JP4105888B2 - Particle size distribution measuring device - Google Patents

Particle size distribution measuring device Download PDF

Info

Publication number
JP4105888B2
JP4105888B2 JP2002115166A JP2002115166A JP4105888B2 JP 4105888 B2 JP4105888 B2 JP 4105888B2 JP 2002115166 A JP2002115166 A JP 2002115166A JP 2002115166 A JP2002115166 A JP 2002115166A JP 4105888 B2 JP4105888 B2 JP 4105888B2
Authority
JP
Japan
Prior art keywords
light
array detector
scattered light
sample cell
scattered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002115166A
Other languages
Japanese (ja)
Other versions
JP2003315243A (en
Inventor
拓司 黒住
英幸 池田
達夫 伊串
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2002115166A priority Critical patent/JP4105888B2/en
Publication of JP2003315243A publication Critical patent/JP2003315243A/en
Application granted granted Critical
Publication of JP4105888B2 publication Critical patent/JP4105888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、分散している粒子群にレーザ光を照射することによって生じる回折/散乱光を検出し、その検出によって得られる散乱光強度信号に基づいて粒子群の粒子径分布を測定する粒子径分布測定装置に関する。
【0002】
【従来の技術】
試料粒子による光の回折現象および/または散乱現象を利用した粒子径分布測定装置では、回折光および/または散乱光の強度分布、つまり、回折角および/または散乱角と光強度との関係を測定し、これにフラウンホーファ回折理論および/またはミー散乱理論に基づく演算処理を施すことによって、試料粒子の粒子径分布が算出される。
【0003】
図3は、従来の粒子径分布測定装置における光学系の要部を概略的に示すもので、この図において、41は例えば分散媒中に粒子を分散させた液体(以下、試料液という)を収容する試料セルである。そして、42,43は試料セル41の厚み方向の一方の側、すなわち、試料セル41の後方側に設けられる光源および集光レンズであり、44は試料セル41の厚み方向の他方の側、すなわち、試料セル41の前方側の集光レンズ43の焦点位置に設けられるフォトダイオードアレイ検出器(マルチチャンネル検出器)で、透過光と散乱角が比較的小さい(例えば0〜30°)散乱光を検出するものであり、集光レンズが光源側に位置する所謂逆フーリエ光学系に形成されている。なお、散乱角が比較的大きい(30°以上)散乱光は、試料セル41の側方および後方にも設けられる複数のフォトダイオード(シングルチャンネル型検出器)(図示していない)によって検出される。
【0004】
ところで、上記構成の粒子径分布測定装置においては、直径が1mm以上の大きな粒子からの散乱光は、集光レンズ43の焦点のごく近くで強く検出される。このため、前記大粒子を確実に測定できるようにするには、フォトダイオードアレイ検出器44の中心部の透過光チャンネル44a付近を微細加工し、散乱角の小さい(例えば0〜5°)散乱光を検出する必要があり、その場合、フォトダイオードアレイ検出器44の製造コストがアップし、装置全体がコストアップするといった課題がある。
【0005】
そこで、前記フォトダイオードアレイ検出器44の前記中心部付近を微細加工せずに、前記散乱角の小さい散乱光を検出しようとすると、集光レンズ43の焦点距離を長くする必要があり、この焦点距離を長くすると、図中の距離Lが大きくなり、同じ散乱角範囲(例えば0〜30°)の散乱光を受光するには、これに伴ってフォトダイオードアレイ検出器44の寸法Hが大きくなり、この場合もフォトダイオードアレイ検出器44の製造コストがアップし、装置全体がコストアップするといった課題がある。
【0006】
【0007】
この発明は、上述の事柄に留意してなされたもので、その目的は、比較的小さい散乱角の散乱光を検出するためのフォトダイオードアレイ検出器を安価なもので構成しながらも、粒子径分布を精度よく測定することができる粒子径分布測定装置を提供することである。
【0008】
【課題を解決するための手段】
上記目的を達成するため、この発明における粒子径分布測定装置は、光源と、この光源からの光が照射される試料セルと、前記光の光軸上で前記光源と試料セルとの間に配置される集光レンズと、前記試料セルを透過した透過光が焦点を結ぶ前記集光レンズの焦点位置近傍に配置された第1アレイ検出器とにより逆フーリエ光学系に構成されている粒子径分布測定装置であって、前記試料セルの前方かつ前記第1アレイ検出器の後方には、前記第1アレイ検出器によって検出することができない散乱光で前記第1アレイ検出器によって検出される散乱光の散乱角と連続する角度から所定角度の散乱光までを検出する第2アレイ検出部が配置され、これら第1アレイ検出器と第2アレイ検出器とによって透過光並びに連続する所定角度範囲の散乱光を分担して検出するように構成したことを特徴としている。
【0009】
【0010】
上記構成の発明においては、第1アレイ検出器の他に、第2アレイ検出器を設け、これら2つのアレイ検出器によって、例えば0〜30°までの透過光並びに比較的散乱角の小さい散乱光を分担して検出できるようにし、前記所定角度範囲の散乱光をもれなく、連続的に受光できるようにしている。そして、第1アレイ検出器においては、焦点距離は比較的長くするが、散乱角の小さい(例えば0〜10°程度)の透過光及び散乱光のみを受光するようにして、その大きさ(図2における寸法L1 )を可及的に小さいものとする。そして、この第1アレイ検出器においては、中心部に微細加工を施さなくても、前記散乱角の小さい散乱光を確実に受光することができ、1mm以上の大粒子の測定を行うことができる。一方、第2アレイ検出器では、第1アレイ検出器で検出できない散乱角のやや小さい(例えば5〜30°程度)散乱光を受光することができ、1mm未満の小さい粒子の測定を行うことができる。そして、この第2アレイ検出器は、第1アレイ検出器よりもさらに中心部に微細加工を施す必要がなくなり、この場合、市販の量産型リニアフォトダイオードアレイを用いることができる。
【0011】
つまり、二つのアレイ検出器を用いることにより、一つのアレイ検出器を用いた場合に比べて、焦点距離を延長してアレイ検出器を配置した場合でも、同じ散乱角範囲(例えば0〜30°)の散乱光を受光するのに要する全てのフォトダイオードアレイの寸法(図2におけるH1 )を小さくすることができ、その結果、安価なフォトダイオードアレイを用いることができるので、装置全体の製造コストを低減させることができる。勿論、測定精度の低下を来すことはない。
【0012】
【発明の実施の形態】
以下、この発明の詳細を、図を参照しながら説明する。図1および図2は、この発明の一つの実施の形態を示すもので、図1は、この発明の粒子径分布測定装置の構成の一例を概略的に示し、図2はその要部の構成を拡大図とともに示すものである。そして、図1に示す粒子径分布測定装置は、その光学系が逆フーリエ光学系に構成されている。すなわち、図1において、1は分散媒に測定対象の粒子群を分散させた液体(以下、試料液という)2を収容する透明な容器よりなる試料セルで、その光路方向の長さ(厚み)は、従来のこの種の装置におけるものより小さくしてある。なお、この試料セル1は試料液2が流通的に供給される流通型試料セルであってもよい。
【0013】
3は試料セル1の後方側に設けられる照射光源としてのレーザ光源で、レーザ光を発する。4はレーザ光源3と試料セル1との間に設けられる集光レンズで、その焦点距離は比較的長く、例えば300mmである。前記レーザ光源3から発したレーザ光は、集光レンズ4によって適宜収斂され、集光レーザ光(照射光)3aとなって、試料セル1内の試料液2を照射する。
【0014】
6は試料セル1の前方側に設けられる第1アレイ検出器で、試料セル1を透過した透過光5が焦点を結ぶ位置、すなわち、集光レンズ4の焦点位置に配置されている。この第1アレイ検出器6は、複数のフォトダイオードよりなるもので、例えば図2の拡大図示部Aに示すように、集光レンズ4の光軸4aに対応するように設けられる透過光検出部6aと、この透過光検出部6aを中心にして互いに半径の異なるリング状または半リング状の受光面を複数個同心状に配列した複数の散乱光検出部6bとからなり、それらの受光面を光軸4aと直交する状態で設けられ、試料セル1内の粒子によって回折または散乱した照射光Lのうち小さい角度(例えば0〜5°程度)で散乱/回折した散乱光7を各散乱角ごとにそれぞれ受光して、それらの光強度を測定するものである。この第1アレイ検出器6は、その全長(図2において符号L1 で示す)が例えば25mm程度の小さいものであり、その中心部微細加工を施さなくても、微小角散乱光7を受光することができ、1mm以上の大粒子の測定を行うことができる。なお、8は第1アレイ検出器6を構成するフォトダイオード6a,6bの出力を増幅するプリアンプである。
【0015】
9は第1アレイ検出器6と試料セル1との間に設けられる第2アレイ検出器で、この第2アレイ検出器9は、第1アレイ検出器6では検出することができない光10、つまり、試料セル1内の粒子によって回折または散乱した照射光3aのうちやや小さい角度(例えば5〜30°程度)で散乱/回折した散乱光10を各散乱角ごとにそれぞれ受光して、それらの光強度を測定するものである。この第2アレイ検出器9は、第1アレイ検出器6よりもさらに微細加工を必要としないので、例えば図2の拡大図示部Bに示すように、矩形状の受光部9aを複数個例えば上下方向に配設してなる市販の量産型リニアフォトダイオードで構成され、その受光面を光軸4aに直交させた状態で設けられている。なお、11は第2アレイ検出器6を構成するフォトダイオード9aの出力を増幅するプリアンプである。
【0016】
また、試料セル1の近傍には、試料セル1内の粒子によって回折または散乱した照射光3aのうち比較的大きい角度(例えば30〜180°)で散乱/回折した広角散乱光を、各散乱角ごとに個別に検出する広角散乱光用光検出器群12が設けられている。この広角散乱光用光検出器群12は、第1アレイ検出器6や第2アレイ検出器9と異なる角度で設けられる複数のフォトダイオード13〜15からなり、それぞれの配設角度に応じて、試料セル1内の粒子による所定角度を超える所定角度の散乱光を検出することができ、フォトダイオード13が前方散乱光16aを、フォトダイオード14が側方散乱光16bを、フォトダイオード15が後方散乱光16cをそれぞれ検出する。17はフォトダイオード13〜15をそれぞれ所定の角度で保持する電気回路基板で、プリアンプを備えている。
【0017】
そして、18は各プリアンプ11および電気回路基板17からの出力を順次取り込み、AD変換器19に順次送出するマルチプレクサ、20はAD変換器19の出力が入力される演算処理装置としてのコンピュータである。このコンピュータ20は、ディジタル信号に変換された第1アレイ検出器6、第2アレイ検出器9およびフォトダイオード13〜15の出力(光強度に関するディジタルデータ)を、フラウンホーファ回折理論やミー散乱理論に基づいて処理し、粒子群における粒子径分布を求めるプログラムが格納されている。21は演算結果などを表示するカラーディスプレイである。
【0018】
上述のように構成された粒子径分布測定装置においては、試料セル1に試料液2を収容した状態で、レーザ光源3からレーザ光を発すると、このレーザ光は、集光レンズ4において収斂され、照射光3aとなって試料セル1内の試料液2を照射する。そして、この照射光3aは、試料セル1中の粒子によって回折または散乱する。その回折光または散乱光のうち、0〜5°といった散乱角の小さい散乱光7(1mm以上の大きな粒子に起因する散乱光)は、第1アレイ検出器6上において受光され、5〜30°といった散乱角のやや小さい散乱光10(1mm未満の小さい粒子に起因する散乱光)は、第2アレイ検出器9上において受光される。これらのアレイ検出器6,9が検出した光強度はアナログ電気信号に変換され、さらにプリアンプ8,11を経てマルチプレクサ18に入力される。
【0019】
一方、前記粒子によって回折または散乱した照射光3aのうち、散乱角の比較的大きいものは、広角散乱光用光検出器群12によって検出され、その光強度分布が測定される。この場合、前方散乱光用フォトダイオード13、側方散乱光用フォトダイオード14、後方散乱光用フォトダイオード15においては、この順にしたがって小さくなる粒子からの散乱光16a〜16cを検出する。これらの各フォトダイオード13〜15が検出した光強度はアナログ電気信号に変換され、さらに、電気回路基板17に設けられたプリアンプを経てマルチプレクサ18に入力される。
【0020】
前記マルチプレクサ18においては、第1アレイ検出器6、第2アレイ検出器9およびフォトダイオード13〜15からの測定データ、つまりアナログ電気信号が所定の順序で順次取り込まれる。そして、マルチプレクサ18によって取り込まれたアナログ電気信号は直列信号にされて、AD変換器19で順次ディジタル信号に変換され、さらに、コンピュータ20に入力される。
【0021】
前記コンピュータ20においては、第1アレイ検出器6、第2アレイ検出器9および複数のフォトダイオード13〜14によってそれぞれ得られた各散乱角ごとの光強度データを、フラウンホーファ回折理論やミー散乱理論に基づいて処理する。
【0022】
このように、上記粒子径分布測定装置においては、粒子径の大きい粒子径範囲に起因して生ずる透過光及び比較的小さい散乱角の散乱光の光強度分布については、第1アレイ検出器6および第2アレイ検出器9によって受光角度範囲が連続するように分担して測定し、粒子径の小さい粒子径範囲に起因して生ずる広角の散乱光の光強度分布については、フォトダイオード13〜15によって測定し、これら第1アレイ検出器6、第2アレイ検出器9およびフォトダイオード13〜15の出力をコンピュータ20において処理しているので、粒子群における粒子径分布を、粒子径の比較的大きなものから粒子径の微小なものまで広い範囲にわたって一挙に求めることができる。
【0023】
そして、上記粒子径分布測定装置においては、0〜30°といった散乱角が比較的小さい範囲の散乱光の検出を、二つのアレイ検出器6,9に分担させるようにしている。特に、散乱角が小さい(0〜5°)散乱光7を検出する第1アレイ検出器6の中心部に微細加工をほとんど施さなくてもよいとともに、その寸法L1 を小さくすることができるので、その製造コストを大幅に低減することができる。また、散乱角がやや小さい(5〜30°)散乱光10を検出する第2アレイ検出器9の中心部については微細加工を施す必要がなくなり、市販の量産型リニアフォトダイオードアレイを用いることができるので、その製造コストを大幅に低減することができる。
【0024】
【0025】
【0026】
なお、上記の実施の形態においては、光源3がレーザ光を発するものであったが、これに代えて、白色光源を用いてもよい。そして、第1アレイ検出器6としては、上記透過光検出部6aを中心に複数の散乱光検出部6bを同心円状に配列したものに限られず、例えばフォトダイオードを単に複数に分割した簡易な構成のものを用いてもよい。また、前記第1アレイ検出器6と第2アレイ検出器9がそれぞれ受光する散乱光の角度範囲が、例えば第1アレイ検出器6が0〜10°までの散乱光を、第2アレイ検出器9が7〜30°までの散乱光というように、多少重なりあっていてもよい。さらに、第1アレイ検出器6および第2アレイ検出器9は、それらの受光面が集光レンズ4,24の光軸に垂直となるように設けられていたが、そのようにする必要はなく、前記受光面が光軸と90°以外の角度をなすように設けてあってもよい。
【0027】
【発明の効果】
この発明においては、透過光及び比較的小さい散乱角で散乱する光を、二つのアレイ検出器によって散乱角の角度範囲を分担するようにして検出しているので、一つのアレイ検出器を用いた場合に比べて、前記両アレイ検出器の中心部を殆どといってよいほど微細加工する必要が無くなるとともに、同じ散乱角範囲の散乱光を受光するのに要する全てのフォトダイオードアレイの寸法を小さくすることができるので、安価なフォトダイオードアレイを用いることができ、その結果、測定精度をなんら低下させることなく、装置全体を安価に構成することができる。
【図面の簡単な説明】
【図1】 この発明の粒子径分布測定装置の構成の一例を概略的に示す図である。
【図2】 前記粒子径分布測定装置の光学系の一例を拡大図とともに示す図である。
【図3】 従来技術を説明するための図である。
【符号の説明】
1…試料セル、2…試料、3…光源、3a…照射光、4…集光レンズ、5…透過光、6…第1アレイ検出器、6a…透過光検出部、6b…散乱光検出部、7…散乱光、9…第2アレイ検出器、10…散乱光、23…照射光、24…集光レンズ、25,26…散乱光。
[0001]
BACKGROUND OF THE INVENTION
The present invention detects a diffraction / scattered light generated by irradiating a dispersed particle group with laser light, and measures a particle size distribution of the particle group based on a scattered light intensity signal obtained by the detection. The present invention relates to a distribution measuring apparatus.
[0002]
[Prior art]
The particle size distribution measuring device using the diffraction and / or scattering phenomenon of light by sample particles measures the intensity distribution of diffracted light and / or scattered light, that is, the relationship between diffraction angle and / or scattering angle and light intensity. Then, the particle size distribution of the sample particles is calculated by performing arithmetic processing based on the Fraunhofer diffraction theory and / or the Mie scattering theory.
[0003]
FIG. 3 schematically shows an essential part of an optical system in a conventional particle size distribution measuring apparatus. In this figure, for example, 41 is a liquid in which particles are dispersed in a dispersion medium (hereinafter referred to as a sample liquid). It is a sample cell to be accommodated. Reference numerals 42 and 43 denote a light source and a condenser lens provided on one side of the sample cell 41 in the thickness direction, that is, on the rear side of the sample cell 41, and 44 denotes the other side in the thickness direction of the sample cell 41, that is, In the photodiode array detector (multi-channel detector) provided at the focal position of the condenser lens 43 on the front side of the sample cell 41, the transmitted light and the scattered light having a relatively small scattering angle (for example, 0 to 30 °) are generated. This is to be detected, and is formed in a so-called inverse Fourier optical system in which the condenser lens is located on the light source side. The scattered light having a relatively large scattering angle (30 ° or more) is detected by a plurality of photodiodes (single-channel detectors) (not shown) provided also on the side and rear of the sample cell 41. .
[0004]
By the way, in the particle size distribution measuring apparatus having the above configuration, scattered light from a large particle having a diameter of 1 mm or more is strongly detected near the focal point of the condenser lens 43. For this reason, in order to reliably measure the large particles, the vicinity of the transmitted light channel 44a at the center of the photodiode array detector 44 is finely processed, and scattered light having a small scattering angle (for example, 0 to 5 °). In this case, there is a problem that the manufacturing cost of the photodiode array detector 44 increases and the cost of the entire apparatus increases.
[0005]
Therefore, if it is attempted to detect the scattered light having a small scattering angle without finely processing the vicinity of the center portion of the photodiode array detector 44, it is necessary to increase the focal length of the condenser lens 43. When the distance is increased, the distance L in the figure increases, and in order to receive scattered light in the same scattering angle range (for example, 0 to 30 °), the dimension H of the photodiode array detector 44 increases accordingly. Also in this case, there is a problem that the manufacturing cost of the photodiode array detector 44 is increased and the cost of the entire apparatus is increased.
[0006]
[0007]
The present invention has been made in consideration of the above-mentioned matters, and the object thereof is to reduce the particle diameter while constituting a photodiode array detector for detecting scattered light having a relatively small scattering angle with an inexpensive one. An object of the present invention is to provide a particle size distribution measuring apparatus capable of measuring the distribution with high accuracy.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a particle size distribution measuring device according to the present invention is arranged between a light source, a sample cell irradiated with light from the light source, and the light source and the sample cell on the optical axis of the light. Particle size distribution configured in an inverse Fourier optical system by a condensing lens to be transmitted and a first array detector disposed in the vicinity of the focal position of the condensing lens that focuses the transmitted light transmitted through the sample cell a measuring apparatus, in front and rear of the first array detector of the sample cell, the scattered light detected by said first array detector in the scattered light can not be detected by the first array detector the arrangement is a second array detector for detecting up to scattered light of a predetermined angle from the angle continuous with the scattering angle, dispersion of the predetermined angular range of transmitted light as well as continuous by the these first array detector and a second array detector It is characterized by being configured to detect by sharing the light.
[0009]
[0010]
In the invention having the above-described configuration, in addition to the first array detector, a second array detector is provided. By these two array detectors, for example, transmitted light of 0 to 30 ° and scattered light having a relatively small scattering angle are provided. So that the scattered light in the predetermined angle range can be received continuously without being scattered. In the first array detector, the focal length is relatively long, but only the transmitted light and scattered light having a small scattering angle (for example, about 0 to 10 °) are received, and the size (see FIG. The dimension L1 in 2 is as small as possible. And in this 1st array detector, even if it does not give fine processing to a center part, the scattered light with the said small scattering angle can be light-received reliably, and the measurement of a large particle of 1 mm or more can be performed. . On the other hand, the second array detector can receive scattered light with a slightly small scattering angle (for example, about 5 to 30 °) that cannot be detected by the first array detector, and can measure small particles of less than 1 mm. it can. The second array detector does not need to be further finely processed in the center than the first array detector. In this case, a commercially available mass-produced linear photodiode array can be used.
[0011]
That is, by using two array detectors, the same scattering angle range (for example, 0 to 30 °) can be obtained even when the array detector is arranged with an extended focal length compared to the case of using one array detector. ) Can be reduced in size (H1 in FIG. 2), and as a result, an inexpensive photodiode array can be used, so that the manufacturing cost of the entire device can be reduced. Can be reduced. Of course, the measurement accuracy does not decrease.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the details of the present invention will be described with reference to the drawings. 1 and 2 show one embodiment of the present invention. FIG. 1 schematically shows an example of the configuration of a particle size distribution measuring apparatus according to the present invention, and FIG. 2 shows the configuration of the main part thereof. Is shown together with an enlarged view. In the particle size distribution measuring apparatus shown in FIG. 1, the optical system is an inverse Fourier optical system. That is, in FIG. 1, reference numeral 1 denotes a sample cell made of a transparent container containing a liquid (hereinafter referred to as a sample liquid) 2 in which a particle group to be measured is dispersed in a dispersion medium, and its length (thickness) in the optical path direction. Is smaller than in conventional devices of this type. The sample cell 1 may be a flow-through sample cell to which the sample liquid 2 is flowed.
[0013]
Reference numeral 3 denotes a laser light source as an irradiation light source provided on the rear side of the sample cell 1 and emits laser light. A condensing lens 4 is provided between the laser light source 3 and the sample cell 1 and has a relatively long focal length, for example, 300 mm. The laser light emitted from the laser light source 3 is appropriately converged by the condensing lens 4 and becomes the condensed laser light (irradiation light) 3 a to irradiate the sample liquid 2 in the sample cell 1.
[0014]
Reference numeral 6 denotes a first array detector provided on the front side of the sample cell 1, which is arranged at a position where the transmitted light 5 transmitted through the sample cell 1 is focused, that is, at the focal position of the condenser lens 4. The first array detector 6 is composed of a plurality of photodiodes. For example, as shown in an enlarged illustration portion A of FIG. 2, the transmitted light detection portion is provided so as to correspond to the optical axis 4a of the condenser lens 4. 6a and a plurality of scattered light detectors 6b in which a plurality of ring-shaped or semi-ring-shaped light-receiving surfaces having different radii are arranged concentrically around the transmitted light detector 6a. The scattered light 7 that is provided in a state orthogonal to the optical axis 4 a and is scattered / diffracted at a small angle (for example, about 0 to 5 °) among the irradiation light L that is diffracted or scattered by the particles in the sample cell 1 for each scattering angle. Are respectively received and measured for their light intensity. The first array detector 6, the overall length (indicated by reference numeral L1 in Fig. 2) is intended a small example of about 25 mm, even without applying fine processing to the central unit, for receiving the small angle scattered light 7 It is possible to measure large particles of 1 mm or more. Reference numeral 8 denotes a preamplifier for amplifying the outputs of the photodiodes 6a and 6b constituting the first array detector 6.
[0015]
Reference numeral 9 denotes a second array detector provided between the first array detector 6 and the sample cell 1. The second array detector 9 is a light 10 that cannot be detected by the first array detector 6, that is, The scattered light 10 scattered / diffracted at a slightly smaller angle (for example, about 5 to 30 °) out of the irradiation light 3a diffracted or scattered by the particles in the sample cell 1 is received for each scattering angle, and these lights are received. Strength is measured. Since the second array detector 9 does not require further microfabrication than the first array detector 6, a plurality of rectangular light receiving portions 9a, for example, upper and lower parts are arranged as shown in an enlarged portion B of FIG. It is composed of a commercially available mass production type linear photodiode arranged in the direction, and is provided with its light receiving surface orthogonal to the optical axis 4a. Reference numeral 11 denotes a preamplifier for amplifying the output of the photodiode 9a constituting the second array detector 6.
[0016]
Further, in the vicinity of the sample cell 1, wide-angle scattered light scattered / diffracted at a relatively large angle (for example, 30 to 180 °) among the irradiation light 3a diffracted or scattered by the particles in the sample cell 1 is scattered at each scattering angle. A wide-angle scattered light detector group 12 is provided for each detection. The wide-angle scattered light detector group 12 includes a plurality of photodiodes 13 to 15 provided at different angles from the first array detector 6 and the second array detector 9, and according to the respective arrangement angles, Scattered light having a predetermined angle exceeding a predetermined angle due to particles in the sample cell 1 can be detected, the photodiode 13 is forward scattered light 16a, the photodiode 14 is side scattered light 16b, and the photodiode 15 is back scattered. Each of the lights 16c is detected. Reference numeral 17 denotes an electric circuit board that holds the photodiodes 13 to 15 at a predetermined angle, and includes a preamplifier.
[0017]
Reference numeral 18 denotes a multiplexer that sequentially takes outputs from the preamplifiers 11 and the electric circuit board 17 and sequentially sends them to the AD converter 19, and 20 denotes a computer as an arithmetic processing unit to which the output of the AD converter 19 is input. The computer 20 uses the outputs of the first array detector 6, the second array detector 9, and the photodiodes 13 to 15 (digital data relating to light intensity) converted into digital signals based on Fraunhofer diffraction theory and Mie scattering theory. A program for obtaining the particle size distribution in the particle group is stored. Reference numeral 21 denotes a color display for displaying calculation results and the like.
[0018]
In the particle size distribution measuring apparatus configured as described above, when laser light is emitted from the laser light source 3 while the sample liquid 2 is housed in the sample cell 1, the laser light is converged by the condenser lens 4. The sample liquid 2 in the sample cell 1 is irradiated with the irradiation light 3a. The irradiation light 3 a is diffracted or scattered by particles in the sample cell 1. Of the diffracted light or scattered light, scattered light 7 having a small scattering angle of 0 to 5 ° (scattered light caused by large particles of 1 mm or more) is received on the first array detector 6 and is 5 to 30 °. Scattered light 10 having a slightly smaller scattering angle (scattered light caused by small particles of less than 1 mm) is received on the second array detector 9. The light intensities detected by the array detectors 6 and 9 are converted into analog electric signals, and further input to the multiplexer 18 via the preamplifiers 8 and 11.
