JP2000230901A - Optical unit - Google Patents

Optical unit

Info

Publication number
JP2000230901A
JP2000230901A JP3104599A JP3104599A JP2000230901A JP 2000230901 A JP2000230901 A JP 2000230901A JP 3104599 A JP3104599 A JP 3104599A JP 3104599 A JP3104599 A JP 3104599A JP 2000230901 A JP2000230901 A JP 2000230901A
Authority
JP
Japan
Prior art keywords
light
scattered light
light receiving
optical unit
receiving means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3104599A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sato
芳明 佐藤
Kozo Muramatsu
興三 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP3104599A priority Critical patent/JP2000230901A/en
Publication of JP2000230901A publication Critical patent/JP2000230901A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To make measurable not only weak scattered light with high accuracy but also transmitted light and scattered light at the same time with high accuracy in an optical unit used in the measurement of the concn. of fine particles in a liquid sample. SOLUTION: The optical unit 3A is adapted to the measurement of the quantity of forward scattered light generated by irradiating a sample S with light, and constituted of a shield member 4 for shielding transmitted light and a scattered light detecting means 5 for detecting forward scattered light. The scattered light detecting means 5 catches the forward scattered light with a predetermined angle range θ1-θ2 with respect to the optical axis of transmitted light to detect the almost total quantity of forward scattered light. The optical unit measuring the quantities of transmitted light and scattered light is constituted of a transmitted light detecting means for detecting the quantity of transmitted light, and a scattered light detecting means for detecting forward scattered light.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光学ユニットに関する
ものであり、詳しくは、液状試料中の微粒子濃度などを
散乱光によって測定する際に使用される光学ユニットで
あって、主に微弱な散乱光の光量を高い精度で測定可能
な光学ユニットに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical unit, and more particularly, to an optical unit used for measuring the concentration of fine particles in a liquid sample by using scattered light. The present invention relates to an optical unit capable of measuring the amount of light with high accuracy.

【0002】[0002]

【従来の技術】特公昭58−11575号、特公昭62
−43138号、特開平6−160401号、特開平7
−318559号の各公報には、免疫血清検査における
試薬の濁度測定に関する技術が開示されている。免疫血
清検査においては、ラテックス凝集法を利用し、反応試
薬に生じた微粒子の凝集度(試薬の濁度)を光の透過量
によって測定することにより、抗原抗体反応の進行度や
反応速度量を検査する。
2. Description of the Related Art JP-B-58-11575 and JP-B-62
JP-A-43138, JP-A-6-160401, JP-A-7-160401
JP-A-318559 discloses a technique relating to measurement of turbidity of a reagent in an immune serum test. In the immunoserum test, the degree of progress of the antigen-antibody reaction and the amount of the reaction rate are measured by measuring the agglutination degree of the fine particles generated in the reaction reagent (turbidity of the reagent) by the amount of transmitted light using the latex agglutination method. inspect.

【0003】上記の検査においては、試薬に一定波長の
光を照射し、透過光の強度を測定することにより、反応
量を特定する。しかしながら、反応開始直後など、試薬
の濁度が極めて低い状態では、透過光の強度に殆ど変化
が見られないため、透過光に代え、試薬に照射した光の
散乱光を捕捉し、得られた信号を増幅することにより、
微小な反応量を特定する必要がある。なお、透過光によ
る測定と散乱光による測定は、反応の進行状態によって
選択し、そして、散乱光による測定を利用する場合は、
MIEの散乱理論を近似的に適用することにより、各種
反応の応じた検量線を作成できる。
[0003] In the above-mentioned test, a reaction amount is specified by irradiating a reagent with light having a predetermined wavelength and measuring the intensity of transmitted light. However, when the turbidity of the reagent is extremely low, such as immediately after the start of the reaction, there is almost no change in the intensity of the transmitted light. Therefore, instead of the transmitted light, the scattered light of the light applied to the reagent is captured. By amplifying the signal,
It is necessary to specify a minute reaction amount. In addition, the measurement by the transmitted light and the measurement by the scattered light are selected according to the progress of the reaction, and when the measurement by the scattered light is used,
By approximately applying the scattering theory of MIE, calibration curves corresponding to various reactions can be created.

【0004】[0004]

【発明が解決しようとする課題】ところで、試薬の濁度
などを散乱光によって測定しようとした場合は、所謂ネ
フェロメーター等の光学機器が使用されるが、斯かる光
学機器においては、ある一定角度の一直線の光路に相当
する散乱光を検出するため、検出感度、すなわち、S/
N特性が極めて低く、高精度な測定結果が得難いと言う
問題がある。また、透過光による測定方式と散乱光によ
る測定方式の切替は、試料によってもタイミングが著し
く異なるため、ある程度のS/N特性を維持し、測定精
度を高めようとすると、予め多くのサンプリングが必要
になる。
When the turbidity of a reagent is measured by scattered light, an optical instrument such as a so-called nephelometer is used. In order to detect scattered light corresponding to a straight optical path at an angle, the detection sensitivity, that is, S /
There is a problem that the N characteristic is extremely low and it is difficult to obtain a highly accurate measurement result. In addition, since the timing of switching between the measurement method using transmitted light and the measurement method using scattered light is significantly different depending on the sample, a large number of samplings are required in advance in order to maintain a certain S / N characteristic and increase the measurement accuracy. become.

【0005】本発明は、上記の実情に鑑みなされたもの
であり、その第1の目的は、液状試料中の微粒子濃度な
どを散乱光によって測定する際に使用される光学ユニッ
トであって、微弱な散乱光の光量を高い精度で測定可能
な光学ユニットを提供することにある。また、本発明の
第2の目的は、測定レンジの切替だけで簡単に微粒子濃
度などを測定するために好適な光学ユニットであって、
試料に照射した光の透過光および散乱光の各光量を同時
に且つ高い精度で測定可能な光学ユニットを提供するこ
とにある。
The present invention has been made in view of the above circumstances, and a first object of the present invention is to provide an optical unit used for measuring the concentration of fine particles in a liquid sample by scattered light. An object of the present invention is to provide an optical unit capable of measuring the amount of scattered light with high accuracy. Further, a second object of the present invention is an optical unit suitable for easily measuring the concentration of fine particles or the like simply by switching the measurement range,
It is an object of the present invention to provide an optical unit capable of simultaneously and highly accurately measuring the amounts of transmitted light and scattered light of light applied to a sample.

【0006】[0006]

【課題を解決するための手段】上記の第1の目的を達成
するため、本発明の光学ユニットは、光透過性の試料に
照射した光の前方散乱光の光量を測定する光学ユニット
であって、試料中を直進した透過光を遮蔽する遮蔽部材
と、当該遮蔽部材の略全外周囲に亘って配置され且つ試
料中で散乱した前方散乱光を検出する散乱光受光手段と
から構成され、前記の散乱光受光手段は、透過光の光軸
に対して所定の角度範囲の前方散乱光を捕捉し、かつ、
当該前方散乱光の略全光量を検出する機能を備えている
ことを特徴とする。
In order to achieve the first object, an optical unit according to the present invention is an optical unit for measuring the amount of forward scattered light of light applied to a light transmissive sample. A shielding member that shields the transmitted light that has traveled straight through the sample, and scattered light receiving means that is disposed around substantially the entire outer periphery of the shielding member and detects forward scattered light scattered in the sample, The scattered light receiving means captures forward scattered light within a predetermined angle range with respect to the optical axis of the transmitted light, and
It is characterized by having a function of detecting substantially the entire amount of the forward scattered light.

【0007】上記の光学ユニットにおいて、遮蔽部材
は、試料中を直進した透過光を遮蔽し、また、特定の散
乱光受光手段は、透過光の光軸に対して所定の角度範囲
の前方散乱光の略全光量を検出する。従って、上記の光
学ユニットでは、変化の微小な散乱光の検出において、
高いS/N特性が得られる。
In the above-mentioned optical unit, the shielding member shields the transmitted light that has traveled straight through the sample, and the specific scattered light receiving means includes a forward scattered light within a predetermined angle range with respect to the optical axis of the transmitted light. Approximately the total amount of light is detected. Therefore, in the above optical unit, in the detection of scattered light with a small change,
High S / N characteristics can be obtained.

【0008】また、上記の第2の目的を達成するため、
本発明の光学ユニットは、光透過性の試料に照射した光
の透過光および前方散乱光の各光量を測定する光学ユニ
ットであって、試料中を直進した透過光の光量を検出す
る透過光受光手段と、当該透過光受光手段の略全外周囲
に亘って配置され且つ試料中で散乱した前方散乱光を検
出する散乱光受光手段とから構成され、前記の散乱光受
光手段は、透過光の光軸に対して所定の角度範囲の前方
散乱光を捕捉し、かつ、当該前方散乱光の略全光量を検
出する機能を備えていることを特徴とする。
Further, in order to achieve the second object,
The optical unit of the present invention is an optical unit that measures the amount of transmitted light and the amount of forward scattered light applied to a light transmissive sample, and detects the amount of transmitted light that travels straight through the sample. Means, and scattered light receiving means arranged around substantially the entire periphery of the transmitted light receiving means and detecting forward scattered light scattered in the sample. It has a function of capturing forward scattered light within a predetermined angle range with respect to the optical axis and detecting substantially the entire amount of the forward scattered light.

【0009】上記の光学ユニットにおいて、透過光受光
手段は、試料中を直進した透過光の光量を検出し、ま
た、散乱光受光手段は、透過光の光軸に対して所定の角
度範囲の前方散乱光の略全光量を検出する。従って、上
記の光学ユニットでは、変化の大きな透過光の検出なら
びに変化の微小な散乱光の検出において、高いS/N特
性が得られる。
In the above optical unit, the transmitted light receiving means detects the amount of transmitted light that has traveled straight through the sample, and the scattered light receiving means has a predetermined angle range forward with respect to the optical axis of the transmitted light. Detects substantially the total amount of scattered light. Therefore, in the optical unit described above, high S / N characteristics can be obtained in detection of transmitted light having a large change and detection of scattered light having a small change.

【0010】[0010]

【発明の実施の形態】本発明の実施形態を図面に基づい
て説明する。本発明は、散乱光の検出に適用される光学
ユニットと、透過光および散乱光の検出に適用される光
学ユニットの2つの態様を含む。なお、以下の説明にお
いて、「照射方向」とは、光源からの光の進行方向を言
い、所定の基準に対して「照射方向前方」とは、前記の
基準に対して光源と反対側の方向を言う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings. The present invention includes two aspects of an optical unit applied to detection of scattered light and an optical unit applied to detection of transmitted light and scattered light. In the following description, the “irradiation direction” refers to the traveling direction of light from the light source, and “forward in the irradiation direction” with respect to a predetermined reference is a direction opposite to the light source with respect to the reference. Say

【0011】図1〜図4は散乱光の測定に適用される光
学ユニットの態様を示す図であり、図1は環状の集光レ
ンズによって散乱光を捕捉する光学ユニットの破断側面
図、図2は環状のスリットによって散乱光を捕捉する光
学ユニットの破断側面図、図3は環状の受光素子によっ
て散乱光を捕捉する光学ユニットの破断側面図であり、
図4は図3のIV−IV線に沿って示した光学ユニットの正
面図である。
1 to 4 are views showing an embodiment of an optical unit applied to the measurement of scattered light. FIG. 1 is a cutaway side view of an optical unit that captures scattered light by an annular condenser lens. Is a cutaway side view of an optical unit that captures scattered light by an annular slit, and FIG. 3 is a cutaway side view of an optical unit that captures scattered light by an annular light receiving element.
FIG. 4 is a front view of the optical unit shown along the line IV-IV in FIG.

【0012】また、図5〜図8は透過光および散乱光の
測定に適用される光学ユニットの態様を示す図であり、
図5は環状の集光レンズによって散乱光を捕捉する光学
ユニットの破断側面図、図6は環状のスリットによって
散乱光を捕捉する光学ユニットの破断側面図、図7は環
状の受光素子によって散乱光を捕捉する光学ユニットの
破断側面図であり、図8は図7のVIII−VIII線に沿って
示した光学ユニットの正面図である。
FIGS. 5 to 8 are views showing an embodiment of an optical unit applied to measurement of transmitted light and scattered light.
5 is a cutaway side view of an optical unit that captures scattered light by an annular condenser lens, FIG. 6 is a cutaway side view of an optical unit that captures scattered light by an annular slit, and FIG. 7 is scattered light by an annular light receiving element. FIG. 8 is a front view of the optical unit taken along line VIII-VIII in FIG. 7.

【0013】図1〜図3及び図5〜図7において、符号
(1)は、本発明の光学ユニットと伴に各種の濁度測定
装置などに設置される光源ユニットを示し、符号(S)
は、測定対象としての試料を示す。光源ユニットとして
は、一定波長の平行光を照射可能な光源装置であれば適
宜のものが使用できるが、例えば、光源ユニット(1)
は、レーザーダイオード等の光源(11)と、光源(1
1)から照射される光を集光して平行光線束にするコリ
メートレンズ(12)と、これらを収容するケーシング
および当該ケーシングの前面に配置された小孔板(1
3)とから構成される。
1 to 3 and FIGS. 5 to 7, reference numeral (1) denotes a light source unit installed in various turbidity measuring devices together with the optical unit of the present invention.
Indicates a sample to be measured. As the light source unit, any suitable light source device can be used as long as it can emit parallel light having a certain wavelength. For example, the light source unit (1)
Is a light source (11) such as a laser diode, and a light source (1).
1) a collimating lens (12) for condensing the light emitted from 1) into a parallel light beam, a casing for accommodating them, and a small hole plate (1) arranged on the front surface of the casing.
3).

【0014】上記の濁度測定装置において、試料(S)
は、透明な試料容器(2)に収容され、そして、試料容
器(2)は、光源ユニット(1)の小孔板(13)の直
前に配置される。すなわち、光源ユニット(1)は、コ
リメートされた一定波長の細い光線束を試料(S)中に
照射し、試料容器(2)は、照射された光を反対側に通
過させる。なお、試料(S)としては、光透過性のもの
であれば特に制限はないが、例えば、抗原抗体反応に使
用されるラテックス試薬などの液状試料が挙げられる。
In the above turbidity measuring device, the sample (S)
Is accommodated in a transparent sample container (2), and the sample container (2) is disposed immediately before the small hole plate (13) of the light source unit (1). That is, the light source unit (1) irradiates the collimated thin light beam of a certain wavelength into the sample (S), and the sample container (2) passes the irradiated light to the opposite side. The sample (S) is not particularly limited as long as it is light-transmitting, and examples thereof include a liquid sample such as a latex reagent used for an antigen-antibody reaction.

【0015】先ず、散乱光の測定に適用される光学ユニ
ットについて説明する。本発明の光学ユニットは、図1
〜図3に符号(3A)で示されている。斯かる光学ユニ
ット(3A)は、光透過性の試料(S)に照射した光の
前方散乱光の光量を測定するユニットであり、ケース部
材に所要の部材を収容して構成される。
First, an optical unit applied to the measurement of scattered light will be described. FIG. 1 shows an optical unit according to the present invention.
3 to 3 (A). Such an optical unit (3A) is a unit for measuring the amount of forward scattered light of light applied to the light transmissive sample (S), and is configured by housing a required member in a case member.

【0016】すなわち、光学ユニット(3A)は、試料
(S)中を直進した透過光を遮蔽する遮蔽部材(4)
と、当該遮蔽部材の略全外周囲に亘って配置され且つ試
料(S)中で散乱した前方散乱光を検出する散乱光受光
手段(5)とから構成される。そして、散乱光受光手段
(5)は、透過光の光軸に対して所定の角度範囲(θ1
〜θ2)の前方散乱光を捕捉し、かつ、当該前方散乱光
の略全光量を検出する機能を備えている。
That is, the optical unit (3A) is a shielding member (4) for shielding transmitted light that has traveled straight through the sample (S).
And a scattered light receiving means (5) which is disposed around substantially the entire outer periphery of the shielding member and detects forward scattered light scattered in the sample (S). Then, the scattered light receiving means (5) provides a predetermined angle range (θ 1 ) with respect to the optical axis of the transmitted light.
To θ 2 ), and a function of detecting substantially the total amount of the forward scattered light.

【0017】図1〜図3の各図は、更に具体的な形態を
示す図であり、図1に示す光学ユニット(3A)におい
て、遮蔽部材(4)は、円板状の遮蔽ブロック(41)
によって構成される。散乱光受光手段(5)は、試料
(S)中に照射された光のうち、照射方向に対して90
°以内の前方への散乱光(前方散乱光)の一部を受光す
る構造を備えており、斯かる受光手段(5)は、遮蔽ブ
ロック(41)の略全外周囲に亘って配置された環状の
集光レンズ(51)と、当該環状の集光レンズによって
集光される光の集束位置に配置された受光素子(55)
とを備えている。
Each of FIGS. 1 to 3 shows a more specific form. In the optical unit (3A) shown in FIG. 1, the shielding member (4) is a disk-shaped shielding block (41). )
Composed of The scattered light receiving means (5) is configured to detect 90% of the light radiated into the sample (S) with respect to the irradiation direction.
And a structure for receiving a part of the forward scattered light (forward scattered light) within a range of °, and such a light receiving means (5) is arranged over substantially the entire outer periphery of the shielding block (41). An annular condenser lens (51) and a light receiving element (55) arranged at a focus position of light condensed by the annular condenser lens
And

【0018】環状の集光レンズ(51)は、試料容器
(2)に対して所定距離だけ離間させて光学ユニット
(3A)を配置した場合、透過光の光軸に対して所定の
角度範囲(θ1〜θ2)の前方散乱光を捕捉可能な内径お
よび外径を備えたドーナツ状のコリメートレンズであ
る。散乱光受光手段(5)のレンズ系は、単一のレンズ
によっても構成できるが、通常は複数のレンズによって
構成される。図1に示す散乱光受光手段(5)は、環状
の集光レンズ(51)に対し、照射方向前方に結像レン
ズ(54)を備えている。
When the optical unit (3A) is arranged at a predetermined distance from the sample container (2), the annular condenser lens (51) has a predetermined angle range (with respect to the optical axis of the transmitted light). This is a donut-shaped collimating lens having an inner diameter and an outer diameter capable of capturing forward scattered light of θ 1 to θ 2 ). The lens system of the scattered light receiving means (5) can be constituted by a single lens, but is usually constituted by a plurality of lenses. The scattered light receiving means (5) shown in FIG. 1 has an imaging lens (54) in front of the irradiation direction with respect to the annular condenser lens (51).

【0019】ところで、前方散乱光の散乱角度は、試料
(S)中の微粒子の粒径に依存する。そして、例えば、
前述のラテックス試薬の凝集反応においては、平均粒径
が0.4μmの初期の微粒子から平均粒径が0.6〜
0.8μmの凝集物へ変化した場合の変化後の散乱光を
所定角度の前方散乱光として捉えことが出来る。更に、
上記の様な前方散乱光を正確に捉えるには、粒径が0.
1〜2μmの粒子を測定対象とすると、前方散乱光の上
記の角度範囲(θ1〜θ2)は、受光素子(55)におい
て十分に検出可能な光量が得られ且つ試料(S)中の微
粒子から直接的な散乱光を捕捉し得る角度範囲に設定さ
れる必要がある。具体的には、最小角度(θ1)は、5
〜30°に設定され、最大角度(θ2)は、10〜45
°に設定される。
The scattering angle of the forward scattered light depends on the particle size of the fine particles in the sample (S). And, for example,
In the agglutination reaction of the above-mentioned latex reagent, the average particle diameter is from 0.6 μm to 0.4 μm.
The scattered light after the change to the 0.8 μm aggregate can be regarded as forward scattered light at a predetermined angle. Furthermore,
In order to accurately capture the forward scattered light as described above, the particle size must be set at 0.
Assuming that particles of 1 to 2 μm are to be measured, in the above angle range (θ 1 to θ 2 ) of the forward scattered light, a light amount that can be sufficiently detected by the light receiving element (55) is obtained and the sample (S) It is necessary to set an angle range in which scattered light directly from the fine particles can be captured. Specifically, the minimum angle (θ 1 ) is 5
3030 °, and the maximum angle (θ 2 ) is 104545.
° set.

【0020】受光素子(55)は、光量に応じた電流信
号を発生可能なフォトダイオード等の光電素子などで構
成され、光の集束位置、すなわち、結像レンズ(54)
の焦点位置に配置される。この様な散乱光受光手段
(5)に対し、上記の遮蔽ブロック(41)は、環状の
集光レンズ(51)の内径側に嵌込まれる。すなわち、
散乱光受光手段(5)としての環状の集光レンズ(5
1)が遮蔽ブロック(41)の略全外周囲に亘って配置
される。
The light receiving element (55) is composed of a photoelectric element such as a photodiode capable of generating a current signal corresponding to the light amount, and is a light focusing position, that is, an imaging lens (54).
Is located at the focal position. The shielding block (41) is fitted on the inner diameter side of the annular condenser lens (51) with respect to the scattered light receiving means (5). That is,
An annular condenser lens (5) as a scattered light receiving means (5)
1) is disposed over substantially the entire outer periphery of the shielding block (41).

【0021】図1に示す光学ユニット(3A)は、例え
ば、前述のラテックス凝集法による免疫血清検査におい
て、試薬の反応初期の微小変化を検出する際の濁度測定
に使用される。斯かる濁度測定においては、光源ユニッ
ト(1)の光を試料容器(2)の試料(S)に照射し、
試料容器(2)を通過した光を光学ユニット(3A)で
受光する。
The optical unit (3A) shown in FIG. 1 is used for measuring turbidity when detecting a small change in the initial stage of the reaction of a reagent in, for example, an immune serum test by the latex agglutination method described above. In such turbidity measurement, the light of the light source unit (1) is irradiated on the sample (S) of the sample container (2),
The light that has passed through the sample container (2) is received by the optical unit (3A).

【0022】その際、光学ユニット(3A)において、
遮蔽部材(4)としての遮蔽ブロック(41)は、試料
(S)中を直進した透過光を遮蔽し、散乱光受光手段
(5)を構成する環状の集光レンズ(41)は、透過光
の光軸に対して上記の所定の角度範囲(θ1〜θ2)の前
方散乱光を捕捉する。そして、散乱光受光手段(5)の
受光素子(55)は、集光レンズ(41)によってコリ
メートされ、結像レンズ(54)によって集束された前
方散乱光の略全光量を検出する。
At this time, in the optical unit (3A),
The shielding block (41) as the shielding member (4) shields the transmitted light that has traveled straight through the sample (S), and the annular condensing lens (41) constituting the scattered light receiving means (5) transmits the transmitted light. Forward scattered light in the above-mentioned predetermined angle range (θ 1 to θ 2 ) with respect to the optical axis of The light receiving element (55) of the scattered light receiving means (5) detects substantially the total amount of forward scattered light that is collimated by the condenser lens (41) and focused by the imaging lens (54).

【0023】すなわち、本発明の光学ユニット(3A)
においては、所定の角度範囲の散乱光の一部ではなく、
略全光量を検出するため、変化の微小な散乱光の検出に
おいて、高いS/N特性が得られる。しかも、前方散乱
光をリング状に捕捉するため、試料(S)における散乱
の空間平均値を高精度に求め得る。従って、本発明の光
学ユニット(3A)を使用した場合には、微弱な散乱光
を高い精度で測定でき、上記ラテックス凝集法などにお
いて、より高精度の分析が可能である。
That is, the optical unit (3A) of the present invention
In is not a part of the scattered light in the predetermined angle range,
Since almost the total amount of light is detected, high S / N characteristics can be obtained in the detection of scattered light with a small change. Moreover, since the forward scattered light is captured in a ring shape, the spatial average value of the scattering in the sample (S) can be obtained with high accuracy. Therefore, when the optical unit (3A) of the present invention is used, weak scattered light can be measured with high accuracy, and more accurate analysis can be performed in the latex agglutination method or the like.

【0024】また、図2に示す光学ユニット(3A)
は、主に、散乱光受光手段(5)における集光構造が図
1のユニットと異なる。すなわち、図2に示す光学ユニ
ット(3A)において、透過光の遮蔽部材(4)は、後
述するスリット部材(42)の円板部によって構成さ
れ、散乱光受光手段(5)は、前記の円板部の略全外周
囲に亘って形成されたスリット部材(42)の環状のス
リット(52)と、スリット部材(42)に対して照射
方向前方に配置された集光レンズ(53)と、当該集光
レンズによって集光される光の集束位置に配置された受
光素子(55)とを備えている。
The optical unit (3A) shown in FIG.
Differs from the unit of FIG. 1 mainly in the light-collecting structure of the scattered light receiving means (5). That is, in the optical unit (3A) shown in FIG. 2, the transmitted light shielding member (4) is constituted by a disk portion of a slit member (42) described later, and the scattered light receiving means (5) is formed of the circular member. An annular slit (52) of a slit member (42) formed over substantially the entire outer periphery of the plate portion; and a condenser lens (53) disposed forward of the slit member (42) in the irradiation direction. A light receiving element (55) arranged at a focus position of light condensed by the condensing lens.

【0025】スリット部材(42)は、平板に環状のス
リット(52)を切り欠くか、あるいは、平板に開口し
た円形穴の中心に小径の円板を支持して構成され、ケー
ス部材の全端に配置される。切り欠いて構成されるスリ
ット部材(42)は、スリット(52)の円周の一部に
支持部を残存させることにより、略環状のスリット(5
2)で区画される中央の円板部と外周部とが接続された
構造を備えており、しかも、前記の円板部が透過光の遮
蔽部材(4)として機能する。すなわち、散乱光受光手
段(5)としての環状のスリット(52)が、遮蔽部材
(4)としての上記の円板部の略全外周囲に亘って配置
される。
The slit member (42) is formed by cutting an annular slit (52) in a flat plate, or by supporting a small-diameter disk in the center of a circular hole opened in the flat plate. Placed in The slit member (42) configured by being cut out forms a substantially annular slit (5) by leaving a support portion on a part of the circumference of the slit (52).
It has a structure in which the central disk portion and the outer peripheral portion defined in 2) are connected to each other, and the disk portion functions as a transmitted light shielding member (4). That is, the annular slit (52) as the scattered light receiving means (5) is arranged around substantially the entire outer periphery of the disk portion as the shielding member (4).

【0026】環状のスリット(52)の内径および外径
は、図1の環状の集光レンズ(51)におけるのと同様
に、試料容器(2)に対して所定距離だけ離間させて光
学ユニット(3A)を配置した場合、透過光の光軸に対
して上述の様な所定の角度範囲(θ1〜θ2)の前方散乱
光を捕捉可能な大きさに設定される。集光レンズ(5
3)は、図1の環状の集光レンズ(51)と同様の光学
的性質を有するコリメートレンズである。結像レンズ
(54)、受光素子(55)の構成は、図1のユニット
と同様である。
The inner and outer diameters of the annular slit (52) are separated from the sample container (2) by a predetermined distance, as in the case of the annular condenser lens (51) in FIG. When 3A) is arranged, the size is set such that forward scattered light in the above-described predetermined angle range (θ 1 to θ 2 ) with respect to the optical axis of transmitted light can be captured. Condensing lens (5
3) is a collimating lens having the same optical properties as the annular condenser lens (51) in FIG. The configurations of the imaging lens (54) and the light receiving element (55) are the same as those of the unit in FIG.

【0027】図2に示す光学ユニット(3A)におい
て、遮蔽部材(4)としてのスリット部材(42)の円
板部は、試料(S)中を直進した透過光を遮蔽し、散乱
光受光手段(5)を構成する環状のスリット(52)
は、透過光の光軸に対して所定の角度範囲(θ1〜θ2
の前方散乱光を捕捉する。そして、受光素子(55)
は、集光レンズ(53)によってコリメートされ且つ結
像レンズ(54)によって集束された前方散乱光の略全
光量を検出する。その結果、図2に示す本発明の光学ユ
ニット(3A)においては、図1のユニットと同様に、
変化の微小な散乱光の検出において、高いS/N特性が
得られ、かつ、試料(S)における散乱の空間平均値を
高精度に求め得る。
In the optical unit (3A) shown in FIG. 2, the disk portion of the slit member (42) as the shielding member (4) shields the transmitted light that has traveled straight through the sample (S), and receives the scattered light. Annular slit (52) constituting (5)
Is a predetermined angle range (θ 1 to θ 2 ) with respect to the optical axis of the transmitted light.
Captures forward scattered light. And the light receiving element (55)
Detects approximately the total amount of forward scattered light collimated by the condenser lens (53) and focused by the imaging lens (54). As a result, in the optical unit (3A) of the present invention shown in FIG.
In the detection of scattered light having a small change, a high S / N characteristic can be obtained, and a spatial average value of the scattering in the sample (S) can be obtained with high accuracy.

【0028】また、図3に示す光学ユニット(3A)
は、散乱光受光手段(5)において、レンズ系を配置す
ることなく、前方散乱光を検出する様にした点が図1及
び図2のユニットと異なる。すなわち、図3に示す光学
ユニット(3A)において、透過光の遮蔽部材(4)
は、遮蔽ブロック(43)によって構成され、散乱光受
光手段(5)は、遮蔽ブロック(43)の略全外周囲に
亘って配置された環状の受光素子(56)を備えてい
る。
The optical unit (3A) shown in FIG.
1 differs from the units shown in FIGS. 1 and 2 in that the scattered light receiving means (5) detects forward scattered light without disposing a lens system. That is, in the optical unit (3A) shown in FIG. 3, the transmitted light shielding member (4)
Is constituted by a shielding block (43), and the scattered light receiving means (5) includes an annular light receiving element (56) arranged over substantially the entire outer periphery of the shielding block (43).

【0029】環状の受光素子(56)は、図4に示す様
に、フォトダイオード等の受光素子を円環状に複数配列
して構成され、短軸の有底円筒状のケース部材に遮蔽ブ
ロック(43)と共に収容される。しかも、各受光素子
は、電気的に並列に接続されており、全体として、透過
光の光軸に対して所定の角度範囲(θ1〜θ2)の前方散
乱光の略全光量を検出する様になされている。
As shown in FIG. 4, the ring-shaped light receiving element (56) is constituted by arranging a plurality of light receiving elements such as photodiodes in a ring shape. 43). Moreover, the respective light receiving elements are electrically connected in parallel, and as a whole, detect substantially the total amount of forward scattered light within a predetermined angle range (θ 1 to θ 2 ) with respect to the optical axis of the transmitted light. It has been done.

【0030】環状の受光素子(56)の内径および外径
は、図1の環状の集光レンズ(51)におけるのと同様
に、試料容器(2)に対して所定距離だけ離間させて光
学ユニット(3A)を配置した場合、透過光の光軸に対
して上述の様な所定の角度範囲(θ1〜θ2)の前方散乱
光を捕捉可能な大きさに設定される。なお、図示しない
が、環状の受光素子(56)の照射方向後方側、すなわ
ち、環状の受光素子(56)の受光面側には、集光レン
ズが設けられていてもよい。
The inner and outer diameters of the annular light receiving element (56) are spaced apart from the sample container (2) by a predetermined distance in the same manner as in the annular condenser lens (51) of FIG. In the case where (3A) is arranged, the size is set such that forward scattered light in the above-described predetermined angle range (θ 1 to θ 2 ) with respect to the optical axis of the transmitted light can be captured. Although not shown, a condenser lens may be provided on the rear side in the irradiation direction of the annular light receiving element (56), that is, on the light receiving surface side of the annular light receiving element (56).

【0031】図3に示す光学ユニット(3A)におい
て、遮蔽部材(4)としての遮蔽ブロック(43)は、
試料(S)中を直進した透過光を遮蔽し、散乱光受光手
段(5)としての環状の受光素子(56)は、透過光の
光軸に対して所定の角度範囲(θ1〜θ2)の略全ての前
方散乱光を捕捉し且つその光量を検出する。その結果、
図3に示す本発明の光学ユニット(3A)においては、
図1のユニットと同様に、変化の微小な散乱光の検出に
おいて、高いS/N特性が得られ、かつ、試料(S)に
おける散乱の空間平均値を高精度に求め得る。
In the optical unit (3A) shown in FIG. 3, a shielding block (43) as a shielding member (4) includes:
An annular light receiving element (56) as a scattered light receiving means (5) shields transmitted light that has traveled straight through the sample (S), and has a predetermined angle range (θ 1 to θ 2 ) with respect to the optical axis of the transmitted light. ) To capture substantially all forward scattered light and detect the amount of light. as a result,
In the optical unit (3A) of the present invention shown in FIG.
As in the unit of FIG. 1, a high S / N characteristic can be obtained and a spatial average value of the scattering in the sample (S) can be obtained with high accuracy in detecting scattered light with a small change.

【0032】次に、透過光および散乱光の検出に適用さ
れる光学ユニットについて説明する。本発明の光学ユニ
ットは、図5〜図7に符号(3B)で示されており、斯
かる光学ユニット(3B)は、光透過性の試料(S)に
照射した光の透過光および前方散乱光の各光量を同時に
測定するユニットであり、前述の各光学ユニット(3
A)と同様に、ケース部材に所要の部材を収容して構成
される。
Next, an optical unit applied to the detection of transmitted light and scattered light will be described. The optical unit of the present invention is indicated by reference numeral (3B) in FIGS. 5 to 7, and the optical unit (3B) transmits transmitted light and forward scattered light applied to the light-transmitting sample (S). This unit measures each light amount of light at the same time.
As in the case of A), the case member accommodates required members.

【0033】すなわち、光学ユニット(3B)は、試料
(S)中を直進した透過光の光量を検出する透過光受光
手段(6)と、当該透過光受光手段の略全外周囲に亘っ
て配置され且つ試料(S)中で散乱した前方散乱光を検
出する散乱光受光手段(5)とから構成される。そし
て、散乱光受光手段(5)は、前述の各光学ユニット
(3A)と同様に、透過光の光軸に対して所定の角度範
囲(θ1〜θ2)の前方散乱光を捕捉し、かつ、当該前方
散乱光の略全光量を検出する機能を備えている。
That is, the optical unit (3B) is provided with a transmitted light receiving means (6) for detecting the amount of transmitted light that has traveled straight through the sample (S), and is disposed around substantially the entire outer periphery of the transmitted light receiving means. And scattered light receiving means (5) for detecting forward scattered light scattered in the sample (S). Then, the scattered light receiving means (5) captures forward scattered light within a predetermined angle range (θ 1 to θ 2 ) with respect to the optical axis of the transmitted light, similarly to the optical units (3A) described above, In addition, it has a function of detecting substantially the total amount of the forward scattered light.

【0034】図5〜図7の各図は、光学ユニット(3
B)の更に具体的な形態を示す図であり、図5に示す光
学ユニット(3B)において、透過光受光手段(6)
は、フォトダイオード等の光電素子などで構成される。
散乱光受光手段(5)は、透過光受光手段(6)の略全
外周囲に亘って配置された環状の集光レンズ(51)
と、当該環状の集光レンズによって集光される光の集束
位置に配置された受光素子(55)とを備えている。
Each of FIGS. 5 to 7 shows an optical unit (3
It is a figure which shows the more specific form of B), The transmitted light receiving means (6) in the optical unit (3B) shown in FIG.
Is composed of a photoelectric element such as a photodiode.
The scattered light receiving means (5) is an annular condensing lens (51) arranged around substantially the entire periphery of the transmitted light receiving means (6).
And a light receiving element (55) arranged at a focus position of the light condensed by the annular condensing lens.

【0035】図5に示す散乱光受光手段(5)は、図1
の光学ユニット(3A)におけるのと同様である。換言
すれば、図5に示す光学ユニット(3B)構造は、図1
の光学ユニット(3A)において、遮蔽ブロック(4
1)に代えて透過光受光手段(6)が配置された構造に
略等しい。
The scattered light receiving means (5) shown in FIG.
This is the same as in the optical unit (3A). In other words, the structure of the optical unit (3B) shown in FIG.
In the optical unit (3A), the shielding block (4
This is substantially the same as the structure in which the transmitted light receiving means (6) is arranged instead of 1).

【0036】図5に示す光学ユニット(3B)は、前述
の各光学ユニット(3A)と同様に、例えば、ラテック
ス凝集法による免疫血清検査において、反応試薬の濁度
測定に使用され、斯かる濁度測定においては、光源ユニ
ット(1)の光を光学ユニット(3B)で受光する。そ
の際、透過光受光手段(6)は、試料(S)中を直進し
た透過光の光量を検出し、また、散乱光受光手段(5)
を構成する環状の集光レンズ(41)は、透過光の光軸
に対して上記の所定の角度範囲(θ1〜θ2)の前方散乱
光を捕捉する。そして、散乱光受光手段(5)の受光素
子(55)は、結像レンズ(54)によって集束された
前方散乱光の略全光量を検出する。
The optical unit (3B) shown in FIG. 5 is used for measuring the turbidity of a reaction reagent in an immunoserum test by, for example, a latex agglutination method, similarly to the optical units (3A) described above. In the degree measurement, the light of the light source unit (1) is received by the optical unit (3B). At this time, the transmitted light receiving means (6) detects the amount of transmitted light that has traveled straight through the sample (S), and detects the scattered light receiving means (5).
The annular condensing lens (41) that captures the forward scattered light in the above-mentioned predetermined angle range (θ 1 to θ 2 ) with respect to the optical axis of the transmitted light. The light receiving element (55) of the scattered light receiving means (5) detects substantially the total amount of forward scattered light focused by the imaging lens (54).

【0037】すなわち、本発明の光学ユニット(3B)
は、透過光受光手段(6)によって透過光の光量を直接
検出するため、反応が進んだ状態など、変化の大きな透
過光の検出において、高いS/N特性が得られ、そし
て、散乱光受光手段(5)によって所定の角度範囲の散
乱光の略全光量を検出するため、反応初期の状態など、
変化の微小な散乱光の検出において、高いS/N特性が
得られる。しかも、前方散乱光をリング状に捕捉するた
め、試料(S)における散乱の空間平均値を高精度に求
め得る。
That is, the optical unit (3B) of the present invention
Since the amount of transmitted light is directly detected by the transmitted light receiving means (6), a high S / N characteristic can be obtained in the detection of a transmitted light having a large change, such as a state in which a reaction has progressed, and the scattered light is received. The means (5) detects almost the total amount of scattered light in a predetermined angle range,
High S / N characteristics can be obtained in the detection of scattered light with a small change. Moreover, since the forward scattered light is captured in a ring shape, the spatial average value of the scattering in the sample (S) can be obtained with high accuracy.

【0038】従って、本発明の光学ユニット(3B)を
使用した場合には、光強度の大きな透過光ならびに微弱
な散乱光を同時に且つ高い精度で測定でき、上記ラテッ
クス凝集法などにおいて、予め多数のサンプリングをす
る必要がなく、例えば、測定レンジを適宜に切り替える
だけで、簡単に且つより高精度の分析が可能である。
Therefore, when the optical unit (3B) of the present invention is used, transmitted light having high light intensity and weak scattered light can be measured simultaneously and with high accuracy. There is no need to perform sampling, and analysis can be performed simply and with higher accuracy simply by switching the measurement range appropriately.

【0039】また、図6に示す光学ユニット(3B)に
おいて、散乱光受光手段(5)は、透過光受光手段
(6)の略全外周囲に亘って形成されたスリット部材
(62)の環状のスリット(52)と、スリット部材
(62)に対して照射方向前方に配置された集光レンズ
(53)と、当該集光レンズによって集光される光の集
束位置に配置された受光素子(55)とを備えている。
Further, in the optical unit (3B) shown in FIG. 6, the scattered light receiving means (5) is formed in an annular shape of a slit member (62) formed substantially all around the transmitted light receiving means (6). (52), a condenser lens (53) disposed in front of the slit member (62) in the irradiation direction, and a light receiving element (53) disposed at a focus position of light condensed by the condenser lens. 55).

【0040】スリット部材(62)は、図2の光学ユニ
ット(3A)と同様に、平板に環状のスリット(52)
を切り欠いて構成され、ケース部材の全端に配置され
る。その場合、透過光受光手段(6)は、スリット部材
(42)に対し、環状のスリット(52)によって区画
された平板中央の円板部に設けられる。
As in the case of the optical unit (3A) shown in FIG.
And are arranged at all ends of the case member. In this case, the transmitted light receiving means (6) is provided at the center disk portion of the flat plate defined by the annular slit (52) with respect to the slit member (42).

【0041】スリット部材(62)と透過光受光手段
(6)の配置関係は、環状のスリット(52)の中心に
透過光受光手段(6)が位置すればよく、例えば、平板
に円形の穴を開口したスリット部材(62)の基材に対
し、前記の穴の中心に透過光受光手段(6)を支持する
ことにより、環状のスリット(52)を形成する様に構
成されていてもよい。換言すれば、図6に示す光学ユニ
ット(3B)構造は、図2の光学ユニット(3A)にお
いて、スリット部材(42)の中央の円板部に代えて透
過光受光手段(6)が配置された構造に略等しい。
The arrangement of the slit member (62) and the transmitted light receiving means (6) may be such that the transmitted light receiving means (6) is located at the center of the annular slit (52). An annular slit (52) may be formed by supporting the transmitted light receiving means (6) at the center of the hole with respect to the base material of the slit member (62) having the opening. . In other words, in the structure of the optical unit (3B) shown in FIG. 6, in the optical unit (3A) of FIG. 2, the transmitted light receiving means (6) is arranged instead of the central disk portion of the slit member (42). It is almost equal to the structure.

【0042】図6に示す光学ユニット(3B)におい
て、透過光受光手段(6)は、試料中を直進した透過光
の光量を検出し、また、散乱光受光手段(5)を構成す
る環状のスリット(62)は、透過光の光軸に対して上
記の所定の角度範囲(θ1〜θ2)の前方散乱光を捕捉す
る。そして、散乱光受光手段(5)の受光素子(55)
は、集束された前方散乱光の略全光量を検出する。その
結果、図6に示す本発明の光学ユニット(3B)におい
ては、図5のユニットと同様に、変化の大きな透過光の
検出において、高いS/N特性が得られ、そして、変化
の微小な散乱光の検出において、高いS/N特性が得ら
れる。しかも、前方散乱光をリング状に捕捉するため、
試料(S)における散乱の空間平均値を高精度に求め得
る。
In the optical unit (3B) shown in FIG. 6, the transmitted light receiving means (6) detects the amount of transmitted light that has traveled straight through the sample, and has an annular shape which constitutes the scattered light receiving means (5). slit (62) captures the forward scattered light of the predetermined angular range (theta 1 through? 2) with respect to the optical axis of the transmitted light. Then, the light receiving element (55) of the scattered light receiving means (5)
Detects substantially the total amount of focused forward scattered light. As a result, in the optical unit (3B) of the present invention shown in FIG. 6, similarly to the unit of FIG. 5, high S / N characteristics can be obtained in detecting transmitted light having a large change, and a small change is detected. In detecting scattered light, a high S / N characteristic is obtained. Moreover, to capture the forward scattered light in a ring shape,
The spatial average value of the scattering in the sample (S) can be obtained with high accuracy.

【0043】また、図7に示す光学ユニット(3B)に
おいて、散乱光受光手段(5)は、透過光受光手段
(6)の略全外周囲に亘って配置された環状の受光素子
(56)を備えている。環状の受光素子(56)は、図
8に示す様に、フォトダイオード等の受光素子を円環状
に複数配列して構成され、短軸の有底円筒状のケース部
材に遮蔽ブロック(43)と共に収容される。換言すれ
ば、図7に示す光学ユニット(3B)構造は、図3の光
学ユニット(3A)において、遮蔽ブロック(43)に
代えて透過光受光手段(6)が配置された構造に略等し
い。
Further, in the optical unit (3B) shown in FIG. 7, the scattered light receiving means (5) is an annular light receiving element (56) arranged around substantially the entire periphery of the transmitted light receiving means (6). It has. As shown in FIG. 8, the annular light receiving element (56) is configured by arranging a plurality of light receiving elements such as photodiodes in a ring shape, and is provided in a short-axis bottomed cylindrical case member together with a shielding block (43). Will be accommodated. In other words, the structure of the optical unit (3B) shown in FIG. 7 is substantially the same as the structure of the optical unit (3A) in FIG. 3 except that the transmitted light receiving means (6) is arranged instead of the shielding block (43).

【0044】図7に示す光学ユニット(3B)におい
て、透過光受光手段(6)は、試料中を直進した透過光
の光量を検出し、また、散乱光受光手段(5)を構成す
る環状の受光素子(56)は、透過光の光軸に対して上
記の所定の角度範囲(θ1〜θ2)の前方散乱光を捕捉す
る。そして、環状の受光素子(56)は、集束された前
方散乱光の略全光量を検出する。その結果、図7に示す
本発明の光学ユニット(3B)においては、図5のユニ
ットと同様に、変化の大きな透過光の検出において、高
いS/N特性が得られ、そして、変化の微小な散乱光の
検出において、高いS/N特性が得られる。しかも、前
方散乱光をリング状に捕捉するため、試料(S)におけ
る散乱の空間平均値を高精度に求め得る。
In the optical unit (3B) shown in FIG. 7, the transmitted light receiving means (6) detects the amount of transmitted light that has traveled straight through the sample, and has an annular shape that constitutes the scattered light receiving means (5). light-receiving element (56) captures the forward scattered light of the predetermined angular range (theta 1 through? 2) with respect to the optical axis of the transmitted light. Then, the annular light receiving element (56) detects substantially the entire amount of the focused forward scattered light. As a result, in the optical unit (3B) of the present invention shown in FIG. 7, high S / N characteristics are obtained in the detection of transmitted light having a large change, as in the unit shown in FIG. In detecting scattered light, a high S / N characteristic is obtained. Moreover, since the forward scattered light is captured in a ring shape, the spatial average value of the scattering in the sample (S) can be obtained with high accuracy.

【0045】[0045]

【発明の効果】第1の目的を達成するための本発明の光
学ユニットによれば、散乱光受光手段によって所定の角
度範囲の散乱光の略全光量を検出するため、変化の微小
な散乱光の検出において、高いS/N特性が得られ、か
つ、前方散乱光をリング状に捕捉するため、試料におけ
る散乱の空間平均値を高精度に求め得る。従って、本発
明の光学ユニットを使用した場合には、微弱な散乱光を
高い精度で測定でき、ラテックス凝集法などにおいて、
より高精度の分析が可能である。
According to the optical unit of the present invention for achieving the first object, since the scattered light receiving means detects almost the total amount of scattered light in a predetermined angle range, the scattered light having a small change is detected. In the detection of, a high S / N characteristic is obtained and the forward scattered light is captured in a ring shape, so that the spatial average value of the scattering in the sample can be obtained with high accuracy. Therefore, when the optical unit of the present invention is used, weak scattered light can be measured with high accuracy.
Higher precision analysis is possible.

【0046】第2の目的を達成するための本発明の光学
ユニットによれば、透過光受光手段によって透過光の光
量を直接検出するため、変化の大きな透過光の検出にお
いて、高いS/N特性が得られ、そして、散乱光受光手
段(によって所定の角度範囲の散乱光の略全光量を検出
するため、変化の微小な散乱光の検出において、高いS
/N特性が得られる。しかも、前方散乱光をリング状に
捕捉するため、試料における散乱の空間平均値を高精度
に求め得る。従って、本発明の光学ユニットを使用した
場合には、光強度の大きな透過光ならびに微弱な散乱光
を同時に且つ高い精度で測定でき、ラテックス凝集法な
どにおいて、予め多数のサンプリングをする必要がな
く、例えば、測定レンジを適宜に切り替えるだけで、簡
単に且つより高精度の分析が可能である。
According to the optical unit of the present invention for achieving the second object, since the amount of transmitted light is directly detected by the transmitted light receiving means, high S / N characteristics can be obtained in the detection of transmitted light having a large change. Is obtained, and the scattered light receiving means () detects almost the total amount of scattered light in a predetermined angle range.
/ N characteristic is obtained. Moreover, since the forward scattered light is captured in a ring shape, the spatial average value of the scattering in the sample can be obtained with high accuracy. Therefore, when the optical unit of the present invention is used, it is possible to measure transmitted light having a large light intensity and weak scattered light simultaneously and with high accuracy, and it is not necessary to perform a large number of sampling in advance in a latex agglutination method or the like. For example, simply and appropriately switching the measurement range enables simple and more accurate analysis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】環状の集光レンズによって散乱光を捕捉する散
乱光測定用の光学ユニットの破断側面図
FIG. 1 is a cutaway side view of an optical unit for measuring scattered light that captures scattered light by an annular condenser lens.

【図2】環状のスリットによって散乱光を捕捉する散乱
光測定用の光学ユニットの破断側面図
FIG. 2 is a cutaway side view of an optical unit for measuring scattered light that captures scattered light by an annular slit.

【図3】環状の受光素子によって散乱光を捕捉する散乱
光測定用の光学ユニットの破断側面図
FIG. 3 is a cutaway side view of an optical unit for measuring scattered light that captures scattered light by an annular light receiving element.

【図4】図3のIV−IV線に沿って示した散乱光測定用の
光学ユニットの正面図
FIG. 4 is a front view of the optical unit for measuring scattered light shown along the line IV-IV in FIG. 3;

【図5】環状の集光レンズによって散乱光を捕捉する透
過光・散乱光測定用の光学ユニット光学ユニットの破断
側面図
FIG. 5 is a cutaway side view of an optical unit for measuring transmitted light and scattered light which captures scattered light by an annular condenser lens.

【図6】環状のスリットによって散乱光を捕捉する透過
光・散乱光測定用の光学ユニットの破断側面図
FIG. 6 is a cutaway side view of an optical unit for measuring transmitted light and scattered light that captures scattered light by an annular slit.

【図7】環状の受光素子によって散乱光を捕捉する透過
光・散乱光測定用の光学ユニットの破断側面図
FIG. 7 is a cutaway side view of an optical unit for measuring transmitted light and scattered light that captures scattered light by an annular light receiving element.

【図8】図7のVIII−VIII線に沿って示した透過光・散
乱光測定用の光学ユニットの正面図
8 is a front view of an optical unit for measuring transmitted light and scattered light shown along line VIII-VIII in FIG. 7;

【符号の説明】[Explanation of symbols]

1 :光源ユニット 2 :試料容器 3A:光学ユニット 3B:光学ユニット 4 :遮蔽部材 41:遮蔽ブロック 42:スリット部材 43:遮蔽ブロック 5 :散乱光受光手段 51:環状の集光レンズ 52:環状のスリット 53:集光レンズ 55:受光素子 56:環状の受光素子 6 :透過光受光手段 S :試料 1: light source unit 2: sample container 3A: optical unit 3B: optical unit 4: shielding member 41: shielding block 42: slit member 43: shielding block 5: scattered light receiving means 51: annular condenser lens 52: annular slit 53: condenser lens 55: light receiving element 56: annular light receiving element 6: transmitted light receiving means S: sample

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 光透過性の試料(S)に照射した光の前
方散乱光の光量を測定する光学ユニット(3A)であっ
て、試料(S)中を直進した透過光を遮蔽する遮蔽部材
(4)と、当該遮蔽部材の略全外周囲に亘って配置され
且つ試料(S)中で散乱した前方散乱光を検出する散乱
光受光手段(5)とから構成され、散乱光受光手段
(5)は、透過光の光軸に対して所定の角度範囲(θ1
〜θ2)の前方散乱光を捕捉し、かつ、当該前方散乱光
の略全光量を検出する機能を備えていることを特徴とす
る光学ユニット。
1. An optical unit (3A) for measuring the amount of forward scattered light of light applied to a light-transmitting sample (S), wherein the shielding member shields transmitted light that has traveled straight through the sample (S). (4) and scattered light receiving means (5) which is disposed around substantially the entire outer periphery of the shielding member and detects forward scattered light scattered in the sample (S). 5) is a predetermined angle range (θ 1 ) with respect to the optical axis of the transmitted light.
Optical unit captures the forward scattered light through? 2), and characterized in that it comprises a function of detecting a substantially entire amount of the forward scattered light.
【請求項2】 散乱光受光手段(5)が、遮蔽部材
(4)の略全外周囲に亘って配置された環状の集光レン
ズ(51)と、当該環状の集光レンズによって集光され
る光の集束位置に配置された受光素子(55)とを備え
ている請求項1に記載の光学ユニット。
2. A scattered light receiving means (5), wherein an annular condenser lens (51) is disposed around substantially the entire outer periphery of the shielding member (4), and condensed by the annular condenser lens. The optical unit according to claim 1, further comprising a light receiving element (55) disposed at a light focusing position.
【請求項3】 散乱光受光手段(5)が、遮蔽部材
(4)の略全外周囲に亘って形成されたスリット部材
(42)の環状のスリット(52)と、スリット部材
(42)に対して照射方向前方に配置された集光レンズ
(53)と、当該集光レンズによって集光される光の集
束位置に配置された受光素子(55)とを備えている請
求項1に記載の光学ユニット。
3. A scattered light receiving means (5) is provided on an annular slit (52) of a slit member (42) formed over substantially the entire outer periphery of the shielding member (4) and a slit member (42). 2. The light-emitting device according to claim 1, further comprising: a condensing lens (53) disposed in front of the irradiation direction, and a light-receiving element (55) disposed at a focus position of light condensed by the condensing lens. Optical unit.
【請求項4】 散乱光受光手段(5)が、遮蔽部材
(4)の略全外周囲に亘って配置された環状の受光素子
(56)を備えている請求項1に記載の光学ユニット。
4. The optical unit according to claim 1, wherein the scattered light receiving means comprises an annular light receiving element disposed substantially all around the shielding member.
【請求項5】 光透過性の試料(S)に照射した光の透
過光および前方散乱光の各光量を測定する光学ユニット
(3B)であって、試料(S)中を直進した透過光の光
量を検出する透過光受光手段(6)と、当該透過光受光
手段の略全外周囲に亘って配置され且つ試料(S)中で
散乱した前方散乱光を検出する散乱光受光手段(5)と
から構成され、散乱光受光手段(5)は、透過光の光軸
に対して所定の角度範囲(θ1〜θ2)の前方散乱光を捕
捉し、かつ、当該前方散乱光の略全光量を検出する機能
を備えていることを特徴とする光学ユニット。
5. An optical unit (3B) for measuring the amount of transmitted light and the amount of forward scattered light applied to a light-transmissive sample (S), wherein the amount of transmitted light traveling straight through the sample (S) is measured. Transmitted light receiving means (6) for detecting the amount of light, and scattered light receiving means (5) arranged around substantially the entire outer periphery of the transmitted light receiving means and detecting forward scattered light scattered in the sample (S). The scattered light receiving means (5) captures forward scattered light within a predetermined angle range (θ 1 to θ 2 ) with respect to the optical axis of the transmitted light, and substantially all of the forward scattered light. An optical unit having a function of detecting a light amount.
【請求項6】 散乱光受光手段(5)が、透過光受光手
段(6)の略全外周囲に亘って配置された環状の集光レ
ンズ(51)と、当該環状の集光レンズによって集光さ
れる光の集束位置に配置された受光素子(55)とを備
えている請求項5に記載の光学ユニット。
6. A scattered light receiving means (5) is formed by an annular condenser lens (51) arranged around substantially the entire periphery of the transmitted light receiving means (6), and an annular condenser lens. The optical unit according to claim 5, further comprising a light receiving element (55) arranged at a focusing position of the light to be emitted.
【請求項7】 散乱光受光手段(5)が、透過光受光手
段(6)の略全外周囲に亘って形成されたスリット部材
(62)の環状のスリット(52)と、スリット部材
(62)に対して照射方向前方に配置された集光レンズ
(53)と、当該集光レンズによって集光される光の集
束位置に配置された受光素子(55)とを備えている請
求項5に記載の光学ユニット。
7. An annular slit (52) of a slit member (62) formed over substantially the entire outer periphery of the transmitted light receiving means (6), and a slit member (62). 6. The light-emitting device according to claim 5, further comprising: a condenser lens (53) disposed in front of the irradiation direction with respect to the irradiation direction; and a light-receiving element (55) disposed at a focus position of light collected by the condenser lens. An optical unit as described.
【請求項8】 散乱光受光手段(5)が、透過光受光手
段(6)の略全外周囲に亘って配置された環状の受光素
子(56)を備えている請求項5に記載の光学ユニッ
ト。
8. The optical device according to claim 5, wherein the scattered light receiving means comprises an annular light receiving element disposed substantially all around the transmitted light receiving means. unit.
JP3104599A 1999-02-09 1999-02-09 Optical unit Withdrawn JP2000230901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3104599A JP2000230901A (en) 1999-02-09 1999-02-09 Optical unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3104599A JP2000230901A (en) 1999-02-09 1999-02-09 Optical unit

Publications (1)

Publication Number Publication Date
JP2000230901A true JP2000230901A (en) 2000-08-22

Family

ID=12320524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3104599A Withdrawn JP2000230901A (en) 1999-02-09 1999-02-09 Optical unit

Country Status (1)

Country Link
JP (1) JP2000230901A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141654A (en) * 1999-10-08 2001-05-25 Dade Behring Marburg Gmbh Spectral luminous intensity and specific turbidity detecting unit
JP2006317270A (en) * 2005-05-12 2006-11-24 Yokogawa Electric Corp Turbidity meter
EP1869431A1 (en) * 2005-04-01 2007-12-26 FORSELL, Tommy Device for determining of properties in a fluid and/or constituents thereof
JP2010025867A (en) * 2008-07-23 2010-02-04 Olympus Medical Systems Corp Subject observation apparatus and subject observation method
WO2011105464A1 (en) * 2010-02-25 2011-09-01 株式会社日立ハイテクノロジーズ Automatic analysis device
WO2011162139A1 (en) * 2010-06-23 2011-12-29 株式会社日立ハイテクノロジーズ Automated analysis device and automated analysis method
CN104833620A (en) * 2015-04-20 2015-08-12 江苏苏净集团有限公司 Atmospheric particulate matter concentration monitoring device
JP2015177250A (en) * 2014-03-13 2015-10-05 富士フイルム株式会社 imaging system and imaging method
US9345385B2 (en) 2008-07-23 2016-05-24 Olympus Corporation Subject observation apparatus and subject observation method
WO2016129029A1 (en) * 2015-02-09 2016-08-18 株式会社日立製作所 Automatic analyzer
WO2017061342A1 (en) * 2015-10-06 2017-04-13 独立行政法人国立高等専門学校機構 Crystallization analysis device and crystallization analysis method
JP2020020706A (en) * 2018-08-02 2020-02-06 株式会社島津製作所 Light scattering detection device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141654A (en) * 1999-10-08 2001-05-25 Dade Behring Marburg Gmbh Spectral luminous intensity and specific turbidity detecting unit
EP1869431A1 (en) * 2005-04-01 2007-12-26 FORSELL, Tommy Device for determining of properties in a fluid and/or constituents thereof
EP1869431A4 (en) * 2005-04-01 2010-07-07 Tommy Forsell Device for determining of properties in a fluid and/or constituents thereof
JP2006317270A (en) * 2005-05-12 2006-11-24 Yokogawa Electric Corp Turbidity meter
JP2010025867A (en) * 2008-07-23 2010-02-04 Olympus Medical Systems Corp Subject observation apparatus and subject observation method
US9345385B2 (en) 2008-07-23 2016-05-24 Olympus Corporation Subject observation apparatus and subject observation method
WO2011105464A1 (en) * 2010-02-25 2011-09-01 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2011174842A (en) * 2010-02-25 2011-09-08 Hitachi High-Technologies Corp Automatic analysis device
JP2012007921A (en) * 2010-06-23 2012-01-12 Hitachi High-Technologies Corp Automatic analyzer and automatic analysis method
WO2011162139A1 (en) * 2010-06-23 2011-12-29 株式会社日立ハイテクノロジーズ Automated analysis device and automated analysis method
JP2015177250A (en) * 2014-03-13 2015-10-05 富士フイルム株式会社 imaging system and imaging method
WO2016129029A1 (en) * 2015-02-09 2016-08-18 株式会社日立製作所 Automatic analyzer
CN104833620A (en) * 2015-04-20 2015-08-12 江苏苏净集团有限公司 Atmospheric particulate matter concentration monitoring device
WO2017061342A1 (en) * 2015-10-06 2017-04-13 独立行政法人国立高等専門学校機構 Crystallization analysis device and crystallization analysis method
JP2020020706A (en) * 2018-08-02 2020-02-06 株式会社島津製作所 Light scattering detection device
JP7187874B2 (en) 2018-08-02 2022-12-13 株式会社島津製作所 light scattering detector

Similar Documents

Publication Publication Date Title
JP4791625B2 (en) Spectrophotometric / turbidimetric detection unit
US7342662B2 (en) Sample analyzer
JPH05107035A (en) Sensitivity improvement type optical measuring device
JP2000230901A (en) Optical unit
JP2003515738A (en) Apparatus for measuring the size of substantially spherical particles, such as opaque droplets, by diffraction
US6844934B2 (en) Optical turbidimeter with a lens tube
US4124302A (en) Device for photometering a substance placed in a cylinder-shaped cell
JP5879405B1 (en) Fine particle detector
AU2002310007A1 (en) Optical turbidimeter with a lens tube
CN111788469A (en) Particulate matter sensor
US8541760B2 (en) Method for calibrating a deflection unit in a TIRF microscope, TIRF microscope, and method for operating the same
JP2019505794A (en) Portable device for detecting explosives, including a device for generating and measuring light emission of an indicator
SU1223092A1 (en) Small-angle nephelometer
JPH0277636A (en) Particle measuring device
JP2010091428A (en) Scanning optical system
JPH02193041A (en) Particle size distribution apparatus
JP4742166B2 (en) Sample analyzer
JP2009204484A (en) Sensing device
JPWO2020021682A1 (en) Light scattering detector
JP3471634B2 (en) Particle size distribution measuring device
JPH0442621B2 (en)
JP2001330551A (en) Particle measuring instrument
JPH08178830A (en) Detector
JP2687539B2 (en) Particle size distribution analyzer
JPH0810191B2 (en) Scattered light detector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060509