and the light receiving state of the photoelectric conversion element array (a) an output waveform of the time (b) a light receiving state of the photoelectric conversion element array (a) in FIG. 17] FIG. 11 shows the output waveform of the light receiving state (a) and the time of the photoelectric conversion element array (b) in FIG. [16] Figure 11 shows the Figure [18] showing the output waveform (b) at that time 来の光散乱式粒子計数装置の構成図【符号の説明】 1,11,21…フローセル、1a,11a,21a… Come diagram of the light scattering particle counter apparatus EXPLANATION OF REFERENCE NUMERALS 1, 11, 21 ... flow cell, 1a, 11a, 21a ...
直線流路、2,12,22…レーザ光源(光源)、3, Straight channel, 2,12,22 ... laser light source (light source), 3,
13,23…集光光学系(集光手段)、4,24…光電変換素子アレイ、4a,4b,4c,24a,24b, 13, 23 ... condensing optical system (focusing means), 4,24 ... photoelectric conversion element array, 4a, 4b, 4c, 24a, 24b,
24c…光電変換素子、5,15,25…処理装置、6 24c ... photoelectric conversion element, 5, 15, 25 ... processing device, 6
a,6b,6c,16a,16b,16c,26a,2 a, 6b, 6c, 16a, 16b, 16c, 26a, 2
6b,26c…ピーク値検出手段(電圧検出手段)、 6b, 26c ... peak value detecting means (voltage detection means),
7,17,27…粒子情報検出手段、14…光検出手段、20…トラップ、La…レーザ光、Ls…散乱光、 7,17,27 ... particles information detecting means, 14 ... light detection unit, 20 ... trap, La ... laser light, Ls ... scattered light,
M…測定領域。 M ... measurement area.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl. 7 ,DB名) G01N 15/14 G01N 15/02 ────────────────────────────────────────────────── ─── of the front page continued (58) investigated the field (Int.Cl. 7, DB name) G01N 15/14 G01N 15/02

Claims (1)

  1. (57)【特許請求の範囲】 【請求項1】 透明部材で屈曲形状に形成したフローセルと、このフローセルの流路に光を照射して測定領域を形成する光源と、前記流路の中心軸と一致する光軸を有して前記測定領域で発生する粒子の散乱光を集光する集光手段と、この集光手段が集光した散乱光を受光する複数の光電変換素子から成る光検出手段と、前記複数の光電変換素子の出力信号を検出する電圧検出手段と、この電圧検出手段の出力信号を互いに比較して粒子が通過した前記測定領域の通過位置データと粒子の散乱光強度データを出力する粒子情報検出手段を備えることを特徴とする光強度分布検出装置。 (57) and a flow cell formed to the Claims 1 transparent member bent shape, a light source for forming a measurement region by irradiating light to the flow path of the flow cell, the flow path center axis of the matching the focusing means for the scattered light of the particles for converging light generated in the measurement region has an optical axis, the light detection comprising a plurality of photoelectric conversion elements for receiving scattered light the focusing means is condensed with means and a voltage detecting means for detecting an output signal of said plurality of photoelectric conversion elements, the scattered light intensity data of the passing position data and particles of the measurement region in which the particles by comparing the output signal of the voltage detecting means with each other passes light intensity distribution detection device, characterized in that it comprises a particle information detection means for outputting. 【請求項2】 前記複数の光電変換素子から成る光検出手段は、各受光面が前記流路の中心軸に垂直で、且つ前記流路の中心軸と前記光源の光軸にほぼ垂直な方向に隣接して設けたN(Nは2以上の整数)個の光電変換素子から成る光電変換素子アレイである請求項1記載の光強度分布検出装置。 Wherein the light detecting means comprising a plurality of photoelectric conversion elements, a respective light-receiving surface is perpendicular to the central axis of the flow path, and in a direction substantially perpendicular to the optical axis of said the central axis of the channel source N (N is an integer of 2 or more) pieces of light intensity distribution detection device according to claim 1, wherein the photoelectric conversion element array of photoelectric conversion elements arranged adjacent to. 【請求項3】 前記複数の光電変換素子から成る光検出手段は、縦と横がV個×H個(V、Hとも2以上の整数)の光電変換素子から成り、各受光面が前記流路の中心軸に垂直である請求項1記載の光強度分布検出装置。 Wherein the light detecting means comprising a plurality of photoelectric conversion elements, vertical and horizontal is made from the photoelectric conversion element of the V × H number (V, H with an integer of 2 or more), the flow is the light receiving surface light intensity distribution detection device according to claim 1, wherein the central axis of the road is vertical. 【請求項4】 透明部材で形成したフローセルと、このフローセルの流路に光を照射して測定領域を形成する光源と、前記光の中心軸と一致する光軸を有して前記測定領域で発生する粒子の散乱光を集光する集光手段と、この集光手段の光軸上に位置するトラップと、前記集光手段が集光した散乱光を受光する複数の光電変換素子から成る光検出手段と、前記複数の光電変換素子の出力信号を検出する電圧検出手段と、この電圧検出手段の出力信号を互いに比較して粒子が通過した前記測定領域の通過位置データと粒子の散乱光強度データを出力する粒子情報検出手段を備えることを特徴とする光強度分布検出装置。 A flow cell formed by 4. transparent member, a light source for forming a measurement region by irradiating light to the flow path of the flow cell, in the light the measurement region has a light axis coincident with the central axis of a focusing means for focusing the scattered light generated particles, and the trap which is located on the optical axis of the focusing means, the light including a plurality of photoelectric conversion elements, wherein the focusing means is for receiving scattered light condensed a detecting means, the scattered light intensity of the plurality of voltage detection means for detecting the output signal of the photoelectric conversion element, passing position data and particles of the measurement region in which particles passed by comparing the output signal of the voltage detecting means with each other light intensity distribution detection device, characterized in that it comprises a particle information detection means for outputting data. 【請求項5】 前記複数の光電変換素子から成る光検出手段は、各受光面が前記光源の光軸に垂直で、且つ前記流路の中心軸と前記光源の光軸にほぼ垂直な方向に隣接して設けたN(Nは2以上の整数)個の光電変換素子で成る光電変換素子アレイである請求項4記載の光強度分布検出装置。 5. The light detecting means comprising a plurality of photoelectric conversion elements, a respective light-receiving surface is perpendicular to the optical axis of the light source, and in a direction substantially orthogonal to the optical axis of said the central axis of the channel source adjacent to provided the N (N is an integer of 2 or more) pieces of light intensity distribution detection device according to claim 4, wherein a photoelectric conversion element array of the photoelectric conversion element.
JP1540898A 1998-01-28 1998-01-28 Light intensity distribution detection device Expired - Fee Related JP3480670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1540898A JP3480670B2 (en) 1998-01-28 1998-01-28 Light intensity distribution detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1540898A JP3480670B2 (en) 1998-01-28 1998-01-28 Light intensity distribution detection device

