JPH0274845A - Particle measuring apparatus - Google Patents

Particle measuring apparatus

Info

Publication number
JPH0274845A
JPH0274845A JP63226001A JP22600188A JPH0274845A JP H0274845 A JPH0274845 A JP H0274845A JP 63226001 A JP63226001 A JP 63226001A JP 22600188 A JP22600188 A JP 22600188A JP H0274845 A JPH0274845 A JP H0274845A
Authority
JP
Japan
Prior art keywords
light
wavelength
laser light
particles
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63226001A
Other languages
Japanese (ja)
Inventor
Yuji Ito
勇二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63226001A priority Critical patent/JPH0274845A/en
Priority to US07/402,358 priority patent/US4999513A/en
Priority to FR8911791A priority patent/FR2636429B1/en
Priority to DE3930027A priority patent/DE3930027C2/en
Publication of JPH0274845A publication Critical patent/JPH0274845A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to perform highly accurate analysis by scanning specimen particles with light beams having the different wavelengths in the plurality of directions, and obtaining the data of the specimen particles in a plurality of the directions. CONSTITUTION:Laser light having a wavelength of lambda1 is emitted from a laser light source 1, and the image is formed on a flowing part 2 in a flow cell 4 comprising transparent glass through an image forming optical system 3. Laser light having the wavelength lambda2 is emitted from a laser light source 11, and the image is formed at the detecting part of the flow cell 4 through an image forming lens system 13 in the direction perpendicular to the above described direction. When the laser light is projected on specimen particles, the light is scattered. The light is condensed through a lens 7. Only the light having the wavelength lambda1 is selectively transmitted through a barrier filter 8. The light passes through a stop 9, and the light intensity is detected with a photodetector 10. The light is also condensed through a lens 15, and only the light having the wavelength lambda2 is selected through a barrier filter 16. The light intensity is detected with a stop 17 and a photodetector 18.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は検体粒子に対して光を照射し、検体粒子による
透過光や散乱光あるいは蛍光等の光を測光することによ
り粒子測定を行なう粒子測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method for measuring particles by irradiating light onto specimen particles and measuring light such as transmitted light, scattered light, or fluorescence by the specimen particles. Concerning a measuring device.

[従来の技術] 従来の粒子測定装置、例えばフローサイトメータでは、
1個ずつ高速で流れる生体細胞等の検体粒子に1方向か
ら光を照射し、それによって発生する散乱光や蛍光を測
光することにより、検体粒子の粒子径や性質に関する情
報が得られ、多数の細胞についてのこれらの情報から検
体粒子を計量的に解析していた。また最近では抗体で感
作したラテックス粒子に被検試料を加え、抗原抗体反応
によってラテックス粒子の凝集が起こり、このラテック
ス凝集体の大きさをフローサイトメータを使って検出す
ることにより、被検試料中の特定抗原を判別する使い方
もなされてきた。
[Prior Art] In conventional particle measuring devices, such as flow cytometers,
By irradiating light from one direction onto specimen particles such as biological cells that are flowing one by one at high speed, and measuring the scattered light and fluorescence generated thereby, information about the particle size and properties of the specimen particles can be obtained, and a large number of specimen particles can be collected. The sample particles were quantitatively analyzed from this information about the cells. Recently, a test sample is added to latex particles sensitized with antibodies, and the latex particles aggregate due to the antigen-antibody reaction, and the size of the latex aggregates is detected using a flow cytometer. It has also been used to identify specific antigens inside.

またフローサイトメータとは別に、検体粒子の画像情報
による粒子測定は、光学顕微鏡や電子顕微鏡等の装置を
用いて行なうことが一般になされている。特に最近は静
止した細胞を微小レーザスポットで2次元的に走査する
ことにより、コントラストの高い細胞の内部構造を反映
する画像を得る装置も用いられるようになってきた。
In addition to a flow cytometer, particle measurement based on image information of sample particles is generally performed using a device such as an optical microscope or an electron microscope. Particularly recently, devices have come into use that obtain high-contrast images that reflect the internal structure of cells by two-dimensionally scanning stationary cells with a minute laser spot.

本願出願人は先に出願した、特願昭63−100572
にて前記フローサイトメータと走査型顕微鏡の両者の機
能を兼ね備えた粒子測定装置を提案した。
The applicant of this application previously filed patent application No. 63-100572.
proposed a particle measuring device that combines the functions of both a flow cytometer and a scanning microscope.

[発明が解決しようとしている問題点]しかしながら、
従来のフローサイトメータや特願昭63−100572
の装置では、各々の検体粒子について1方自から光を照
射するため、1方向からの情報しか取り出すことかでき
ず、検体粒子の立体的な把握ができなかった。
[Problem that the invention seeks to solve] However,
Conventional flow cytometer and patent application No. 63-100572
In this device, each sample particle is irradiated with light from one direction, so information can only be extracted from one direction, making it impossible to understand the sample particle three-dimensionally.

本発明は各々の検体粒子について複数方向からの情報が
得られ、精度の高い解析が可能な粒子測定装置の提供を
目的とする。
An object of the present invention is to provide a particle measuring device that can obtain information about each sample particle from multiple directions and perform highly accurate analysis.

[問題点を解決するための手段] 上述した問題点を解決するため、被検部を通過する検体
粒子に対して光を照射し被検部からの光を測光すること
により検体粒子の測定を行なう粒子測定装置において、
第1の方向から第1の波長O光を被検部に照射する第1
の光照射手段と、前記第1の方向とは異なる第2の方向
から第2の波長の光を被検部に照射する第2の光照射手
段と、被検部からの前記第1、第2の波長の光をそれぞ
れ測光する測光手段を備える。
[Means for solving the problem] In order to solve the above-mentioned problem, the sample particles are measured by irradiating light onto the sample particles passing through the sample part and measuring the light from the sample part. In the particle measuring device that performs
A first beam that irradiates the test area with a first wavelength O light from a first direction.
a second light irradiation means for irradiating the test area with light of a second wavelength from a second direction different from the first direction; A photometer is provided for measuring light of two wavelengths.

[実施例] 以下、本発明の粒子測定装置の実施例を図面を用いて詳
細に説明する。
[Example] Hereinafter, an example of the particle measuring device of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例の構成図であり、1は波長λ1
のレーザ光を発するレーザ光源、3はシリンドリカルレ
ンズ等から成る結像光学系であり、第1の光照射手段を
形成している。レーザ光源1から発射された波長λ1の
レーザ光は、結像光学系3にて透明ガラスのフローセル
4内の流通部2に結像される。この時、結像光学系3に
よって被検部に結像されるビームスポットの形状は、検
体粒子の流れに対して横長の楕円形状である。
FIG. 1 is a configuration diagram of an embodiment of the present invention, where 1 is the wavelength λ1
A laser light source emits a laser beam, and 3 is an imaging optical system consisting of a cylindrical lens and the like, forming a first light irradiation means. Laser light with a wavelength λ1 emitted from a laser light source 1 is imaged by an imaging optical system 3 onto a flow section 2 within a flow cell 4 made of transparent glass. At this time, the shape of the beam spot imaged onto the test area by the imaging optical system 3 is an ellipse that is horizontally elongated with respect to the flow of the sample particles.

これは被検部での検体粒子の流れ位置が紙面の上下また
は左右方向に若干ずれたとしても、検体粒子に対してほ
ぼ均一の強度で光照射を行なうことができるようにする
ためである。
This is so that even if the flow position of the sample particles in the test area is slightly shifted in the vertical or horizontal direction of the page, the sample particles can be irradiated with light at a substantially uniform intensity.

また、第2光照射手段として、前記レーザ光源1からの
レーザ光の光路及び検体粒子の流れ方向と直交する方向
からは、レーザ光源11によって先の波長λ1とは異な
る波長λ2のレーザ光が発射される。このレーザ光は上
記第1の光照射手段と同様に結像レンズ系13により、
フローセル中の被検部に対して、第1の光照射手段とは
直交する方向から結像される。
Further, as a second light irradiation means, the laser light source 11 emits a laser light having a wavelength λ2 different from the previous wavelength λ1 from a direction perpendicular to the optical path of the laser light from the laser light source 1 and the flow direction of the sample particles. be done. This laser light is transmitted by the imaging lens system 13 similarly to the first light irradiation means.
An image is formed on the test area in the flow cell from a direction perpendicular to the first light irradiation means.

フローセル4内の流通部2には、例えば血球細胞やラテ
ックス凝集体等の検体粒子がシースフロ一方式によって
紙面垂直方向に1個あるいは1塊ずつ順次流され、波長
λ1のレーザ光及び波長λ2のレーザ光が結像されるフ
ローセル4内の被検部を順次通過する。ここで被検部に
検体粒子5が無い時は、レーザ光源1からのレーザ光は
フローセル4を直進してストッパ6によって遮断され、
同様にレーザ光源11からのレーザ光はストッパ14に
よって遮断される。ところが被検部に検体粒子がさしか
かり、検体粒子にレーザ光が照射されると、検体粒子に
よって光散乱が起こり、波長λ1及びλ2の散乱光が発
生する。レーザ光源1及び11の光路直進方向には、そ
れぞれ集光レンズ7及び15が配置され、所定角度の散
乱光が集光される。ここでレンズ7で集光された散乱光
は、バリアフィルタ8によって波長λ1の光のみが選択
的に透過される。すなわち第1の光照射手段によって照
射されて発生した散乱光のみが選択される。バリアフィ
ルタ8を透過した波長λ1の光は絞り9を通過して、光
検出器10にて光強度が検出される。
Sample particles, such as blood cells or latex aggregates, are sequentially flowed one by one or in chunks in a direction perpendicular to the plane of the paper into the flow section 2 in the flow cell 4 using a sheath flow system, and are exposed to laser light with a wavelength λ1 and laser light with a wavelength λ2. The light sequentially passes through the test portions in the flow cell 4 where it is imaged. Here, when there are no sample particles 5 in the test area, the laser light from the laser light source 1 travels straight through the flow cell 4 and is blocked by the stopper 6.
Similarly, the laser light from the laser light source 11 is blocked by the stopper 14. However, when specimen particles approach the test area and are irradiated with laser light, light scattering occurs due to the specimen particles, and scattered light with wavelengths λ1 and λ2 is generated. Condensing lenses 7 and 15 are arranged in the straight direction of the optical paths of the laser light sources 1 and 11, respectively, to condense scattered light at a predetermined angle. Here, from the scattered light collected by the lens 7, only the light having the wavelength λ1 is selectively transmitted by the barrier filter 8. That is, only the scattered light generated by irradiation by the first light irradiation means is selected. The light having the wavelength λ1 that has passed through the barrier filter 8 passes through the aperture 9, and the light intensity is detected by the photodetector 10.

また、レンズ15で集光された散乱光は、バリアフィル
タ16によって波長λ2の光のみが選択される。すなわ
ち、第2の光照射手段による散乱光のみが選択され、絞
り17、光検出器18によって波長λ2の光強度が検出
される。光検出器10及び18の出力は記憶手段19に
接続され、それぞれの検出データが別々に記憶される。
Further, from the scattered light collected by the lens 15, only the light having the wavelength λ2 is selected by the barrier filter 16. That is, only the scattered light by the second light irradiation means is selected, and the light intensity of the wavelength λ2 is detected by the aperture 17 and the photodetector 18. The outputs of the photodetectors 10 and 18 are connected to storage means 19, and each detection data is stored separately.

こうして1個の検体粒子につき異なる角度からの測定デ
ータが得られ、この記憶手段19の内容を基に演算手段
20にて粒子測定の演算がなされる。
In this way, measurement data from different angles are obtained for each sample particle, and based on the contents of the storage means 19, the calculation means 20 performs calculations for particle measurement.

[他の実施例コ 次に検体粒子を複数方向から光走査することにより、よ
り詳細な粒子情報が得られる、本発明の別の実施例を説
明する。第2図は本発明の別の実施例の構成図、第3図
はレーザビーム照射方向から見たフローセル部の側面図
であり、第1図と同一の符号は同一の部材を表わす。
[Other Embodiments Next, another embodiment of the present invention will be described in which more detailed particle information can be obtained by optically scanning sample particles from a plurality of directions. FIG. 2 is a block diagram of another embodiment of the present invention, and FIG. 3 is a side view of the flow cell section viewed from the laser beam irradiation direction, and the same reference numerals as in FIG. 1 represent the same members.

検体粒子を光照射する第1の光照射手段として波長λ1
の波長のレーザ光を発するレーザ光源21から発射され
たレーザ光は、光路中に設けられた光偏向器22によっ
て、検体粒子の流れと直交する平面内で高速に偏向走査
される。なおレーザ光源1からの直進方向にはストッパ
23が設けられ、0次光がカットされる。光偏向器22
で偏向されたレーザ光は、対物レンズ24にてフローセ
ル4内の流通部2の被検部にテレセントリックに結像さ
れる。ここで結像スポットのサイズは検体粒子のサイズ
よりも小さいものとする。
The wavelength λ1 is used as the first light irradiation means for irradiating the sample particles with light.
A laser beam emitted from a laser light source 21 that emits a laser beam with a wavelength of is deflected and scanned at high speed within a plane perpendicular to the flow of specimen particles by an optical deflector 22 provided in the optical path. Note that a stopper 23 is provided in the straight direction from the laser light source 1 to cut off the zero-order light. Optical deflector 22
The laser beam deflected by is telecentrically imaged by the objective lens 24 onto the test portion of the flow section 2 in the flow cell 4 . Here, the size of the imaging spot is assumed to be smaller than the size of the sample particles.

また、前記走査光の照射方向及び検体粒子の通過方向に
直交する方向からは、第2の光照射手段として、前記レ
ーザ光源21の波長λ、とは異なる波長λ2のレーザ光
を発するレーザ光源31、光偏向器32、対物レンズ3
4、及びストッパ33が前記第1の照射手段と同様に配
置され、被検部を第1の照射手段とは直交方向から走査
する。
Further, from a direction perpendicular to the irradiation direction of the scanning light and the passage direction of the sample particles, a laser light source 31 serving as a second light irradiation means emits a laser light with a wavelength λ2 different from the wavelength λ of the laser light source 21. , optical deflector 32, objective lens 3
4 and a stopper 33 are arranged in the same manner as the first irradiation means, and scan the subject part from a direction orthogonal to the first irradiation means.

ここで光偏向器22と32は制御回路39によって同一
スピードで偏向走査するように制御される。
Here, the optical deflectors 22 and 32 are controlled by a control circuit 39 to perform deflection scanning at the same speed.

流通部2には生体細胞等の検体粒子5がシースフロ一方
式で第1図の紙面垂直方向、すなわち第2図の上下方向
に1個ずつ順々に流される。この時、レーザの走査スピ
ードは検体粒子の漬れ速さよりも十分大きく設定される
。よって第3図のようにレーザスポット50が高速に走
査される被検部に検体粒子がさしかかると、検体粒子が
横方向に走査されることになる。この時、レーザ走査の
光学系はテレセントリックであるため、検体粒子に対し
てどのスキャン位置でも同一の方向より照射ビームが入
射し均一の走査が行なわれる。検体粒子5に第1の光照
射手段によって波長λ1のレーザ光が走査され、検体粒
子5を透過、及び検体粒子5によって散乱した光は、フ
ローセル4を挟んで対向する位置に設けられた集光レン
ズ25にて集光される。集光された光は波長λ1の光の
みを通過させるフィルタ40で波長選択され、光偏向器
22と共役な位置に配置される絞り26にて透過光のみ
が選択され、波長λ1の透過光強度が光検出器27にて
検出される。なお、透過光ではなく検体粒子による散乱
光を検出したい場合には、絞り26の代りに絞り26の
開口と同一面積のストッパを設けることにより、透過光
をカットし散乱光を検出することができる。
Specimen particles 5 such as biological cells are sequentially flowed one by one in the direction perpendicular to the plane of the paper in FIG. 1, that is, in the vertical direction in FIG. At this time, the scanning speed of the laser is set to be sufficiently larger than the soaking speed of the sample particles. Therefore, as shown in FIG. 3, when a sample particle approaches a test area where the laser spot 50 is scanned at high speed, the sample particle will be scanned in the lateral direction. At this time, since the optical system for laser scanning is telecentric, the irradiation beam is incident on the sample particle from the same direction at any scanning position, and uniform scanning is performed. The sample particles 5 are scanned with a laser beam of wavelength λ1 by the first light irradiation means, and the light transmitted through the sample particles 5 and scattered by the sample particles 5 is collected by a condenser provided at opposing positions with the flow cell 4 in between. The light is focused by the lens 25. The wavelength of the focused light is selected by a filter 40 that allows only light with wavelength λ1 to pass through, and only the transmitted light is selected by a diaphragm 26 located at a position conjugate with the optical deflector 22, and the intensity of the transmitted light with wavelength λ1 is selected. is detected by the photodetector 27. Note that if it is desired to detect light scattered by the sample particles instead of transmitted light, by providing a stopper with the same area as the aperture of the diaphragm 26 instead of the diaphragm 26, the transmitted light can be cut and the scattered light can be detected. .

またフローセル4を挟んで第2の光照射手段に対向する
位置には、集光レンズ35が配置され、被検部からの透
過光及び散乱光が集光され、波長λ2のみを通過させる
フィルタ41で波長選択され、絞り36、光検出器37
にて波長λ2の透過光強度が検出される。散乱光を検出
する場合は上記と同様である。前記光検出器27及び3
7の出力はそれぞれメモリ38に接続され、時系列的に
別々にメモリ上に蓄えられる。
Further, a condenser lens 35 is arranged at a position facing the second light irradiation means with the flow cell 4 in between, and a filter 41 that condenses the transmitted light and scattered light from the test area and allows only the wavelength λ2 to pass. The wavelength is selected by the aperture 36 and the photodetector 37.
The transmitted light intensity of wavelength λ2 is detected at . The case of detecting scattered light is the same as above. The photodetectors 27 and 3
The outputs of 7 are each connected to the memory 38 and stored separately in the memory in chronological order.

以上のように、レーザ光が複数方向から交互に高速に走
査されている流通部2の被検部に検体粒子5が通過する
と、粒子の通過速度に対して走査速度が十分大きく設定
されているため、検体粒子は被検部通過の際に各方向か
ら複数回走査され、検体粒子に対して複数方向から実質
上2次元的な走査が行なわれることになる。
As described above, when the sample particles 5 pass through the inspection area of the distribution section 2 where laser beams are scanned alternately from multiple directions at high speed, the scanning speed is set sufficiently large compared to the passing speed of the particles. Therefore, the specimen particles are scanned multiple times from each direction when passing through the test section, and the specimen particles are substantially two-dimensionally scanned from multiple directions.

こうして検体粒子が被検部を通過するごどにメモリ38
上には複数方向から見た検体粒子の形態等を表わす情報
のデータが、多数の検体粒子に関して蓄えられる。こう
して得られたデータに画像処理等の処理を施したり、ヒ
ストグラムやサイトダラムに表わしたりて、さまざまな
粒子解析が可能であることは一般に良く知られている。
In this way, each time a sample particle passes through the test section, the memory 38
At the top, data representing information such as the morphology of the sample particles viewed from multiple directions is stored regarding a large number of sample particles. It is generally well known that various particle analyzes are possible by subjecting the data obtained in this way to processing such as image processing, or by representing it in a histogram or cytodrum.

この解析は演算回路42にてなされ、解析結果はCRT
上に表示したり、プリントアウト等の方法によ)て出力
される。
This analysis is performed by the arithmetic circuit 42, and the analysis result is displayed on the CRT.
It is output by displaying it on the screen, printing it out, etc.).

なお、以上説明してきた実施例では、レーザ照射光の光
軸前方に配される光検出手段により前方散乱光又は透過
光を検出したが、他方の光検出手段により同時に側方散
乱光を検出することも可能である。
In the embodiments described above, forward scattered light or transmitted light is detected by the light detection means disposed in front of the optical axis of the laser irradiation light, but side scattered light is detected at the same time by the other light detection means. It is also possible.

また上述の実施例では、検体粒子を2方向から光照射し
て、2方向からの情報を得たが、これには限定されず、
3方向以上の複数方向から光照射することにより、より
詳細な解析を行なうことも可能である。
In addition, in the above-mentioned example, the sample particles were irradiated with light from two directions to obtain information from two directions, but the invention is not limited to this.
It is also possible to perform more detailed analysis by irradiating light from three or more directions.

[発明の効果] 以上本発明によれば、多数の検体粒子について各々複数
方向からの情報を得ることかでき、より精度の高い解析
が可能な粒子測定装置を提供することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a particle measuring device that can obtain information about a large number of sample particles from a plurality of directions, and can perform more accurate analysis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の構成図、 第2図は別の実施例の構成図、 第3図は別の実施例におけるフローセル部の側面図、 であり、図中の主な記号は、 1.21・・・・波長λ1のレーザ光源、11.32・
・・・波長λ2のレーザ光源、8.40・・・・波長λ
1の光を透過させるバリアフィルタ、 16.41・・・・波長λ2の光を透過させるバリアフ
ィルタ、 6.14.23.33・・・・ストッパ、19.38・
・・・記憶手段、 20.42・・・・演算手段、 22.32・・・・光偏向器、
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a block diagram of another embodiment, and Fig. 3 is a side view of a flow cell section in another embodiment. , 1.21... Laser light source with wavelength λ1, 11.32...
...Laser light source with wavelength λ2, 8.40...Wavelength λ
16.41...barrier filter that allows light of wavelength λ2 to pass through, 6.14.23.33...stopper, 19.38...
... storage means, 20.42 ... calculation means, 22.32 ... optical deflector,

Claims (1)

【特許請求の範囲】 1、被検部を通過する検体粒子に対して光を照射し被検
部からの光を測光することにより検体粒子の測定を行な
う粒子測定装置において、第1の方向から第1の波長の
光を被検部に照射する第1の光照射手段と、前記第1の
方向とは異なる第2の方向から第2の波長の光を被検部
に照射する第2の光照射手段と、被検部からの前記第1
、第2の波長の光をそれぞれ測光する測光手段を備える
ことを特徴とする粒子測定装置。 2、前記光照射手段は光偏向器を含む光学系で光ビーム
を偏向して被検部を検体粒子の通過方向と交差する方向
に走査する請求項1記載の粒子測定装置。
[Scope of Claims] 1. In a particle measuring device that measures sample particles by irradiating light onto sample particles passing through a sample part and measuring the light from the sample part, from a first direction. a first light irradiation unit that irradiates the test area with light of a first wavelength; and a second light irradiation unit that irradiates the test unit with light of a second wavelength from a second direction different from the first direction. a light irradiation means, and the first
, a particle measuring device comprising photometric means for measuring light of a second wavelength, respectively. 2. The particle measuring device according to claim 1, wherein the light irradiation means scans the test area in a direction intersecting the passing direction of the sample particles by deflecting the light beam with an optical system including a light deflector.
JP63226001A 1988-09-09 1988-09-09 Particle measuring apparatus Pending JPH0274845A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63226001A JPH0274845A (en) 1988-09-09 1988-09-09 Particle measuring apparatus
US07/402,358 US4999513A (en) 1988-09-09 1989-09-05 Particle measuring apparatus
FR8911791A FR2636429B1 (en) 1988-09-09 1989-09-08 PARTICLE MEASURING APPARATUS
DE3930027A DE3930027C2 (en) 1988-09-09 1989-09-08 Particle measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63226001A JPH0274845A (en) 1988-09-09 1988-09-09 Particle measuring apparatus

Publications (1)

Publication Number Publication Date
JPH0274845A true JPH0274845A (en) 1990-03-14

Family

ID=16838236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63226001A Pending JPH0274845A (en) 1988-09-09 1988-09-09 Particle measuring apparatus

Country Status (1)

Country Link
JP (1) JPH0274845A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498145A (en) * 1990-08-16 1992-03-30 Sigma Tec:Kk Counting device for particulates in fluid
JP2009516840A (en) * 2005-11-23 2009-04-23 ビーエーエスエフ ソシエタス・ヨーロピア Apparatus and method for automatic measurement of individual three-dimensional particle shapes
KR20220067511A (en) 2020-11-17 2022-05-24 오츠카 일렉트로닉스 가부시키가이샤 Light scattering measuring equipment and measuring tools

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084285A (en) * 1973-11-26 1975-07-08
JPS60237345A (en) * 1984-05-01 1985-11-26 オーソ・ダイアグノステイツク・システムズ・インコーポレイテツド Method and device for analyzing particle
JPS62293143A (en) * 1986-06-12 1987-12-19 Rion Co Ltd Measuring instrument for corpuscle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5084285A (en) * 1973-11-26 1975-07-08
JPS60237345A (en) * 1984-05-01 1985-11-26 オーソ・ダイアグノステイツク・システムズ・インコーポレイテツド Method and device for analyzing particle
JPS62293143A (en) * 1986-06-12 1987-12-19 Rion Co Ltd Measuring instrument for corpuscle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0498145A (en) * 1990-08-16 1992-03-30 Sigma Tec:Kk Counting device for particulates in fluid
JP2009516840A (en) * 2005-11-23 2009-04-23 ビーエーエスエフ ソシエタス・ヨーロピア Apparatus and method for automatic measurement of individual three-dimensional particle shapes
KR20220067511A (en) 2020-11-17 2022-05-24 오츠카 일렉트로닉스 가부시키가이샤 Light scattering measuring equipment and measuring tools
EP4001891A1 (en) 2020-11-17 2022-05-25 Otsuka Electronics Co., Ltd. Light scattering measuring apparatus and measuring jig

Similar Documents

Publication Publication Date Title
JP3145487B2 (en) Particle analyzer
US5644388A (en) Imaging flow cytometer nearly simultaneously capturing a plurality of images
US4999513A (en) Particle measuring apparatus
JP3187129B2 (en) Particle analyzer
JP3299817B2 (en) Imaging flow cytometer
JPH06186155A (en) Particle analyzer
JPH06186156A (en) Particle analyzer
JPS61153546A (en) Particle analyzer
JPH02105041A (en) Particle measuring instrument
JP3771417B2 (en) Fine particle measurement method and apparatus
JP3102925B2 (en) Particle analyzer
JPH0224535A (en) Particle analyzing apparatus
JPH01270644A (en) Particle analyser
JPH0274845A (en) Particle measuring apparatus
JPS6151569A (en) Cell identifying device
JPS6244650A (en) Particle analyzing device
JPH03154850A (en) Specimen inspecting device
JP2001272355A (en) Foreign matter inspecting apparatus
JPH0274846A (en) Particle measuring apparatus
JPH0277636A (en) Particle measuring device
JP2720069B2 (en) Flow cell analyzer
JPH03150444A (en) Sample inspecting device
JP2981696B2 (en) Method and apparatus for measuring three-dimensional information of a specimen
JP3340808B2 (en) Calibrator for ophthalmic measurement equipment
WO2022054908A1 (en) Imaging flow cytometer