JPH07117484B2 - Correction method of particle size distribution in fine particle measurement - Google Patents

Correction method of particle size distribution in fine particle measurement

Info

Publication number
JPH07117484B2
JPH07117484B2 JP1131459A JP13145989A JPH07117484B2 JP H07117484 B2 JPH07117484 B2 JP H07117484B2 JP 1131459 A JP1131459 A JP 1131459A JP 13145989 A JP13145989 A JP 13145989A JP H07117484 B2 JPH07117484 B2 JP H07117484B2
Authority
JP
Japan
Prior art keywords
particle size
distribution
light receiving
size distribution
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1131459A
Other languages
Japanese (ja)
Other versions
JPH02310445A (en
Inventor
睦久 平岡
時喜雄 大戸
靖史 財津
猛夫 田中
裕二 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1131459A priority Critical patent/JPH07117484B2/en
Publication of JPH02310445A publication Critical patent/JPH02310445A/en
Publication of JPH07117484B2 publication Critical patent/JPH07117484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、流体中に含まれる微粒子にレーザー光を照射
し、微粒子からの散乱光を検出して微粒子の個数とその
粒径分布を測定する微粒子検出装置、特にかかる装置に
おける粒径分布の補正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention measures the number of fine particles and their particle size distribution by irradiating fine particles contained in a fluid with a laser beam and detecting scattered light from the fine particles. And a method for correcting the particle size distribution in such an apparatus.

〔従来の技術〕[Conventional technology]

半導体や医薬品の製造プロセスでは、環境空気の洗浄度
や超純水,薬品の品質等を検査するために、また、医
学,生物学等の分野では細胞の状態を検査するために、
塵埃や細胞等の微粒子を検出する微粒子検出装置が用い
られおり、このような微粒子検出装置では、光散乱方式
が一般的に採用されている。
In the manufacturing process of semiconductors and pharmaceuticals, in order to inspect the cleanliness of ambient air, ultrapure water, the quality of chemicals, etc., and in the fields of medicine, biology, etc., to inspect the state of cells,
A fine particle detector for detecting fine particles such as dust and cells is used, and such a fine particle detector generally employs a light scattering method.

第9図はレーザー光散乱方式のうち90゜側方散乱光を受
光する方式を示す構成図である。同図において、1は光
源部であり、各種レーザーが用いられる。この光源1か
ら出るレーザービーム2は通常、収束レンズ3により絞
り込まれ、測定流体4に照射される。5は測定流体4を
保持する透明なフローセルである。6はビームブロック
で、測定流体を照射した後の透過ビームを遮蔽する。な
お、流体は紙面と垂直、すなわち、紙面をX,Y平面とす
ると、これに垂直なZ軸方向に流れるものとする。
FIG. 9 is a block diagram showing a method of receiving 90 ° side scattered light among the laser light scattering methods. In the figure, reference numeral 1 denotes a light source unit, and various lasers are used. The laser beam 2 emitted from this light source 1 is usually focused by a converging lens 3 and irradiated onto a measurement fluid 4. A transparent flow cell 5 holds the measurement fluid 4. Reference numeral 6 denotes a beam block that blocks the transmitted beam after being irradiated with the measurement fluid. The fluid is assumed to flow in the Z-axis direction perpendicular to the paper surface, that is, assuming the paper surface to be the X and Y planes.

測定流体4中に微粒子が含まれていると、この微粒子が
レーザービーム2中を通過することになり、その際に粒
径に応じた散乱光7が発生する。
When the measurement fluid 4 contains fine particles, the fine particles pass through the laser beam 2, and at that time, scattered light 7 corresponding to the particle diameter is generated.

この散乱光7は受光レンズ8により集光され、絞り9を
通過した後に光検出器10へ導かれ、電気信号パルスに変
換される。この信号パルスは増幅器11で増幅され、計測
回路12に入る。計測回路12ではパルスの数から粒子数
を、またパルスの波高値から粒径をそれぞれ算出する。
散乱光に蛍光成分が含まれる場合は、光検出器10の前に
光学フィルタや分光器を挿入して蛍光成分のみを検出す
ることにより、粒子の性状を調べることもできる。
The scattered light 7 is condensed by the light receiving lens 8, passes through the diaphragm 9, and then is guided to the photodetector 10, where it is converted into an electric signal pulse. This signal pulse is amplified by the amplifier 11 and enters the measuring circuit 12. The measuring circuit 12 calculates the number of particles from the number of pulses and the particle size from the peak value of the pulse.
When the scattered light contains a fluorescent component, an optical filter or a spectroscope is inserted in front of the photodetector 10 to detect only the fluorescent component, so that the properties of the particles can be examined.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

このような微粒子検出装置に求められる性能として特に
大切なことは、 イ)粒子径の検出感度が高いこと ロ)正確な粒径分析ができること の2点であるが、ロ)については光散乱方式を採用して
いる装置では非常に難しく、その理由として大きくは次
の2つが挙げられる。
Especially important as the performance required for such a fine particle detector is (a) high detection sensitivity of the particle size, and (b) accurate particle size analysis. It is very difficult to use the device that adopts the above, and there are the following two main reasons.

照射光にレーザービームを用いる場合、ビームはその
断面にパワー分布(多くはガウス分布)を持っているた
め、粒子のビーム中の通過位置の違いによって照射され
る光強度が変わり、散乱光強度も粒子の通過位置によっ
て異なるので、散乱光強度を粒径に換算しにくい。
When a laser beam is used as the irradiation light, the beam has a power distribution (mostly a Gaussian distribution) in its cross section, so the irradiation light intensity changes depending on the passage position of the particles in the beam, and the scattered light intensity also changes. It is difficult to convert the scattered light intensity into a particle size because it depends on the passage position of the particle.

迷光除去のため、または受光領域をビームウエスト部
に限定するため、検出器10の前にピンホール・スリット
等の絞り9を挿入し、第10図(イ),(ロ)にA,Bで示
す視野領域を形成させているが、視野領域内の受光効率
は一定にはならない。すなわち、第10図の視野領域Aを
粒子が通過すれば、集光レンズで集光された散乱光は全
て検出器に入り、受光効率は100%で一定になるが、同
図の視野領域Bを粒子が通過すれば散乱光は一部しか検
出器に入らず、受光効率は100%以下になってしまう。
In order to remove stray light or to limit the light receiving area to the beam waist, insert a diaphragm 9 such as a pinhole or slit in front of the detector 10, and use A and B in Fig. 10 (a) and (b). Although the visual field shown is formed, the light receiving efficiency in the visual field is not constant. That is, if particles pass through the visual field area A in FIG. 10, all the scattered light collected by the condenser lens enters the detector, and the light receiving efficiency becomes constant at 100%. If the particles pass through, only a part of the scattered light will enter the detector and the light receiving efficiency will be less than 100%.

このことを別の観点から示すのが、第11図である。FIG. 11 shows this from another point of view.

同図は第12図の如く示される受光系視野領域13の任意の
位置x,yにある粒子から放射される散乱光のピンホール
9上での像(円形となる)を示し、この散乱光像14がピ
ンホール9(半径D)に全て含まれる第11図(イ)の場
合には受光効率は100%になるが、ピンホール9に全然
入らない同時(ハ)のような場合には0%となる。ま
た、同図(ロ)のような場合には、x,yの値に応じて0
と100%の間の値を示すことになる。つまり、第10図
(ロ)の如く、視野領域Bを通過した粒子は実際より小
さめに測定されることになり、これが粒径分布測定上の
誤差になる。なお、第12図に示す受光系視野領域13のY
方向最大幅の1/2(=R)と、ピンホール半径Dとの間
には、集光レンズの倍率をMとして、 R=D/M なる関係がある。
This figure shows an image (becomes circular) on the pinhole 9 of scattered light emitted from particles at arbitrary positions x and y in the light-receiving system visual field region 13 as shown in FIG. In the case of FIG. 11 (a) in which the image 14 is entirely contained in the pinhole 9 (radius D), the light receiving efficiency is 100%, but in the case of simultaneous (c) where it does not enter the pinhole 9 at all. It becomes 0%. Also, in the case of the same figure (b), 0 depending on the value of x, y
And a value between 100%. That is, as shown in FIG. 10 (b), the particles passing through the visual field region B are measured to be smaller than they actually are, which causes an error in the particle size distribution measurement. It should be noted that Y in the visual field area 13 of the light receiving system shown in FIG.
There is a relation between 1/2 (= R) of the maximum width in the direction and the pinhole radius D, where R is D / M, where M is the magnification of the condenser lens.

以上の2点の理由のうち、のレーザービームのパワー
分布による問題に関しては、その対策として例えば第13
図に示すように、ビームの中心部に受光領域を限定して
しまったり、または第14図に示すようにレーザービーム
を走査して、見掛け上、受光領域内のビームパワー分布
を均一にする、と言った方法が採られている(特開昭61
−288139号公報参照)。
Of the above two reasons, as for the problem due to the power distribution of the laser beam, as a countermeasure, for example,
As shown in the figure, the light receiving area is limited to the central part of the beam, or the laser beam is scanned as shown in FIG. 14 to apparently make the beam power distribution in the light receiving area uniform. The method described above has been adopted (Japanese Patent Laid-Open No. Sho 61-61).
-288139 gazette).

一方、受光効率の不均一性による問題に関しては、そ
の対応策として試料流のまわりに清浄なシース流を流
し、視野領域の中心部にのみ試料を流す方法がある。し
かし、この方法はシース流をつくるための機構(フロー
セルの形状等)が複雑で、コスト高になると云う問題が
ある。また、レーザービームを細く絞り受光領域を数十
から数百μmと小さくする場合、その中心部に試料フロ
ーを設定することが困難となり、実用性の点で問題とな
る。
On the other hand, with respect to the problem due to the nonuniformity of the light receiving efficiency, there is a method of flowing a clean sheath flow around the sample flow and flowing the sample only in the central part of the visual field region. However, this method has a problem that the mechanism for forming the sheath flow (the shape of the flow cell, etc.) is complicated and the cost becomes high. Further, when the laser beam is narrowed down and the light receiving region is made small to several tens to several hundreds of μm, it becomes difficult to set the sample flow in the central part, which is a problem in practicality.

したがって、本発明の課題は散乱光方式の微粒子検出装
置において、前述の問題のうち受光領域内の受光効率の
不均一さから生じる粒径分布測定誤差を、簡単でコスト
の安い方法で取り除くことにある。
Therefore, an object of the present invention is to eliminate the particle size distribution measurement error caused by the unevenness of the light receiving efficiency in the light receiving region among the above-mentioned problems in a scattered light type fine particle detecting device by a simple and inexpensive method. is there.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記問題解決のため、本発明では、微粒子を含む測定流
体に光ビームを照射し、この光ビームによって前記微粒
子から放射される散乱光を、その受光系視野領域を限定
して受光し、この受光した散乱光から前記微粒子の個数
と粒径分布を測定する装置により、該測定を行うに当た
り、 前記受光系視野領域の限定により生じる受光系視野領域
内の受光効率分布を計算し、この受光効率分布に光ビー
ムのパワー分布に応じた補正を行い、補正をした受光効
率分布に基づき、装置で規定される粒径区分各々につい
て、代表粒径に相当する微粒子群を測定したときに装置
から出力されると予想される各々の粒径分布を計算し、
予想した各々の粒径分布出力と真の粒径分布との差を各
々の誤差分布として求め、この各々の誤差分布に基づき
測定結果の粒径分布を真の粒径分布に補正する。
In order to solve the above problem, in the present invention, a measurement fluid containing fine particles is irradiated with a light beam, and scattered light emitted from the fine particles by the light beam is received by limiting the field area of the light receiving system. When performing the measurement with a device for measuring the number of fine particles and the particle size distribution from the scattered light, the light receiving efficiency distribution in the light receiving system visual field region caused by the limitation of the light receiving system visual field region is calculated, and this light receiving efficiency distribution is calculated. Is corrected according to the power distribution of the light beam, and based on the corrected light receiving efficiency distribution, for each particle size category specified by the device, when the particle group corresponding to the representative particle size is measured, it is output from the device. Calculate the particle size distribution of each expected
The difference between each predicted particle size distribution output and the true particle size distribution is obtained as each error distribution, and the particle size distribution of the measurement result is corrected to the true particle size distribution based on each error distribution.

〔作用〕[Action]

微粒子の受光効率分布を計算(シミュレーション)によ
り求めた後、この受光効率分布から光ビームのパワー分
布に応じた補正をして粒径分布を求め、さらにその粒径
分布の真の粒径分布からのずれの比率を補正係数として
求め、この補正係数にもとづき測定結果の粒径分布を補
正することにより、粒径分布誤差を簡単かつ安価に除去
し得るようにする。
After obtaining the light receiving efficiency distribution of the particles by simulation (simulation), the particle size distribution is obtained by correcting the light receiving efficiency distribution according to the power distribution of the light beam, and from the true particle size distribution of the particle size distribution. The deviation ratio of is calculated as a correction coefficient, and the particle size distribution of the measurement result is corrected based on this correction coefficient, so that the particle size distribution error can be easily and inexpensively removed.

〔実施例〕〔Example〕

第1図は本発明の実施例を示す概要フローチャートであ
る。
FIG. 1 is a schematic flowchart showing an embodiment of the present invention.

すなわち、まず微粒子の粒径分布を計算シミュレーショ
ンにより予測し(参照)、次に補正係数を求め(参
照)、この補正係数にもとづき測定結果を補正する(
参照)。なお、ステップおよびを予め実行して補正
係数を求め、これをメモリ等に記憶しておくことにすれ
ば、微粒子検出装置にて得られた測定結果を、記憶され
た補正係数にもとづき単に補正する処理だけで済ませ
ることができる。
That is, first, the particle size distribution of fine particles is predicted by calculation simulation (see), then the correction coefficient is obtained (see), and the measurement result is corrected based on this correction coefficient (
reference). If step and are executed in advance to obtain a correction coefficient and the correction coefficient is stored in a memory or the like, the measurement result obtained by the particle detection device is simply corrected based on the stored correction coefficient. Can be processed only.

以下、ステップ,,の処理内容につき、もう少し
詳しく説明する。
Hereinafter, the processing contents of the steps will be described in more detail.

先の第9図に示す装置では、粒子が受光系視野領域内の
どの位置(x,y)を通るか、つまり受光効率ηと、レー
ザービームの分布とにより散乱光強度が変化することが
わかる。したがって、逆に散乱光強度がわかれば、粒子
の粒径がわかることになる。すなわち、粒径をD0、受光
効率が100%のときの散乱光強度をW0=f(D0)とする
と、受光系視野領域内の位置(x,y)に粒径D0の粒子が
通過したときの散乱光強度W(x,y,D0)は、 W=(x,y,D0)=η(x,y)・W0(D0) で示され、 D0=f-1(W0) であるから、 D=f-1(W) なる関係から、散乱光強度Wを粒径Dに換算することが
できる。ただし、f-1はfの逆関数を示している。
In the device shown in FIG. 9 above, it can be seen that the scattered light intensity changes depending on the position (x, y) in the visual field region of the light receiving particle, that is, the light receiving efficiency η and the laser beam distribution. . Therefore, conversely, if the scattered light intensity is known, the particle size of the particles can be known. That is, assuming that the particle diameter is D 0 and the scattered light intensity when the light receiving efficiency is 100% is W 0 = f (D 0 ), the particle having the particle diameter D 0 at the position (x, y) in the light receiving system visual field region The scattered light intensity W (x, y, D 0 ) when is transmitted is represented by W = (x, y, D 0 ) = η (x, y) · W 0 (D 0 ), and D 0 = Since it is f −1 (W 0 ), the scattered light intensity W can be converted into the particle size D from the relation of D = f −1 (W). However, f −1 represents the inverse function of f.

そこで、先ず受光系視野領域の受光効率ηを以下のよう
に求める。
Therefore, first, the light receiving efficiency η of the light receiving system visual field region is obtained as follows.

このために、ピンホール像および散乱光像を集光レンズ
を介して受光系視野領域(測定領域)側に変換した、第
2図の如き関係図を考える。なお、同図はピンホール像
および散乱光像の関係をY,Z座標にて示したものであ
る。
For this purpose, consider a relational diagram as shown in FIG. 2 in which the pinhole image and the scattered light image are converted to the light receiving system visual field region (measurement region) side via the condenser lens. The figure shows the relationship between the pinhole image and the scattered light image in Y and Z coordinates.

この関係図から、受光効率ηはピンホールに入る散乱光
像の面積比率、すなわち η=(散乱光像のうちピンホールに含まれる面積)÷
(散乱光像の面積) なる式で求まることがわかる。ここでは、 x>0,y>0 の場合のみ考えることにすると、 i)y+r1≦R のときη=1 ii)y−r1≧R のときη=0 iii)y−r1<R<y+r1 のとき0<η<1 となるので、iii)の場合のηを詳しく求めると、次の
ようになる。
From this relationship diagram, the light receiving efficiency η is the area ratio of the scattered light image entering the pinhole, that is, η = (area of the scattered light image included in the pinhole) ÷
(Area of scattered light image) It can be seen that it can be obtained by the following formula. Here, considering only the case of x> 0, y> 0, i) y + r 1 ≦ R η = 1 ii) y−r 1 ≧ R η = 0 iii) yr 1 <R When <y + r 1 , 0 <η <1. Therefore, η in the case of iii) is obtained in detail as follows.

第3図はこのことを説明するためのもので、ηは同図の
面積S1とS5の比で表されることから、 S1=πr1 2 S2=πR2θ1/π=R2θ S3=πr1 2θ2/π=r1 2θ S4=yRsinθ で、 S5=S2+S3−S4 であるから、 η=S5/S1 =(R2θ+α2x2θ−yRsinθ) ÷(πα2x2) となる。ただし、r1=αx,α=tanω(ω;集光角)で
あり、θ1は余弦法則からそれぞれ、 θ=cos-1{(R2+y2−r1 2)/2Ry} θ=cos-1{(r12+y2−R2)/2r1y} である。
Figure 3 is for explaining this. Since η is represented by the ratio of the areas S 1 and S 5 in the figure, S 1 = πr 1 2 S 2 = πR 2 θ 1 / π = Since R 2 θ 1 S 3 = πr 1 2 θ 2 / π = r 1 2 θ 2 S 4 = yRsinθ 1 and S 5 = S 2 + S 3 −S 4 , η = S 5 / S 1 = ( R 2 θ 1 + α 2 x 2 θ 2 −yRsin θ 1 ) ÷ (πα 2 x 2 ). However, r 1 = αx, α = tanω (ω; converging angle), and θ 1 and θ 2 are θ 1 = cos −1 {(R 2 + y 2 −r 1 2 ) / 2Ry from the cosine law, respectively. } Θ 2 = cos −1 {(r 12 + y 2 −R 2 ) / 2r 1 y}.

以上はレーザービームのパワー分布を考慮していない場
合であるが、これを第14図の如き走査ビーム方式で考え
ると次のようになる。
The above is the case where the power distribution of the laser beam is not taken into consideration. Considering this with the scanning beam system as shown in FIG. 14, it becomes as follows.

いま、第9図のビームウエスト2Aでの収束ビーム半径を
raとすると、 ra=4λf/3πr0 となり、ビームウエスト2Aから距離yだけ離れた場所で
のビーム半径rbは、 rb=ra{1+(λy/πra 2 となるので、レーザーのパワー密度比は、 Pb/Pa=(ra/rb =1/{1+(9πyr0 2/16λf2} となる。したがって、レーザービームのパワー分布を考
慮したときの受光効率η′は、 η′=η/{1+(9πy0 2/16λf2} で表される。ただし、r0はレーザービーム径,λはレー
ザー波長,fは収束レンズ焦点距離をそれぞれ示してい
る。
Now, let's change the convergent beam radius at beam waist 2A in FIG.
If r a , then r a = 4λf / 3πr 0 , and the beam radius r b at a distance y from the beam waist 2A is r b = r a {1+ (λy / πr a 2 ) 2 } 1 ] since the 2, power density ratio of the laser becomes P b / P a = (r a / r b) 2 = 1 / {1+ (9πyr 0 2 / 16λf 2) 2}. Therefore, the light receiving efficiency η'in consideration of the power distribution of the laser beam is expressed by η '= η / {1+ (9πy 0 2 / 16λf 2 ) 2 }. Here, r 0 is the laser beam diameter, λ is the laser wavelength, and f is the focal length of the converging lens.

以上のことから、受光系視野領域の任意位置(x,y)に
粒径D0の粒子が通過したときの散乱光強度Wは、 W(x,y,D0)=η′(x,y)・W0(D0) の如く修正されることになる。
From the above, the scattered light intensity W when a particle having a particle diameter D 0 passes through an arbitrary position (x, y) in the visual field region of the light receiving system is W (x, y, D 0 ) = η ′ (x, y) · W 0 (D 0 ).

そこで、粒径D0および受光効率が100%のときの散乱光
強度W0を既知とし、第12図に示す座標領域の、 0<x<L 0<y<R+Ltanω なる範囲を、x,yともに例えば100等分し、10,000組の
(x,y)について散乱光強度Wを求め、これから粒径D
を求める。
Therefore, assuming that the particle diameter D 0 and the scattered light intensity W 0 when the light receiving efficiency is 100% are known, the range 0 <x <L 0 <y <R + Ltanω in the coordinate region shown in FIG. Both are divided into 100 equal parts, for example, and the scattered light intensity W is calculated for 10,000 pairs of (x, y), and from this, the particle size D
Ask for.

求められた10,000組の粒径D(x,y)を、その個数A1〜A
nとの関係をもって示すのが、第4図(イ)である。そ
して、このような操作を同図(ロ)の如き各粒径チャン
ネルの代表値D01〜D0nについて行うと、同図(ハ)の如
くn組の分布が求まることになり、これらをまとめると
同図(ニ)の如くなる。
The 10,000 sets of particle size D (x, y) thus obtained are counted as A 1 to A
FIG. 4A shows the relationship with n . Then, if such an operation is performed for the representative values D 01 to D 0n of each particle size channel as shown in FIG. 8B, n sets of distributions will be obtained as shown in FIG. And (d) in the same figure.

このように、単分散粒子の場合に恰も大分散粒子である
かの如き結果が得られるのは、主として装置誤差による
ものと考えられている。そこで、本発明では次のような
補正をする。
As described above, it is considered that the reason why the result as if the particles are large dispersed particles is obtained in the case of the monodisperse particles is mainly due to the device error. Therefore, the present invention makes the following corrections.

まず、求められた粒径分布と真の粒径分布との差(誤差
分布)を求める。この関係を図示したのが第5図で、誤
差の分布BをAijと対応させて示すと、次のようにな
る。
First, the difference (error distribution) between the calculated particle size distribution and the true particle size distribution is calculated. This relationship is illustrated in FIG. 5, and the error distribution B is shown in correspondence with A ij as follows.

B11 B21,B22 B31,B32,B33 ・ ・ ・ Bn1,Bn2,Bn3………Bnn ここに、 Bij=Aij(i≠j) Bii=Aii−Ti(i=j) である。なお、真の分布は第12図で斜線を施した領域を
通る粒子数と考えられ、ここでは既知の一定値として表
される。
B 11 B 21 , B 22 B 31 , B 32 , B 33 ... Bn1 , B n2 , B n3 ……… B nn where B ij = A ij (i ≠ j) B ii = A ii − T i (i = j). The true distribution is considered to be the number of particles passing through the shaded area in FIG. 12, and is represented here as a known constant value.

次に、誤差分布Bijを真の分布の粒子数Tiで割ることに
より、下記の如き補正係数Pijを求める。
Next, the error distribution B ij is divided by the number of particles T i in the true distribution to obtain a correction coefficient P ij as described below.

P11 P21,P22 P31,P32,P33 ・ ・ ・ Pn1,Pn2,Pn3………Pnn ここに、 Pij=Bij/Ti(i≠j) Pii=Bii/Ti+Bii)(i=j)である。P 11 P 21 ,, P 22 P 31 ,, P 32 , P 33 ... P n1 , P n2 , P n3 ……… P nn where P ij = B ij / T i (i ≠ j) P ii = B ii / T i + B ii ) (i = j).

したがって、第9図の如き装置にて計測された粒径分布
(N1〜Nn)から誤差分布を引き算し、真の分布(N1′〜
Nn′)を求めるための演算式(補正演算式)は、次のよ
うになる。
Therefore, the error distribution is subtracted from the particle size distribution (N 1 to N n ) measured by the device as shown in FIG. 9 to obtain the true distribution (N 1 ′ to
The calculation formula (correction calculation formula) for obtaining N n ′) is as follows.

Nn′=Nn−NnPnn Nn-1′=Nn-1−Nn′Pn,n-1−Nn-1 ×Pn-1,n-1 Nn-2′=Nn-2−Nn′Pn,n-2−Nn-1′ ×Pn-1,n-2−Nn-2Pn-2,n-2 N1′=N1−Nn′Pn1−Nn-1′Pn-1,1−Nn-2′Pn-2,1……N
1P11 第6図に具体例を示す。
N n ′ = N n −N n P nn N n-1 ′ = N n-1 −N n ′ P n , n-1 −N n-1 × P n-1 , n-1 N n-2 ′ = N n-2 −N n ′ P n , n-2 −N n-1 ′ × P n-1 , n-2 −N n-2 P n-2 , n-2 N 1 ′ = N 1 − N n ′ P n1 −N n-1 ′ P n-1 , 1 −N n-2 ′ P n-2 , 1 …… N
1 P 11 Figure 6 shows a concrete example.

同図(ロ)は測定された分布を示し、これに同図(イ)
に示す真の分布に対する誤差分布の比率を表す補正係数
を考慮して補正すると、同図(ハ)の如く真の分布N3
〜N6′が求められることになる。
The figure (b) shows the measured distribution.
When correction is performed by taking into account the correction coefficient that represents the ratio of the error distribution to the true distribution shown in ( 3 ), the true distribution N 3 ′ as shown in FIG.
~ N 6 ′ is required.

なお、以上では粒径の大きい方から小さい方へと逐次演
算をして補正するようにしたが、粒径分布のシミュレー
ション結果Aiのマトリックス〔A〕を考え、その逆行列
を求めて補正することも可能である。
In the above description, the correction is performed by sequentially performing calculation from the larger particle size to the smaller particle size. However, the matrix [A] of the simulation result Ai of the particle size distribution is considered, and the inverse matrix is calculated and corrected. Is also possible.

また、粒径が揃っていると言われるポリスチレンラテッ
クス(PSL)粒子の測定結果について、本発明の如く補
正する場合としない場合とを対比して第7図および第8
図に示す。
Further, the measurement results of polystyrene latex (PSL) particles, which are said to have a uniform particle size, are compared with those in the case where they are not corrected as in the present invention, and those in FIGS.
Shown in the figure.

第7図は粒径が0.410〔μm〕の場合の例であり、第8
図は粒径が0.208と0.506〔μm〕の場合の例である。い
ずれの場合も、粒径分布が真の分布に近くなり、装置誤
差が除かれていることがわかる。
FIG. 7 shows an example in which the particle size is 0.410 [μm].
The figure is an example when the particle size is 0.208 and 0.506 [μm]. In any case, it can be seen that the particle size distribution is close to the true distribution, and the device error is removed.

〔発明の効果〕〔The invention's effect〕

本発明によれば、受光系視野領域の受光効率の不均一さ
に由来する粒径分布の測定誤差を、実験によらず計算シ
ミュレーション結果にもとづき補正するようにしたの
で、実験誤差の影響を受けることなく、簡単かつ安価に
取り除くことが可能となる利点がもたらされる。
According to the present invention, the measurement error of the particle size distribution due to the non-uniformity of the light receiving efficiency in the field area of the light receiving system is corrected based on the calculation simulation result without depending on the experiment. Without the need to remove it easily and inexpensively.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示す概要フローチャート、第
2図は散乱光像とピンホールとの関係を説明するための
説明図、第3図は受光効率の演算方法を説明するための
説明図、第4図は粒径分布のシミュレーション方法を説
明するための説明図、第5図はシミュレーション計算に
て求められた粒径分布の真の分布に対する誤差分布を説
明するための説明図、第6図は本発明による補正演算方
法を具体的に説明するための説明図、第7図および第8
図はいずれも本発明による補正方法を適用した場合と、
そうでない場合との結果を対比して説明するための説明
図、第9図は微粒子測定装置の一般的な例を示す構成
図、第10図は受光系視野領域と受光効率との関係を説明
するための説明図、第11図は散乱光像の受光効率を説明
するための説明図、第12図は受光系視野領域を説明する
ための説明図、第13図および第14図はいずれもレーザー
ビームとそのパワー分布との関係を説明するための説明
図である。 符号説明 1……レーザー光源、2……レーザービーム、2A……ビ
ームウエスト、3……収束レンズ、4……測定流体、5
……フローセル、6……ビームブロック、7……散乱
光、8……集光レンズ、9……絞り(ピンホール)、10
……光検出器、11……増幅器、12……計測回路、13……
受光系視野領域、14……散乱光像。
FIG. 1 is a schematic flow chart showing an embodiment of the present invention, FIG. 2 is an explanatory view for explaining the relationship between a scattered light image and a pinhole, and FIG. 3 is an explanation for explaining a calculation method of light receiving efficiency. 4 and 5 are explanatory diagrams for explaining a simulation method of particle size distribution, and FIG. 5 is an explanatory diagram for explaining an error distribution of a particle size distribution obtained by simulation calculation with respect to a true distribution. FIG. 6 is an explanatory diagram for specifically explaining the correction calculation method according to the present invention, FIGS. 7 and 8.
Both figures show the case where the correction method according to the present invention is applied,
FIG. 9 is an explanatory view for explaining the result in comparison with the case where it is not, FIG. 9 is a configuration diagram showing a general example of a particle measuring device, and FIG. 10 is a view for explaining a relationship between a light receiving system visual field region and light receiving efficiency. FIG. 11 is an explanatory view for explaining the light receiving efficiency of the scattered light image, FIG. 12 is an explanatory view for explaining the light receiving system visual field region, FIG. 13 and FIG. 14 are both It is explanatory drawing for demonstrating the relationship between a laser beam and its power distribution. Reference numeral 1 ... Laser light source, 2 ... Laser beam, 2A ... Beam waist, 3 ... Converging lens, 4 ... Measuring fluid, 5
...... Flow cell, 6 ... Beam block, 7 ... Scattered light, 8 ... Condenser lens, 9 ... Aperture (pinhole), 10
...... Photo detector, 11 ...... Amplifier, 12 …… Measurement circuit, 13 ……
Light-receiving system field of view, 14 ... Scattered light image.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 猛夫 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 大木 裕二 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭61−29738(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeo Tanaka 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (72) Yuji Oki 1 Nitta Tanabe, Kawasaki-ku, Kawasaki-shi, Kanagawa No. 1 within Fuji Electric Co., Ltd. (56) Reference JP-A-61-29738 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】微粒子を含む測定流体に光ビームを照射
し、この光ビームによって前記微粒子から放射される散
乱光を、その受光系視野領域を限定して受光し、この受
光した散乱光から前記微粒子の個数と粒径分布を測定す
る装置により、該測定を行うに当たり、 前記受光系視野領域の限定により生じる受光系視野領域
内の受光効率分布を計算し、この受光効率分布に光ビー
ムのパワー分布に応じた補正を行い、補正をした受光効
率分布に基づき、装置で規定される粒径区分各々につい
て、代表粒径に相当する微粒子群を測定したときに装置
から出力されると予想される各々の粒径分布を計算し、
予想した各々の粒径分布出力と真の粒径分布との差を各
々の誤差分布として求め、この各々の誤差分布に基づき
測定結果の粒径分布を真の粒径分布に補正することを特
徴とする微粒子測定における粒径分布の補正方法。
1. A measurement fluid containing fine particles is irradiated with a light beam, and the scattered light emitted from the fine particles by the light beam is received by limiting the visual field of the light-receiving system, and the scattered light is received from the received light. When performing the measurement with a device for measuring the number of fine particles and the particle size distribution, the light receiving efficiency distribution in the light receiving system visual field region caused by the limitation of the light receiving system visual field region is calculated, and the power of the light beam is calculated in this light receiving efficiency distribution. It is expected to be output from the device when the particle size corresponding to the representative particle size is measured for each particle size category defined by the device, based on the corrected light receiving efficiency distribution that is corrected according to the distribution. Calculate the particle size distribution of each,
The feature is that the difference between the expected output of each particle size distribution and the true particle size distribution is obtained as each error distribution, and the particle size distribution of the measurement result is corrected to the true particle size distribution based on each error distribution. A method for correcting the particle size distribution in the measurement of fine particles.
JP1131459A 1989-05-26 1989-05-26 Correction method of particle size distribution in fine particle measurement Expired - Lifetime JPH07117484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1131459A JPH07117484B2 (en) 1989-05-26 1989-05-26 Correction method of particle size distribution in fine particle measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1131459A JPH07117484B2 (en) 1989-05-26 1989-05-26 Correction method of particle size distribution in fine particle measurement