Publications (2)

Publication Number Publication Date
JPH11211651A true JPH11211651A (en) 1999-08-06
JP3480670B2 true JP3480670B2 (en) 2003-12-22

Family

ID=11887922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1540898A Expired - Fee Related JP3480670B2 (en) 1998-01-28 1998-01-28 Light intensity distribution detection device

Country Status (1)

Country Link
JP (1) JP3480670B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035616A1 (en) 1997-02-13 1998-08-20 Boston Scientific Ireland Limited, Barbados Head Office Percutaneous and hiatal devices and methods for use in minimally invasive pelvic surgery
CN100344956C (en) * 2002-09-27 2007-10-24 理音株式会社 Flow cell and particle measurement device using same
KR100860933B1 (en) * 2005-03-22 2008-09-29 리온 가부시키 가이샤 Flow cell and particle measuring apparatus using the same
JP2009162650A (en) * 2008-01-08 2009-07-23 Sony Corp Optical measuring device
JP5719473B1 (en) * 2014-09-25 2015-05-20 リオン株式会社 Chemical liquid particle counter

Also Published As

Publication number Publication date Type
JPH11211651A (en) 1999-08-06 application

Similar Documents

Publication Publication Date Title
US3646352A (en) Method of measuring the concentration and/or size of suspended particles by forward scattering of light
US6108398A (en) X-ray microfluorescence analyzer
US5576831A (en) Wafer alignment sensor
US4664513A (en) Multidimensional vorticity measurement optical probe system
US4647193A (en) Optical target ranging apparatus
US5004340A (en) Calibration target for surface analysis scanner systems
US4893928A (en) Highly sensitive particle size detection device having noise cancellation
US5608530A (en) Inspection device for measuring a geometric dimension of a part
US6556652B1 (en) Measurement of critical dimensions using X-rays
US4669875A (en) Foreign particle detecting method and apparatus
US4273443A (en) Method and apparatus for measurement of reradiation in particle flow cell systems
US4920275A (en) Particle measuring device with elliptically-shaped scanning beam
US4942305A (en) Integrating sphere aerosol particle detector
US4140395A (en) Electro-optical method and system for in situ measurements of particle size and distribution
US5793478A (en) Apparatus for measuring particle properties
US4468120A (en) Foreign substance inspecting apparatus
US4263508A (en) Pulse edge measurement for determining particle dimensional characteristics
US5144524A (en) Light trap for blocking reflection and scattering of light
EP0065409A2 (en) Apparatus for detecting a particle agglutination pattern
US3851169A (en) Apparatus for measuring aerosol particles
US6806959B2 (en) Measurement of surface defects on a movable surface
US7283613B2 (en) Method of measuring the momentum transfer spectrum of elastically scattered X-ray quanta
US4917496A (en) Particle size measuring instrument with direct scattered light detection
US5192870A (en) Optical submicron aerosol particle detector
US4984889A (en) Particle size measuring system with coincidence detection

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees