JPH03150444A - Sample inspecting device - Google Patents

Sample inspecting device

Info

Publication number
JPH03150444A
JPH03150444A JP1287831A JP28783189A JPH03150444A JP H03150444 A JPH03150444 A JP H03150444A JP 1287831 A JP1287831 A JP 1287831A JP 28783189 A JP28783189 A JP 28783189A JP H03150444 A JPH03150444 A JP H03150444A
Authority
JP
Japan
Prior art keywords
laser beam
particle
irradiation position
scanning
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1287831A
Other languages
Japanese (ja)
Inventor
Moritoshi Miyamoto
守敏 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1287831A priority Critical patent/JPH03150444A/en
Publication of JPH03150444A publication Critical patent/JPH03150444A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To take a measurement by statistical processing in a short time with high accuracy by making a horizontal scan plural times with a laser beam following one particle to be inspected. CONSTITUTION:This device is provided with detecting means 6-8 which detect one particle to be inspected passing a 1st irradiation position A, moving means 11 and 4 which move the laser beam L to the 2nd irradiation positions B-C after the detecting means 6-8 detect the passage, and scanning means 3 and 4 which makes a two-dimensional scan with the laser beam L in the flow direction of fluid as the particle to be inspected moves after the 2nd irradiation positions B-C. When the passage of one of particles to be inspected in the fluid at the 1st irradiation position A is detected, the laser beam L is moved to the 2nd irradiation positions B-C, from which a scan is made in the direction perpendicular to the flow and in the flow direction following the particles to be inspected; and obtained scattered light or fluorescent light is measured to analyze the object particle. Consequently, the measurement is performed in a short time with high accuracy.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばフローサイトメータ等において、フロ
ーセル内を通過する被検粒子にレーザ光等を照射し、被
検粒子からの光学信号を検出して被検粒子の性質・構造
等を解析する検体検査装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to, for example, a flow cytometer, in which a laser beam or the like is irradiated to a test particle passing through a flow cell, and an optical signal from the test particle is detected. This invention relates to a sample testing device that analyzes the properties, structure, etc. of particles to be tested.

[従来の技術] フローサイトメータとは、高速で流れる細胞浮遊溶液、
即ちサンプル液に例えばレーザービームを照射し、その
散乱光による光電信号を検出し、細胞の性質・構造を解
明する装置であり、細胞化学・免疫学・血液学・腫瘍学
・遺伝学等の分野で使用されている。
[Conventional technology] A flow cytometer is a cell suspension solution that flows at high speed.
In other words, it is a device that irradiates a sample liquid with, for example, a laser beam, detects a photoelectric signal from the scattered light, and elucidates the properties and structure of cells, and is used in fields such as cytochemistry, immunology, hematology, oncology, and genetics. used in

このフローサイトメータ等に用いられる従来の粒子解析
装置では、フローセルの中央部の例えば200umX2
00μmの微小な四角形断面を有する流通部内を、シー
ス液に包まれて通過する血球細胞などの被検粒子にレー
ザービーム等の照射光を照射し、その結果として生ずる
前方及び側方散乱光により、被検粒子の形状・大きさ・
屈折率等の粒子的性質を得ることが可能である。また、
蛍光剤により染色され得る被検粒子に対しては、照射光
とほぼ直角方向の側方散乱光と共に被検粒子の蛍光を検
出することにより、被検粒子を解析するための重要な情
報を求めることができる。
In conventional particle analysis devices used in flow cytometers, for example, a 200 um x 2
A laser beam or other light is irradiated onto test particles, such as blood cells, passing through a flow section with a minute rectangular cross section of 00 μm while being wrapped in a sheath fluid, and the resulting forward and side scattered light is used to Shape/size/
It is possible to obtain particle-like properties such as refractive index. Also,
For test particles that can be stained with a fluorescent agent, important information for analyzing the test particles is obtained by detecting the fluorescence of the test particles along with side scattered light in a direction almost perpendicular to the irradiation light. be able to.