Publications (2)

Publication Number Publication Date
JPH02310445A JPH02310445A (en) 1990-12-26
JPH07117484B2 true JPH07117484B2 (en) 1995-12-18

Family

ID=15058455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1131459A Expired - Lifetime JPH07117484B2 (en) 1989-05-26 1989-05-26 Correction method of particle size distribution in fine particle measurement

Country Status (1)

Country Link
JP (1) JPH07117484B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126802A (en) * 1994-10-31 1996-05-21 Nissin Electric Co Ltd Control of injection of flocculant
WO2005091970A2 (en) * 2004-03-06 2005-10-06 Michael Trainer Methods and apparatus for determining the size and shape of particles
JP6738993B2 (en) * 2016-04-06 2020-08-12 パナソニックIpマネジメント株式会社 Particle detector
KR102147627B1 (en) * 2019-05-02 2020-08-26 한국전력공사 Fine dust analysis apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129738A (en) * 1984-07-20 1986-02-10 Canon Inc Particle analyzing instrument

Also Published As

Publication number Publication date
JPH02310445A (en) 1990-12-26

Similar Documents

Publication Publication Date Title
JP2722362B2 (en) Method and apparatus for measuring particle or defect size information
JP2641927B2 (en) Particle measurement device
US11442000B2 (en) In-situ, real-time detection of particulate defects in a fluid
JPH0650290B2 (en) How to match detected particles
JPH0237536B2 (en)
US6104491A (en) System for determining small particle size distribution in high particle concentrations
JP2863874B2 (en) Particle size distribution analyzer
JP3446410B2 (en) Laser diffraction particle size distribution analyzer
US11353389B2 (en) Method and apparatus for detection of particle size in a fluid
US5255069A (en) Electro-optical interferometric microdensitometer system
JPH07117484B2 (en) Correction method of particle size distribution in fine particle measurement
JP3301658B2 (en) Method and apparatus for measuring particle size of fine particles in fluid
US6104490A (en) Multiple pathlength sensor for determining small particle size distribution in high particle concentrations
JP3151036B2 (en) Method and apparatus for detecting submicron particles
JPH05172732A (en) Method and apparatus for detecting particle in liquid
JPS6151569A (en) Cell identifying device
JPH07218419A (en) Light scattering type instrument and method for measuring particles in wide area
JPS60237347A (en) Apparatus for inspecting foreign matter
JP2626009B2 (en) Particle size distribution analyzer
JPH0277636A (en) Particle measuring device
JPS61288139A (en) Fine particle detecting device
JP3338118B2 (en) Method for manufacturing semiconductor device
JPS6135335A (en) Particle analyzing device
JPH0262179B2 (en)
JPH01165935A (en) Method and apparatus for measuring particle

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 14