[0019]
On the other hand, among the irradiation light 3a diffracted or scattered by the particles, those having a relatively large scattering angle are detected by the wide-angle scattered light detector group 12, and the light intensity distribution is measured. In this case, the forward scattered light photodiode 13, the side scattered light photodiode 14, and the back scattered light photodiode 15 detect scattered light 16a to 16c from particles that become smaller in this order. The light intensity detected by each of the photodiodes 13 to 15 is converted into an analog electric signal, and further input to the multiplexer 18 through a preamplifier provided on the electric circuit board 17.
[0020]
In the multiplexer 18, measurement data from the first array detector 6, the second array detector 9, and the photodiodes 13 to 15, that is, analog electric signals are sequentially taken in a predetermined order. Then, the analog electric signal taken in by the multiplexer 18 is converted into a serial signal, sequentially converted into a digital signal by the AD converter 19, and further input to the computer 20.
[0021]
In the computer 20, the light intensity data for each scattering angle respectively obtained by the first array detector 6, the second array detector 9, and the plurality of photodiodes 13 to 14 is converted into Fraunhofer diffraction theory and Mie scattering theory. Process based on.
[0022]
As described above, in the particle size distribution measuring apparatus, the first array detector 6 and the light intensity distribution of the transmitted light and the scattered light having a relatively small scattering angle caused by the particle size range having a large particle size are used. The light intensity distribution of the scattered light having a wide angle caused by the particle diameter range having a small particle diameter is measured by the second array detector 9 so that the light receiving angle range is continuous, and the photodiodes 13 to 15 are used. Since the measurement and the outputs of the first array detector 6, the second array detector 9, and the photodiodes 13 to 15 are processed by the computer 20, the particle size distribution in the particle group is relatively large. To a small particle diameter can be obtained all at once.
[0023]
In the particle size distribution measuring apparatus, the two array detectors 6 and 9 share the detection of scattered light in a range where the scattering angle is relatively small, such as 0 to 30 °. In particular, the center portion of the first array detector 6 that detects the scattered light 7 having a small scattering angle (0 to 5 °) may be hardly subjected to fine processing, and the dimension L1 can be reduced. The manufacturing cost can be greatly reduced. In addition, the center portion of the second array detector 9 that detects the scattered light 10 having a slightly small scattering angle (5 to 30 °) does not need to be finely processed, and a commercially available mass-produced linear photodiode array is used. Therefore, the manufacturing cost can be significantly reduced.
[0024]
[0025]
[0026]
In the above embodiment, the light source 3 emits laser light, but a white light source may be used instead. The first array detector 6 is not limited to one in which a plurality of scattered light detectors 6b are arranged concentrically around the transmitted light detector 6a. For example, a simple configuration in which a photodiode is simply divided into a plurality of parts. May be used. The angle range of the scattered light received by the first array detector 6 and the second array detector 9 is, for example, the scattered light having the first array detector 6 ranging from 0 to 10 °. 9 may be somewhat overlapped, such as scattered light from 7 to 30 °. Furthermore, although the first array detector 6 and the second array detector 9 are provided so that their light receiving surfaces are perpendicular to the optical axes of the condenser lenses 4 and 24, it is not necessary to do so. The light receiving surface may be provided so as to form an angle other than 90 ° with the optical axis.
[0027]
【The invention's effect】
In this invention, transmitted light and light scattered at a relatively small scattering angle are detected by the two array detectors so as to share the angular range of the scattering angle, so one array detector was used. Compared to the case, it is not necessary to finely process the center portions of the two array detectors, and the size of all photodiode arrays required to receive scattered light in the same scattering angle range is reduced. Therefore, an inexpensive photodiode array can be used, and as a result, the entire apparatus can be configured at low cost without any decrease in measurement accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing an example of the configuration of a particle size distribution measuring apparatus according to the present invention.
FIG. 2 is a diagram showing an example of an optical system of the particle size distribution measuring apparatus together with an enlarged view.
FIG. 3 is a diagram for explaining a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Sample cell, 2 ... Sample, 3 ... Light source, 3a ... Irradiation light, 4 ... Condensing lens, 5 ... Transmitted light, 6 ... 1st array detector, 6a ... Transmitted light detection part, 6b ... Scattered light detection part , 7 ... scattered light, 9 ... second array detector, 10 ... scattered light, 23 ... irradiation light 24 ... condenser lens, 25, 26 ... scattered light.