従来、この種の装置においては、流体中を流れる被検粒
子に固定のレーザービームを照射して、このレーザービ
ームによる前方散乱光を光検出器で検出することによっ
て、被検粒子のサイズを測定している。しかし、流通部
内の被検粒子の位置は流れと直交する方向にばらついて
おり、被検粒子の中心位置がレーザービームの強度分布
とずれて被検粒子に照射する光量が変化するので、散乱
光強度は一定にならず、測定に誤差が含まれることは避
けられない。
Conventionally, in this type of device, the size of the test particles is measured by irradiating the test particles flowing in the fluid with a fixed laser beam and detecting the forward scattered light from the laser beam with a photodetector. are doing. However, the position of the test particles in the flow section varies in the direction perpendicular to the flow, and the center position of the test particles deviates from the intensity distribution of the laser beam, changing the amount of light irradiated to the test particles, resulting in scattered light. The intensity is not constant, and it is inevitable that the measurement will contain errors.

シースフロー法を採用することにより、この欠点は相当
に補うことができるが、流通部の中心とレーザービーム
の強度分布の中心を予め正確に合わせてお(微妙な調整
操作が不可欠である。そこで、この調整操作を不要とし
、更には流体中を流れる被検粒子の位置のばらつきが散
乱光強度に影響を及ぼさないようにするるために、レー
ザビームを被検粒子の流れと直交する方向に走査して同
様の検出を行う検体検査装置が提案されている。この走
査は音響光学素子(AOD)を用いて行われ、音響光学
素子に周波数変調した電圧を加えてレーザービームの偏
向角を変化させている。
By adopting the sheath flow method, this drawback can be compensated for considerably, but it is necessary to accurately align the center of the flow section and the center of the laser beam intensity distribution in advance (subtle adjustment operations are essential. In order to eliminate the need for this adjustment operation and to prevent variations in the position of the particles to be detected flowing in the fluid from affecting the scattered light intensity, the laser beam is directed in a direction perpendicular to the flow of the particles to be detected. A specimen testing device that performs similar detection by scanning has been proposed.This scanning is performed using an acousto-optic device (AOD), and a frequency-modulated voltage is applied to the acousto-optic device to change the deflection angle of the laser beam. I'm letting you do it.

[発明が解決しようとする課題] しかしながら、上述の従来例においては、音響光学素子
を用いたレーザービームの走査速度には限界があるので
、1個の被検粒子に対する走査回数を増して高精度の測
定を行うためには、被検粒子の流速を遅くしなければな
らない。しかし、測定精度を高めるには、多数個の被検
粒子を測定した統計的な処理が必要となるので、流速を
遅くすると測定にかなりの長時間を要する。また、1個
の被検粒子に対するそれぞれの被検粒子の位置は検知せ
ずに一定周期で流れと垂直な方向に走査するだけなので
、走査回数を増加しても正確に被検粒子の中心にレーザ
ービームを走査できる確率は低い。
[Problems to be Solved by the Invention] However, in the conventional example described above, there is a limit to the scanning speed of a laser beam using an acousto-optic element, so high precision is achieved by increasing the number of scans per particle. In order to measure , the flow rate of the particles to be tested must be slowed down. However, in order to improve the measurement accuracy, statistical processing of measuring a large number of test particles is required, so if the flow rate is slowed down, the measurement takes a considerable amount of time. In addition, since the position of each particle to be detected relative to a single particle is not detected and is simply scanned in a direction perpendicular to the flow at a constant cycle, even if the number of scans is increased, the center of the particle to be detected can be accurately located. The probability of being able to scan the laser beam is low.

本発明の目的は、上述の欠点を解消し、レザービームを
走査することにより短時間で高精度の測定を可能とする
検体検査装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sample testing device that eliminates the above-mentioned drawbacks and enables highly accurate measurements in a short period of time by scanning a laser beam.

[課題を解決するための手段] 上記の目的を達成するために、本発明に係る検体検査装
置においては、流体中の被検粒子に光ビームを走査しな
がら照射し、得られる光学信号を測定して被検粒子の解
析を行う検体検査装置において、1個の被検粒子が第1
の照射位置を通過したことを検知する検知手段と、該検
知手段による通過検知後に光ビームを第2の照射位置に
移動する移動手段と、前記第2の照射位置以後の被検粒
子の移動と共に光ビームを前記流体の流れ方向に沿って
二次元的に走査する走査手段とを有することを特徴とす
るものである。
[Means for Solving the Problems] In order to achieve the above object, the specimen testing device according to the present invention scans and irradiates test particles in a fluid with a light beam, and measures the obtained optical signal. In a sample testing device that analyzes test particles using
a detection means for detecting that the light beam has passed through the irradiation position; a moving means for moving the light beam to a second irradiation position after the detection means passes through the irradiation position; The apparatus is characterized by comprising a scanning means for two-dimensionally scanning a light beam along the flow direction of the fluid.

[作用] 上記の構成を有する検体検査装置は、流体中の被検粒子
に対して、1個の被検粒子の第1の照射位置の通過を検
知すると、レーザービームを第2の照射位置に移動し、
この第2の照射位置から被検粒子に追従してレーザービ
ームを流れと垂直方向及び流れ方向に走査し、得られる
散乱光又は蛍光を測定することによって被検粒子の解析
を行う。
[Operation] When the sample testing device having the above configuration detects passage of one test particle through the first irradiation position with respect to the test particles in the fluid, it directs the laser beam to the second irradiation position. move,
From this second irradiation position, the laser beam is scanned in a direction perpendicular to the flow and in the flow direction following the target particle, and the resulting scattered light or fluorescence is measured to analyze the target particle.

[実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Example] The present invention will be explained in detail based on illustrated embodiments.

第1図は本発明による実施例の側面図であり、第2図は
断面図を示し、被検粒子を高速で流す流通部1aを有す
るフローセル1とレーザー光源2との間の、レーザー光
源2から出射されるレーザービームLの光路L1上に、
音響光学素子3.4が設けられており、レーザービーム
Lは音響光学素子3により水平方向に、音響光学素子4
により上下方向に走査されるようになっている。音響光
学素子3.4が作動しない場合のレーザービーム1、の
光路1,1゛上には、ストッパ5が設けられている。ま
た、音響光学素子4とフローセル1を結ぶ最短距離の光
路L2の延長上には、フローセルl側からストッパ6、
集光レンズ7、光検出器8が設けられ、また音響光学素
子4により光路L2から下方に偏向された光路L3上に
は、光路L2と共通で細幅のストッパ6、集光レンズ9
、光検出器10が順次に配置されている。そして、音響
光学素子3.4、光検出器8は制御回路11に接続され
、光検出器10の出力は信号処理回路12に接続されて
いる。
FIG. 1 is a side view of an embodiment according to the present invention, and FIG. 2 is a sectional view showing a laser light source 2 between a flow cell 1 having a flow section 1a through which test particles flow at high speed and a laser light source 2. On the optical path L1 of the laser beam L emitted from
An acousto-optic element 3.4 is provided, and the laser beam L is directed horizontally by the acousto-optic element 3 to the acousto-optic element 4.
The image is scanned in the vertical direction. A stopper 5 is provided on the optical path 1,1' of the laser beam 1 when the acousto-optic element 3.4 is not activated. Further, on the extension of the shortest optical path L2 connecting the acousto-optic element 4 and the flow cell 1, a stopper 6,
A condensing lens 7 and a photodetector 8 are provided, and on an optical path L3 that is deflected downward from the optical path L2 by the acousto-optic element 4, a narrow stopper 6 and a condensing lens 9 are provided in common with the optical path L2.
, photodetectors 10 are sequentially arranged. The acousto-optic element 3.4 and the photodetector 8 are connected to a control circuit 11, and the output of the photodetector 10 is connected to a signal processing circuit 12.

レーザー光源2から出射されたレーザービームLは、音
響光学素子3.4を経てフローセル1の流通部la内を
流れる被検粒子を照射する。光路L2上にある被検粒子
による照射位置Aでの前方散乱光は、ストッパ6を介し
て集光レンズ7で集光されて光検出器8で受光され、光
路L3上の照射位置Bから照射位置C間の前方散乱光は
集光レンズ9で集光されて光検出器lOで受光される。
The laser beam L emitted from the laser light source 2 passes through the acousto-optic element 3.4 and irradiates the test particles flowing through the flow section la of the flow cell 1. The forward scattered light at the irradiation position A by the test particles on the optical path L2 is collected by the condensing lens 7 via the stopper 6, is received by the photodetector 8, and is irradiated from the irradiation position B on the optical path L3. The forward scattered light between the positions C is collected by the condenser lens 9 and received by the photodetector lO.

光検出器8のの出力は制御回路11に接続され、この出
力つまり受光量の大きさに従って制御回路11は音響光
学素子3.4の偏向角を変化させる。光検出器10の出
力は信号処理回路12に入力され、この信号は被検粒子
の必要な情報に演算処理される。なお、音響光学素子3
.4により偏向されないレーザービームLはストッパ5
で遮光され、フローセル1に入射しても被検粒子により
散乱されないレーザービームLは、ストッパ6で遮光さ
れ直接光検出器8.10に入射することもない。
The output of the photodetector 8 is connected to a control circuit 11, and the control circuit 11 changes the deflection angle of the acousto-optic element 3.4 according to this output, that is, the magnitude of the amount of received light. The output of the photodetector 10 is input to a signal processing circuit 12, and this signal is processed into necessary information about the particles to be detected. Note that the acousto-optic element 3
.. 4, the laser beam L not deflected by stopper 5
The laser beam L that is blocked by the stopper 6 and is not scattered by the test particles even if it enters the flow cell 1 is blocked by the stopper 6 and does not directly enter the photodetector 8.10.

音響光学素子3.4は前述したように偏向方向が相互に
直交されており、レーザー光源2側からフローセル1側
を見た図を第3図(a)〜tel に示す。音響光学素
子3だけでレーザービームLを偏向すると、第3図fa
)に示すように照射位置Aで水平方向に走査され、また
音響光学素子4だけで偏向すると上下方向に走査される
。音響光学素子3と4を組合わせて偏向する際に、音響
光学素子4の偏向周期を音響光学素子3のそれよりも長
(設定すれば、レーザービーム■−は第3図(b)に示
すように!Iq射位置Aから照射位置Cまで例えばジグ
ザグ状に走査できる。
As described above, the polarization directions of the acousto-optic elements 3.4 are perpendicular to each other, and FIGS. 3(a) to 3(a) show views looking from the laser light source 2 side to the flow cell 1 side. When the laser beam L is deflected only by the acousto-optic element 3, Fig. 3 fa
), scanning is performed in the horizontal direction at the irradiation position A, and scanning is performed in the vertical direction when deflected only by the acousto-optic element 4. When deflecting the acousto-optic elements 3 and 4 in combination, if the deflection period of the acousto-optic element 4 is set to be longer than that of the acousto-optic element 3, the laser beam ■- is shown in FIG. 3(b). For example, it is possible to scan from the Iq irradiation position A to the irradiation position C in a zigzag pattern.

照射位置Aにおいて、レーザービームLを第3図(al
 に示すように水平走査して、光検出器8での出力を制
御回路11で判定すれば、1個の被検粒子が照射位置A
に到達したことが検知される。
At the irradiation position A, the laser beam L is
If horizontal scanning is performed as shown in FIG.
It is detected that the

この検知後に、制御回路11により音響光学素子4を制
御して、レーザービームLの照射位置を照射位置Aから
照射位置Bに移動し、第3図(cl に示すように、こ
の被検粒子が照射位置Bから照射位置Cに達するまで同
一の被検粒子に対して走査を行う。被検粒子の流速に合
わせて走査時間を設定すれば、1個の被検粒子が照射位
置Bから照射位置Cに達するまでに、この被検粒子の中
心を複数回走査することができる。
After this detection, the acousto-optic element 4 is controlled by the control circuit 11 to move the irradiation position of the laser beam L from the irradiation position A to the irradiation position B, and as shown in FIG. The same test particle is scanned from irradiation position B to irradiation position C.If the scanning time is set according to the flow velocity of the test particle, one test particle will move from irradiation position B to irradiation position C. The center of this test particle can be scanned multiple times until reaching C.

1個の被検粒子に追従して照射位置Cまでのレーザービ
ームLによる走査を終えると、制御回路11により音響
光学素子4を制御してレーザービームLを照射位置Aに
戻す。そして、再び別の被検粒子の検知、追従走査を同
様に繰り返すことによって、多数の被検粒子に対して統
計的な処理を行うことができる。
When the laser beam L has finished scanning to the irradiation position C by following one particle to be inspected, the control circuit 11 controls the acousto-optic element 4 to return the laser beam L to the irradiation position A. Then, by repeating the detection and follow-up scanning of another test particle again in the same manner, statistical processing can be performed on a large number of test particles.

なお、実際には被検粒子の流速や走査周期時間に誤差が
含まれ、照射位置Bかも照射位置Cに達するまでの間の
複数回の走査によっても、レーザービームLが被検粒子
の中心に照射される確率はあまり高くない。そこで、流
速よりも流れ方向の走査速度成分を若干遅(設定して、
被検粒子が照射位置Bに達するより若干早く走査を開始
するか、或いは流れ方向の走査速度成分を若干早く設定
して若干遅(走査を開始すれば、レーザー光源Lの照射
位置と被検粒子の相対位置が走査中に入れ代るので、レ
ーザービームLはより高い確率で被検粒子の中心に照射
され、測定精度が向上する。
In reality, there are errors in the flow velocity and scanning cycle time of the particle to be inspected, and even if the laser beam L is scanned multiple times before reaching the irradiation position B or C, the laser beam L may not be centered on the particle to be inspected. The probability of being irradiated is not very high. Therefore, we set the scanning velocity component in the flow direction to be slightly slower than the flow velocity.
Either start scanning a little earlier than the target particle reaches the irradiation position B, or set the scanning velocity component in the flow direction a little earlier and slightly slower (if you start scanning, the irradiation position of the laser light source L and the target particle Since the relative positions of the particles are changed during scanning, the laser beam L is irradiated to the center of the target particle with a higher probability, improving measurement accuracy.

[発明の効果コ 以上説明したように本発明に係る検体検査装置は、レー
ザービームを1個の被検粒子に追従させ 0 て複数回の水平走査を行っているので、その統計的処理
により短時間で精度の高い測定ができる。
[Effects of the Invention] As explained above, the specimen testing device according to the present invention makes the laser beam follow one sample particle and performs horizontal scanning multiple times, so the statistical processing is performed in a short time. Highly accurate measurements can be made in a short amount of time.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る検体検査装置の一実施例を示し、第
1図は側面図、第2図は平面図、第3図(a)〜fc)
はレーザービームの照射位置の説明図である。 符号lはフローセル、2はレーザー光源、3.4は音響
光学素子、5.6はストッパ、7.9は集光レンズ、8
.10は光検出器、11は制御回路、12は信号処理回
路である。
The drawings show an embodiment of the specimen testing device according to the present invention, in which Fig. 1 is a side view, Fig. 2 is a plan view, and Fig. 3 (a) to fc).
FIG. 2 is an explanatory diagram of the irradiation position of the laser beam. Symbol l is a flow cell, 2 is a laser light source, 3.4 is an acousto-optic element, 5.6 is a stopper, 7.9 is a condensing lens, 8
.. 10 is a photodetector, 11 is a control circuit, and 12 is a signal processing circuit.

Claims (1)

【特許請求の範囲】 1、流体中の被検粒子に光ビームを走査しながら照射し
、得られる光学信号を測定して被検粒子の解析を行う検
体検査装置において、1個の被検粒子が第1の照射位置
を通過したことを検知する検知手段と、該検知手段によ
る通過検知後に光ビームを第2の照射位置に移動する移
動手段と、前記第2の照射位置以後の被検粒子の移動と
共に光ビームを前記流体の流れ方向に沿って二次元的に
走査する走査手段とを有することを特徴とする検体検査
装置。 2、前記走査手段は2個の音響光学素子を光ビームの光
路中に直交して配置した請求項1に記載の検体検査装置
。 3、前記検知手段は前記第1の照射位置で照射される光
ビームによる光学信号の受光量を基に検知するようにし
た請求項1に記載の検体検査装置。
[Scope of Claims] 1. In a sample testing device that analyzes a sample particle by scanning and irradiating a sample particle in a fluid with a light beam and measuring the obtained optical signal, a detection means for detecting that the light beam has passed through the first irradiation position, a moving means for moving the light beam to a second irradiation position after the detection means passes the light beam, and a particle to be detected after the second irradiation position. a scanning means for two-dimensionally scanning a light beam along the flow direction of the fluid as the body moves. 2. The specimen testing apparatus according to claim 1, wherein the scanning means includes two acousto-optic elements disposed orthogonally in the optical path of the light beam. 3. The specimen testing apparatus according to claim 1, wherein the detection means detects based on the amount of received optical signal from the light beam irradiated at the first irradiation position.
JP1287831A 1989-11-07 1989-11-07 Sample inspecting device Pending JPH03150444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287831A JPH03150444A (en) 1989-11-07 1989-11-07 Sample inspecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287831A JPH03150444A (en) 1989-11-07 1989-11-07 Sample inspecting device

Publications (1)

Publication Number Publication Date
JPH03150444A true JPH03150444A (en) 1991-06-26

Family

ID=17722329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287831A Pending JPH03150444A (en) 1989-11-07 1989-11-07 Sample inspecting device

Country Status (1)

Country Link
JP (1) JPH03150444A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426499A (en) * 1992-10-21 1995-06-20 Toa Medical Electronics Co., Ltd. Particle analyzing apparatus and method wherein a one dimension image sensor optically tracks a particle
US5448349A (en) * 1992-10-21 1995-09-05 Toe Medical Electronics Co., Ltd. Particle analyzing apparatus and method wherein an optical deflector optically tracks a particle
JP2009063305A (en) * 2007-09-04 2009-03-26 Sony Corp Light irradiation device, particulate analyzer, and light irradiation method
US7804594B2 (en) 2006-12-29 2010-09-28 Abbott Laboratories, Inc. Method and apparatus for rapidly counting and identifying biological particles in a flow stream
US8159670B2 (en) 2007-11-05 2012-04-17 Abbott Laboratories Method and apparatus for rapidly counting and identifying biological particles in a flow stream

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426499A (en) * 1992-10-21 1995-06-20 Toa Medical Electronics Co., Ltd. Particle analyzing apparatus and method wherein a one dimension image sensor optically tracks a particle
US5448349A (en) * 1992-10-21 1995-09-05 Toe Medical Electronics Co., Ltd. Particle analyzing apparatus and method wherein an optical deflector optically tracks a particle
US7804594B2 (en) 2006-12-29 2010-09-28 Abbott Laboratories, Inc. Method and apparatus for rapidly counting and identifying biological particles in a flow stream
US8045162B2 (en) 2006-12-29 2011-10-25 Abbott Laboratories, Inc. Method and apparatus for rapidly counting and identifying biological particles in a flow stream
US8253938B2 (en) 2006-12-29 2012-08-28 Abbott Laboratories Method and apparatus for rapidly counting and identifying biological particles in a flow stream
JP2009063305A (en) * 2007-09-04 2009-03-26 Sony Corp Light irradiation device, particulate analyzer, and light irradiation method
US8159670B2 (en) 2007-11-05 2012-04-17 Abbott Laboratories Method and apparatus for rapidly counting and identifying biological particles in a flow stream
US8400632B2 (en) 2007-11-05 2013-03-19 Abbott Laboratories Method and apparatus for rapidly counting and identifying biological particles in a flow stream

Similar Documents

Publication Publication Date Title
US3960449A (en) Measurement of angular dependence of scattered light in a flowing stream
US4920275A (en) Particle measuring device with elliptically-shaped scanning beam
JP3145487B2 (en) Particle analyzer
JPH06186155A (en) Particle analyzer
EP3408643B1 (en) Method and device for detection and/or morphologic analysis of individual fluid-borne particles
JPH06186156A (en) Particle analyzer
JP2016520847A (en) Array-based sample characterization
JP3102925B2 (en) Particle analyzer
JPH02105041A (en) Particle measuring instrument
JPH03150444A (en) Sample inspecting device
JPS6151569A (en) Cell identifying device
JPH03154850A (en) Specimen inspecting device
JPS6236542A (en) Particle analyzer
JPH0486546A (en) Specimen inspection device
JPH01270644A (en) Particle analyser
JPH03150445A (en) Particle analyzing device
JPH03146848A (en) Inspection sample measuring instrument with alignment mechanism
JPS59102139A (en) Blood corpuscle counter
JPH03172736A (en) Particle analyzing device
JPS631952A (en) Particle analyser
JP2001272355A (en) Foreign matter inspecting apparatus
JPH0560541B2 (en)
JPH02304333A (en) Flowing cell analyzing instrument
JPH02245638A (en) Specimen testing apparatus
JPH03150446A (en) Particle analyzing device