JPH08178830A - Detector - Google Patents

Detector

Info

Publication number
JPH08178830A
JPH08178830A JP6323047A JP32304794A JPH08178830A JP H08178830 A JPH08178830 A JP H08178830A JP 6323047 A JP6323047 A JP 6323047A JP 32304794 A JP32304794 A JP 32304794A JP H08178830 A JPH08178830 A JP H08178830A
Authority
JP
Japan
Prior art keywords
light
scattered light
laser
detecting
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6323047A
Other languages
Japanese (ja)
Inventor
Masakazu Sakata
雅一 坂田
Masayuki Fujita
政行 藤田
Yoshitaka Nishio
佳高 西尾
Kenichi Shibata
賢一 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6323047A priority Critical patent/JPH08178830A/en
Publication of JPH08178830A publication Critical patent/JPH08178830A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To determine the size of a particle using a simple optical detection means by determining the ratio of intensity of light scattering in a plurality of different directions. CONSTITUTION: A semiconductor laser (light source) 2 emits laser light (irradiation light) for irradiating a solution or a gas. A first photodetector element 3 comprises photodiodes, or the like, arranged on a line connecting the emitting part of the laser 2 and a quartz container 1. A second photodetector element 4 comprises photodiodes, or the like, receiving the light backscattering at an angle θY. arranged at the angle θY with respect to the central optical axis of laser light emitted from the laser 2 on the same side as the laser 2 with respect to the container 1. An arithmetic unit calculates the ratio of intensity of signals outputted from the elements 3, 4 and determines the particle size based on the ratio of intensity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光を用いて粒子の大き
さを検出可能な検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detection device capable of detecting the size of particles by using light.

【0002】[0002]

【従来の技術】従来、粒子の大きさを識別する方法とし
て、特開昭62−100637号(G01N 15/0
2)や特開平2−203246号(G01N 15/0
2)に、フラウンホーファー回折を利用した粒子群の粒
度分布を測定する方法が開示されている。
2. Description of the Related Art Conventionally, as a method for identifying the size of particles, Japanese Patent Laid-Open No. 62-100637 (G01N 15/0) has been used.
2) and JP-A-2-203246 (G01N 15/0)
2) discloses a method for measuring the particle size distribution of particle groups using Fraunhofer diffraction.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記公
報記載の方法では、同心円状に配置されたリングデテク
タや半径方向に向かって受光面積が大きい複数のフォト
ダイオードからなる扇状デテクタを用いる必要があり、
装置が高価になる恐れがあった。
However, in the method described in the above publication, it is necessary to use a ring detector arranged concentrically or a fan-shaped detector composed of a plurality of photodiodes having a large light receiving area in the radial direction.
The device could be expensive.

【0004】本発明は上述の問題点を鑑みなされたもの
であり、簡単な光検出手段を用いて粒子の大きさを識別
できる検出装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a detection device capable of discriminating the size of particles by using a simple light detecting means.

【0005】[0005]

【課題を解決するための手段】本発明の検出装置は、光
源手段と、該光源手段から出力した照射光が被照射物に
照射されて生じる散乱光の前記照射光の前記被照射物へ
の入射方向とのなす角が互いに異なる複数の方向におけ
る光強度をそれぞれ検出するための光検出手段と、を備
え、前記光検出手段で検出された前記複数の方向におけ
る光強度の比から前記被照射物の大きさを検出すること
を特徴とする。
The detection device of the present invention comprises a light source means and a scattered light generated when the irradiation light output from the light source means is applied to the irradiation object to the irradiation object. Light detecting means for detecting light intensities in a plurality of directions having angles different from each other with respect to the incident direction, and the irradiation target is determined based on a ratio of light intensities in the plurality of directions detected by the light detecting means. It is characterized by detecting the size of an object.

【0006】特に、前記光検出手段は、前方散乱光用の
光検出素子と、後方散乱光用の光検出素子と、からなる
ことを特徴とする。
In particular, the light detecting means is characterized by comprising a light detecting element for forward scattered light and a light detecting element for back scattered light.

【0007】特に、前記前方散乱光用の光検出素子は、
スリットを介して前方散乱光を受光することを特徴とす
る。
In particular, the photodetector element for the forward scattered light is
It is characterized in that the forward scattered light is received through the slit.

【0008】[0008]

【作用】照射光が被照射物に照射されて生じる散乱光
は、その被照射物の大きさが大きい程、散乱光は前方側
に集中し、所謂前方散乱が強くなる。逆に、被照射物の
大きさが小さい程、前方散乱光が広がる(前方散乱光の
散乱角が大きくなる)と共に、後方側にも広がり所謂後
方散乱も強くなる。
The scattered light generated by irradiating the irradiation object with the irradiation light is concentrated on the front side as the size of the irradiation object is larger, and so-called forward scattering becomes stronger. On the contrary, as the size of the irradiation object is smaller, the forward scattered light spreads (the scattering angle of the forward scattered light becomes larger), and the so-called backscattering also spreads toward the rear side.

【0009】本発明では、上記原理に基づいて、散乱光
の互いに異なる複数の方向における光強度比(即ち、散
乱光の強度分布の識別)から被照射物の大きさを検出す
るので、複雑な光検出手段が不要であり、装置を安価に
提供できる。
According to the present invention, the size of the object to be irradiated is detected from the light intensity ratio (that is, the identification of the intensity distribution of the scattered light) of the scattered light in a plurality of different directions based on the above-mentioned principle. The light detecting means is unnecessary, and the device can be provided at a low cost.

【0010】特に、光検出手段が、前方散乱光用の光検
出素子と、後方散乱光用の光検出素子と、からなる場
合、前方散乱光と後方散乱光の光強度比は被照射物の大
きさに依存して顕著に変化するので、前方散乱光と後方
散乱光の光強度比から被照射物の大きさを精度よく検出
できる。
In particular, when the light detecting means is composed of a light detecting element for forward scattered light and a light detecting element for back scattered light, the light intensity ratio of the forward scattered light and the back scattered light is the object to be irradiated. Since it remarkably changes depending on the size, the size of the irradiation target can be accurately detected from the light intensity ratio of the forward scattered light and the back scattered light.

【0011】特に、前記前方散乱光用の光検出素子がス
リットを介して前方散乱光を受光する場合、前方散乱光
用の光検出素子へ直接照射光が入射するのを防止するよ
うにできると共に、前方散乱光用の光検出素子へ所定の
散乱角の散乱光を入射するようにできる。この結果、被
照射物の大きさの検出感度が上がる。
Particularly, when the photodetection element for the forward scattered light receives the forward scattered light through the slit, it is possible to prevent the irradiation light from directly entering the photodetection element for the forward scattered light. The scattered light having a predetermined scattering angle can be made incident on the light detecting element for the forward scattered light. As a result, the sensitivity of detecting the size of the object to be irradiated is increased.

【0012】[0012]

【実施例】本発明の粒子検出装置の原理を図を用いて説
明する。図1は本発明の原理を説明するための散乱光の
強度分布図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The principle of the particle detecting device of the present invention will be described with reference to the drawings. FIG. 1 is an intensity distribution diagram of scattered light for explaining the principle of the present invention.

【0013】図1中、(a)〜(f)は、それぞれ5、
1、0.5、0.3、0.2、0.1μmの粒子径を有
する粒子にレーザ光を照射した場合の散乱光の強度分布
を示す。
In FIG. 1, (a) to (f) are 5,
The intensity distribution of scattered light when a laser beam is irradiated to particles having particle diameters of 1, 0.5, 0.3, 0.2, and 0.1 μm is shown.

【0014】この図から、散乱光は、粒子の大きさが大
きい程、散乱光は前方側に集中し、所謂前方散乱が強く
なり、逆に、粒子の大きさが小さい程、前方散乱光が広
がると共に、後方側にも広がり所謂後方散乱も強くなる
ことが判る。従って、このことから、散乱光の互いに異
なる複数の方向における光強度比から粒子の大きさが検
出可能であることが理解できる。
From this figure, as the size of the scattered light is larger, the scattered light is concentrated on the front side, so-called forward scattering becomes stronger, and conversely, as the size of the particle is smaller, the forward scattered light is larger. It can be seen that as it spreads, so-called backscattering spreads to the rear side as well. Therefore, from this, it can be understood that the particle size can be detected from the light intensity ratios of the scattered light in a plurality of different directions.

【0015】本発明はこの原理を用いて被照射物の大き
さを検出するものであり、図2は、本発明の一実施例に
係る検出装置の概略構成図である。
The present invention uses this principle to detect the size of an object to be irradiated, and FIG. 2 is a schematic configuration diagram of a detection apparatus according to an embodiment of the present invention.

【0016】図2中、1は所定の溶液や気体を収納する
石英容器、2は前記溶液や気体に照射するための波長6
80nmのレーザ光(照射光)を出力する半導体レーザ
(光源)、3は半導体レーザ2の出射部及び石英容器1
とがなす一直線上に配置されたフォトダイオード等から
なる第1の光検出素子、4は容器1に対して半導体レー
ザ2と同じ側であって且つ半導体レーザ2が出力するレ
ーザ光の中心光軸Zに対して角度θYにて配置された広
がり角θYの後方散乱を受光するフォトダイオード等か
らなる第2の光検出素子、5は半導体レーザ2から出力
されたレーザ光が第1の光検出素子3に直接入射するの
を防止し且つ広がり角θXの前方散乱を透過する幅50
0μm、直径6.5mmの略円状開口5aを有するスリ
ット、6は第1の光検出素子3とスリット5の間に配置
され第1の光検出素子3へ光を集光するための集光レン
ズである。
In FIG. 2, 1 is a quartz container for containing a predetermined solution or gas, and 2 is a wavelength 6 for irradiating the solution or gas.
A semiconductor laser (light source) that outputs a laser beam (irradiation light) of 80 nm, 3 is an emission part of the semiconductor laser 2 and the quartz container 1.
The first photodetector element 4 composed of a photodiode or the like arranged on a straight line formed by and is on the same side as the semiconductor laser 2 with respect to the container 1 and the central optical axis of the laser light output by the semiconductor laser 2. The second photodetector element 5 is a photodiode or the like which is arranged at an angle θ Y with respect to Z and receives the backscattering of the spread angle θ Y. The laser light output from the semiconductor laser 2 is the first light. A width 50 for preventing direct incidence on the detection element 3 and for transmitting forward scattering with a divergence angle θ X.
A slit having a substantially circular opening 5a having a diameter of 0 μm and a diameter of 6.5 mm, and 6 is arranged between the first photodetector 3 and the slit 5 and is a condenser for condensing light to the first photodetector 3. It is a lens.

【0017】尚、この例では、半導体レーザ2と容器1
の中心との距離は100mm、容器1とスリット5の距
離は24mm、スリット5と集光レンズ6の距離は20
mm、集光レンズ6と第1の光検出素子3の距離は56
mm、容器1の中心と第2の光検出素子4の距離は10
0mm、θX=7.7度、θY=170度と設定した。
In this example, the semiconductor laser 2 and the container 1 are
Is 100 mm, the distance between the container 1 and the slit 5 is 24 mm, and the distance between the slit 5 and the condenser lens 6 is 20 mm.
mm, the distance between the condenser lens 6 and the first photo-detecting element 3 is 56
mm, the distance between the center of the container 1 and the second photodetector 4 is 10
The setting was 0 mm, θ X = 7.7 degrees, and θ Y = 170 degrees.

【0018】斯る装置では、第1、第2の光検出素子
3、4で得られる信号強度を図示しない演算装置にてそ
の強度比を算出し、上述の原理に従ってその強度比から
粒子径を得ることができる。
In such a device, the intensity ratio of the signal intensities obtained by the first and second photo-detecting elements 3 and 4 is calculated by an arithmetic unit (not shown), and the particle size is calculated from the intensity ratio according to the above-mentioned principle. Obtainable.

【0019】例えば、表1に示すケイソウ土と液体洗剤
と水からなる混合溶液(試料1)中のケイソウ土と液体
洗剤からなる粒子と、ゼラチン(蛋白質)と液体洗剤と
水の混合溶液(試料2)中のゼラチンと液体洗剤からな
るミセル状態の粒子について調べた。尚、これら試料1
及び試料2中の平均粒子径は、レーザ回折方式粒度分布
計及び動的散乱方式粒度分布計の測定によれば、それぞ
れ6〜7μm、0.7〜0.8μmであった。
For example, particles of diatomaceous earth and liquid detergent in a mixed solution of diatomaceous earth, liquid detergent and water shown in Table 1 (sample 1), a mixed solution of gelatin (protein), liquid detergent and water (sample) The micelle-like particles consisting of gelatin and the liquid detergent in 2) were examined. These samples 1
The average particle diameters in Sample 2 and Sample 2 were 6 to 7 μm and 0.7 to 0.8 μm, respectively, as measured by a laser diffraction type particle size distribution meter and a dynamic scattering type particle size distribution meter.

【0020】[0020]

【表1】 [Table 1]

【0021】上記装置における第1、第2の光検出素子
3、4で得られる信号及びその強度比を表2に示す。
Table 2 shows the signals obtained by the first and second photodetector elements 3 and 4 in the above apparatus and their intensity ratios.

【0022】[0022]

【表2】 [Table 2]

【0023】この表2の強度比から、ケイソウ土と液体
洗剤からなる粒子と粒子径の判別が難しいと考えられる
ミセル状態の粒子である蛋白質と液体洗剤からなる粒子
の判別が可能であることが判る。
From the strength ratio shown in Table 2, it is possible to distinguish between particles composed of diatomaceous earth and a liquid detergent and particles, which are particles in a micellar state where it is difficult to distinguish between the particles and particles composed of a liquid detergent. I understand.

【0024】また、上記装置は、少なくとも互いに2〜
3倍程度の大きさの差異があれば、粒子を信頼性よく判
別できることも確認した。
Further, the above devices are at least 2 to each other.
It was also confirmed that particles can be reliably discriminated if there is a difference in size of about 3 times.

【0025】従って、本発明装置は空気中の塵や埃、煙
草の煙などと大きさが異なる花粉を検出する花粉センサ
や水中の浮遊物を検出する水質検査装置などとして利用
可能である。
Therefore, the device of the present invention can be used as a pollen sensor for detecting pollen having a size different from that of dust in the air, smoke of cigarettes, etc., and a water quality inspection device for detecting suspended matter in water.

【0026】尚、上述では、光源手段として、波長68
0nmの半導体レーザを用いたが、他の波長でも適用で
きるのは勿論のこと、発光ダイオードなど他の光源でも
よい。
In the above description, the wavelength 68 is used as the light source means.
Although the semiconductor laser of 0 nm is used, it is of course applicable to other wavelengths, and other light sources such as light emitting diodes may be used.

【0027】更に、上述では、前方散乱及び後方散乱を
検出したが、前方散乱又は後方散乱の一方のうち異なる
少なくとも2方向(広がり角)のものを検出し、この強
度比を用いて粒子径を求めるようにもできる。
Further, in the above description, the forward scattering and the back scattering are detected. However, one of the forward scattering and the back scattering which is different in at least two directions (divergence angle) is detected, and the particle size is determined by using the intensity ratio. You can also ask.

【0028】[0028]

【発明の効果】本発明では、上記原理に基づいて、散乱
光の互いに異なる複数の方向における光強度比を求め、
この強度比から被照射物の大きさが検出可能であるの
で、複雑な光検出手段が不要であり、装置を安価に提供
できる。
According to the present invention, based on the above principle, the light intensity ratios of scattered light in a plurality of different directions are obtained,
Since the size of the object to be irradiated can be detected from this intensity ratio, a complicated photo-detecting means is unnecessary and the apparatus can be provided at low cost.

【0029】特に、光検出手段が、前方散乱光用の光検
出素子と、後方散乱光用の光検出素子と、からなる場
合、前方散乱光と後方散乱光の光強度比は被照射物の大
きさに依存して顕著に変化するので、前方散乱光と後方
散乱光の光強度比から被照射物の大きさをより 精度よ
く検出できる。
In particular, when the light detecting means is composed of a light detecting element for the forward scattered light and a light detecting element for the back scattered light, the light intensity ratio of the forward scattered light and the back scattered light is the object to be irradiated. The size of the object to be irradiated can be detected more accurately based on the light intensity ratio of the forward scattered light and the back scattered light, because the size significantly changes depending on the size.

【0030】特に、前記前方散乱光用の光検出素子がス
リットを介して前方散乱光を受光する場合、前方散乱光
用の光検出素子へ直接照射光が入射するのを防止するよ
うにできると共に、前方散乱光用の光検出素子へ所定の
散乱角の散乱光を入射するようにできる。この結果、被
照射物の大きさの検出感度が上がる。
Particularly, when the photodetection element for the forward scattered light receives the forward scattered light through the slit, it is possible to prevent the irradiation light from directly entering the photodetection element for the forward scattered light. The scattered light having a predetermined scattering angle can be made incident on the light detecting element for the forward scattered light. As a result, the sensitivity of detecting the size of the object to be irradiated is increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明する模式図である。FIG. 1 is a schematic diagram illustrating the principle of the present invention.

【図2】本発明に係る検出装置の一例を示す模式概略構
成図である。
FIG. 2 is a schematic schematic configuration diagram showing an example of a detection device according to the present invention.

【符号の説明】[Explanation of symbols]

2 半導体レーザ(光源手段) 3 第1の光検出素子(光検出手段) 4 第2の光検出素子(光検出手段) 5 スリット 2 Semiconductor Laser (Light Source Means) 3 First Photo Detector (Photo Detector) 4 Second Photo Detector (Photo Detector) 5 Slit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴田 賢一 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Shibata 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 光源手段と、該光源手段から出力した照
射光が被照射物に照射されて生じる散乱光の前記照射光
の前記被照射物への入射方向とのなす角が互いに異なる
複数の方向における光強度をそれぞれ検出するための光
検出手段と、を備え、前記光検出手段で検出された前記
複数の方向における光強度の比から前記被照射物の大き
さを検出することを特徴とする検出装置。
1. A plurality of light source means and a plurality of different angles formed between the irradiation light output from the light source means and the incident direction of the irradiation light of the irradiation light on the irradiation object. A light detecting unit for detecting the light intensity in each direction, and detecting the size of the irradiation target from the ratio of the light intensities in the plurality of directions detected by the light detecting unit. Detector.
【請求項2】 前記光検出手段は、前方散乱光用の光検
出素子と、後方散乱光用の光検出素子と、からなること
を特徴とする請求項1記載の検出装置。
2. The detection device according to claim 1, wherein the light detecting means includes a light detecting element for forward scattered light and a light detecting element for back scattered light.
【請求項3】 前記前方散乱光用の光検出素子は、スリ
ットを介して前方散乱光を受光することを特徴とする請
求項2記載の検出装置。
3. The detection device according to claim 2, wherein the photodetector element for the forward scattered light receives the forward scattered light through a slit.
JP6323047A 1994-12-26 1994-12-26 Detector Pending JPH08178830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6323047A JPH08178830A (en) 1994-12-26 1994-12-26 Detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6323047A JPH08178830A (en) 1994-12-26 1994-12-26 Detector

Publications (1)

Publication Number Publication Date
JPH08178830A true JPH08178830A (en) 1996-07-12

Family

ID=18150519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6323047A Pending JPH08178830A (en) 1994-12-26 1994-12-26 Detector

Country Status (1)

Country Link
JP (1) JPH08178830A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778271B2 (en) * 1998-08-22 2004-08-17 Malvern Instruments Limited Measurement of particle size distribution
JP2007527997A (en) * 2004-03-06 2007-10-04 マイケル トレイナー, Method and apparatus for determining particle size and shape
JP2011095022A (en) * 2009-10-28 2011-05-12 Koa Corp Particle sensor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6778271B2 (en) * 1998-08-22 2004-08-17 Malvern Instruments Limited Measurement of particle size distribution
JP2007527997A (en) * 2004-03-06 2007-10-04 マイケル トレイナー, Method and apparatus for determining particle size and shape
JP2012103259A (en) * 2004-03-06 2012-05-31 Michael Trainer Methods and apparatus for determining size and shape of particles
JP2016026301A (en) * 2004-03-06 2016-02-12 トレイナー, マイケルTRAINER, Michael Method and apparatus for determining size and shape of particles
JP2011095022A (en) * 2009-10-28 2011-05-12 Koa Corp Particle sensor

Similar Documents

Publication Publication Date Title
JP3138278B2 (en) Device for measuring light scattering by particles
JP2000097841A5 (en)
JP2010060569A (en) Fiber optic apparatus for detecting light scatter to differentiate blood cell and the like
JPS5994037A (en) Apparatus for counting corpuscle
JP2000121540A (en) Apparatus for measuring particle size distribution
JP2000241335A (en) Method and device for counting algae and fine particle
JPH038686B2 (en)
JPS61271438A (en) Method and apparatus for measuring floating fine particle
US7248363B2 (en) Particle size analyzer
JP2000230901A (en) Optical unit
JP3151036B2 (en) Method and apparatus for detecting submicron particles
JPH08178830A (en) Detector
JPH0462455A (en) Particle size distribution measuring instrument
EP0347298B1 (en) Method and device for the measurement of visibility through a medium of varying opacity
JPS62293143A (en) Measuring instrument for corpuscle
JPH06221989A (en) Light-scattering fine-particle detector
JP4105888B2 (en) Particle size distribution measuring device
JPH02193041A (en) Particle size distribution apparatus
JP2003004625A (en) Flow sight meter
JPH09113436A (en) Particle detection method
JP3471634B2 (en) Particle size distribution measuring device
JP2001330551A (en) Particle measuring instrument
JPH0498145A (en) Counting device for particulates in fluid
JPH0495859A (en) Optically inspecting apparatus for printed board
JPH0718788B2 (en) Optical particle measuring device