Claims (1)

光源と、この光源からの光が照射される試料セルと、前記光の光軸上で前記光源と試料セルとの間に配置される集光レンズと、前記試料セルを透過した透過光が焦点を結ぶ前記集光レンズの焦点位置近傍に配置された第1アレイ検出器とにより逆フーリエ光学系に構成されている粒子径分布測定装置であって、前記試料セルの前方かつ前記第1アレイ検出器の後方には、前記第1アレイ検出器によって検出することができない散乱光で前記第1アレイ検出器によって検出される散乱光の散乱角と連続する角度から所定角度の散乱光までを検出する第2アレイ検出部が配置され、これら第1アレイ検出器と第2アレイ検出器とによって透過光並びに連続する所定角度範囲の散乱光を分担して検出するように構成したことを特徴とする粒子径分布測定装置。A light source, a sample cell irradiated with light from the light source, a condenser lens disposed between the light source and the sample cell on the optical axis of the light, and a transmitted light transmitted through the sample cell are in focus A particle size distribution measuring apparatus configured in an inverse Fourier optical system with a first array detector disposed in the vicinity of the focal position of the condenser lens connecting the condensing lens, and in front of the sample cell and the first array detection Behind the detector, the scattered light that cannot be detected by the first array detector is detected from an angle continuous with the scattering angle of the scattered light detected by the first array detector to a scattered light having a predetermined angle. particles in which the second array detector is arranged, characterized by being configured to detect by sharing the scattered light in a predetermined angular range of transmitted light as well as continuous by the these first array detector and a second array detector Diameter distribution Constant apparatus.
JP2002115166A 2002-04-17 2002-04-17 Particle size distribution measuring device Expired - Fee Related JP4105888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002115166A JP4105888B2 (en) 2002-04-17 2002-04-17 Particle size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002115166A JP4105888B2 (en) 2002-04-17 2002-04-17 Particle size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2003315243A JP2003315243A (en) 2003-11-06
JP4105888B2 true JP4105888B2 (en) 2008-06-25

Family

ID=29533671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002115166A Expired - Fee Related JP4105888B2 (en) 2002-04-17 2002-04-17 Particle size distribution measuring device

Country Status (1)

Country Link
JP (1) JP4105888B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101223560B (en) * 2005-07-15 2012-12-12 百维吉伦特系统有限公司 Pathogen and particle detector system and method
EP2235501B1 (en) 2008-01-15 2018-05-23 Malvern Panalytical Limited Light scattering measurements using simultaneous detection
CN107735667B (en) * 2015-06-12 2021-06-15 皇家飞利浦有限公司 Optical particle sensor and sensing method
CN108169082B (en) * 2016-12-07 2021-03-02 丹东百特仪器有限公司 Laser particle analyzer with forward Fourier light path and backward Fourier light path combined

Also Published As

Publication number Publication date
JP2003315243A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
JP3393817B2 (en) Particle size distribution measuring device
JP2825644B2 (en) Particle size analysis method and apparatus
EP0485817B1 (en) Apparatus for measuring a particle size distribution
JP6299600B2 (en) Fine particle measuring device
JP3412606B2 (en) Laser diffraction / scattering particle size distribution analyzer
US3851169A (en) Apparatus for measuring aerosol particles
WO2007100615A3 (en) High-sensitivity surface detection system and method
JP2019512701A5 (en)
JP2863874B2 (en) Particle size distribution analyzer
JP3258889B2 (en) Optical axis adjustment method in scattering particle size distribution analyzer
JP4105888B2 (en) Particle size distribution measuring device
US7248363B2 (en) Particle size analyzer
JP3822840B2 (en) Particle size distribution measuring device
JP2000230901A (en) Optical unit
JPH08128944A (en) Particle classifying equipment
JPH09126984A (en) Particle size distribution measuring device
JPH0277636A (en) Particle measuring device
JPH02193041A (en) Particle size distribution apparatus
JP2876253B2 (en) Particle size distribution analyzer
US20040227941A1 (en) Particle size distribution analyzer
JP3874047B2 (en) Laser diffraction / scattering particle size distribution analyzer
JPH0534259A (en) Device for measuring particle size distribution
JP2876255B2 (en) Particle size distribution analyzer
JP3471634B2 (en) Particle size distribution measuring device
JP3475097B2 (en) Particle size distribution measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20071107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees