JPH03150446A - Particle analyzing device - Google Patents
Particle analyzing deviceInfo
- Publication number
- JPH03150446A JPH03150446A JP1287832A JP28783289A JPH03150446A JP H03150446 A JPH03150446 A JP H03150446A JP 1287832 A JP1287832 A JP 1287832A JP 28783289 A JP28783289 A JP 28783289A JP H03150446 A JPH03150446 A JP H03150446A
- Authority
- JP
- Japan
- Prior art keywords
- particle
- signal
- pulse signals
- photodetector
- inspected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 54
- 230000003287 optical effect Effects 0.000 claims abstract description 14
- 239000012530 fluid Substances 0.000 claims abstract description 7
- 238000001514 detection method Methods 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 abstract description 5
- 238000004458 analytical method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、フローサイトメータ等において、流体中の被
検粒子に走査光を照射して、その光学信号を光検出器で
受光して被検粒子の情報を得る粒子解析装置に関するも
のである。Detailed Description of the Invention [Industrial Application Field] The present invention is used in a flow cytometer or the like to irradiate scanning light onto test particles in a fluid, and receive the optical signal with a photodetector to detect the target particles. The present invention relates to a particle analysis device that obtains information on detected particles.
[従来の技術]
フローサイトメータとは、高速で流れる細胞浮遊溶液、
即ちサンプル液に例えばレーザー光を照射し、その散乱
光による光電信号を検出し、細胞の性質・構造を解明す
る装置であり、細胞化学、免疫学、血液学、腫瘍学、遺
伝学等の分野で使用されている。[Conventional technology] A flow cytometer is a cell suspension solution that flows at high speed.
In other words, it is a device that irradiates a sample liquid with, for example, a laser beam, detects a photoelectric signal from the scattered light, and elucidates the properties and structure of cells, and is used in fields such as cytochemistry, immunology, hematology, oncology, and genetics. used in
このフローサイトメータ等に用いられる従来の粒子解析
装置では、フローセルの中央部の例えば200μmX2
00μmの微小な四角形断面を有する流通部内を、シー
ス液に包まれて通過する血球細胞などの被検粒子にレー
ザー光等の照射光を照射し、その結果として生ずる前方
及び側方散乱光等の光学信号により、被検粒子の形状・
大きさ・屈折率等の粒子的性質を得ることが可能である
。また、蛍光剤により染色され得る被検粒子に対しては
、照射光とほぼ直角方向の側方散乱光から被検粒子の蛍
光を検出することにより、被検粒子を解析するための重
要な情報を求めることができる。In conventional particle analysis devices used in flow cytometers and the like, the central part of the flow cell has a diameter of, for example, 200 μm
Laser light or other irradiation light is irradiated on test particles such as blood cells wrapped in sheath fluid and passing through a flow section with a minute rectangular cross section of 00 μm, and the resulting forward and side scattered light is measured. Optical signals determine the shape and shape of the particles being tested.
It is possible to obtain particle properties such as size and refractive index. In addition, for test particles that can be stained with fluorescent agents, important information for analyzing the test particles can be obtained by detecting the fluorescence of the test particles from side scattering light in a direction almost perpendicular to the irradiation light. can be found.
従来、この種の装置は固定された照射光ビーム中を被検
粒子が横切ることによる前方散乱光を光検出器で検出し
て、被検粒子から情報を得ている。しかし、流通部内の
被検粒子の位置は流れと直交する方向にばらついており
、照射光ビームの強度分布とずれ、被検粒子を照射する
光量が被検粒子の位置によって変化するので、散乱光強
度は一定にならずに測定に誤差が含まれ易い。Conventionally, this type of apparatus obtains information from a test particle by detecting forward scattered light caused by the test particle crossing a fixed irradiation light beam using a photodetector. However, the position of the test particles in the flow section varies in the direction perpendicular to the flow, which deviates from the intensity distribution of the irradiation light beam, and the amount of light irradiating the test particles changes depending on the position of the test particles. The intensity is not constant and measurement tends to include errors.
この欠点はシースフロー法を採用することにより相当に
補うことができるが、流通部の中心と照射光ビームの強
度分布の中心とを予め正確に合わせておく微妙な調整操
作が不可欠である。そこで、この調整操作を不要とし、
更には流れと直交する方向の被検粒子の位置のばらつき
が、散乱光強度に影響を及ぼさないようにするために、
音響光学素子(AOD)を用いて照射光ビームを被検粒
子の流れと直交する方向に走査して、同様の検出を行う
第3図に示すような粒子解析装置が特開昭63−195
2号公報に提案されている。Although this drawback can be compensated to a considerable extent by adopting the sheath flow method, delicate adjustment operations are essential to accurately align the center of the flow section and the center of the intensity distribution of the irradiated light beam in advance. Therefore, this adjustment operation is unnecessary,
Furthermore, in order to prevent variations in the position of the test particles in the direction perpendicular to the flow from affecting the scattered light intensity,
A particle analysis device as shown in Fig. 3, which scans an irradiated light beam in a direction perpendicular to the flow of particles to be detected using an acousto-optic device (AOD) and performs similar detection, was developed in Japanese Patent Laid-Open No. 63-195.
This is proposed in Publication No. 2.
第3図において、レーザー光源1から出射されたレーザ
ー光は音響光学素子2により走査され、フローセル3中
を流れる1個の被検粒子を複数回走査しながら照射し、
その散乱光を光検出器4により測定するようになってい
る。In FIG. 3, a laser beam emitted from a laser light source 1 is scanned by an acousto-optic element 2, and irradiates one test particle flowing through a flow cell 3 while scanning it multiple times.
The scattered light is measured by a photodetector 4.
第4図、はこの場合の信号処理系の一部を示し、被検粒
子からの散乱光を受光する光検出器4の出力は、増幅器
5、ピークホールド回路6、A/D変換器7、データ処
理部8に順次に接続されている。FIG. 4 shows a part of the signal processing system in this case. They are sequentially connected to the data processing section 8.
この第4図の回路においては、被検粒子からの散乱光は
光検出器4で電気信号に変換され、更に増幅器5で増幅
されて、1個の被検粒子に対して第5図(al に示す
ようなパルス信号が得られる。In the circuit shown in FIG. 4, the scattered light from the test particle is converted into an electrical signal by the photodetector 4, and further amplified by the amplifier 5. A pulse signal as shown in is obtained.
ピークホールド回路6では、第5図fb)に示すように
1個の被検粒子に対する全パルス信号の最大ピーク値M
1を算出し、A/D変換器7でデジタル値に変換した後
にデータ処理部8に伝送し、演算処理を行って被検粒子
の情報を得る。In the peak hold circuit 6, as shown in FIG. 5 fb), the maximum peak value M of all pulse signals for one test particle
1 is calculated, converted into a digital value by the A/D converter 7, and then transmitted to the data processing unit 8, where arithmetic processing is performed to obtain information on the particle to be detected.
また、第6図は他の信号処理系を示し、光検出器4の出
力は増幅器5、積分回路9、A/D変換器7、データ処
理部8に順次に接続されている。Further, FIG. 6 shows another signal processing system, in which the output of the photodetector 4 is connected to an amplifier 5, an integrating circuit 9, an A/D converter 7, and a data processing section 8 in this order.
この第6図においては、同様に光検出器4で検出され増
幅器5で増幅されたパルス信号を、積分回路9により全
パルス信号の積分値を算出し、同様にA/D変換器7を
経てデジタル値に変換した後にデータ処理部8に伝送し
て、演算処理を行い被検粒子の情報を求める。In FIG. 6, the pulse signal detected by the photodetector 4 and amplified by the amplifier 5 is calculated by the integrating circuit 9, and the integrated value of the whole pulse signal is calculated by the integrating circuit 9. After converting it into a digital value, it is transmitted to the data processing unit 8, where arithmetic processing is performed to obtain information on the particle to be detected.
[発明が解決しようとする課題]
しかしながら、上述の従来例の信号処理においては、得
られたパルス信号をそのまま演算処理しているため、積
分値に大きな誤差を含む危険性があり、また照射光ビー
ムの走査回数は有限であるため、パルス信号の最大ピー
ク値Mlが必ずしも実際の被検粒子の中心から得られる
散乱光量のピーク値と一致するとは限らない。従って、
算出されるピーク値は実際の散乱光量のピーク値よりも
小さくなる危険性があり、両者の原因から測定値に大き
な誤差が含まれる虞れがある。[Problems to be Solved by the Invention] However, in the conventional signal processing described above, since the obtained pulse signal is directly processed, there is a risk that the integral value may include a large error, and the irradiated light Since the number of beam scans is limited, the maximum peak value Ml of the pulse signal does not necessarily match the peak value of the amount of scattered light obtained from the center of the actual particle to be inspected. Therefore,
There is a risk that the calculated peak value will be smaller than the actual peak value of the amount of scattered light, and there is a risk that the measured value will contain a large error due to both causes.
本発明の目的は、上述の従来例の欠点を解消し、被検粒
子の流れと交叉する方向に光ビームを走査すると共に、
信号処理を工夫して精度の高い測定を可能とする粒子解
析装置を提供することにある。An object of the present invention is to eliminate the drawbacks of the conventional example described above, scan a light beam in a direction intersecting the flow of particles to be examined, and
The object of the present invention is to provide a particle analysis device that enables highly accurate measurements by devising signal processing.
[課題を解決するための手段]
上記の目的を達成するために、本発明に係る粒子解析装
置においては、流体中の被検粒子に流れと交叉する方向
に光ビームを走査して、得られる光学信号を光検出器で
受光し被検粒子の情報を得る粒子解析装置において、1
個の検体粒子を基に前記光検出器で得られる光学信号か
ら複数のパルス信号を求める検出手段と、該検出手段に
より得られた前記パルス信号の個々のピーク値を求めて
前記パルス信号の補間処理を行う第1の演算手段と、該
第1の演算手段により処理された信号の最大ピーク値及
び(又は)面積積分値とを算出する第2の演算手段とを
有することを特徴とするものである。[Means for Solving the Problems] In order to achieve the above object, in the particle analysis device according to the present invention, a light beam is scanned across test particles in a fluid in a direction intersecting the flow. In a particle analyzer that receives optical signals with a photodetector and obtains information about the particles to be detected, 1
a detection means for obtaining a plurality of pulse signals from an optical signal obtained by the photodetector based on sample particles; and interpolation of the pulse signal by obtaining the individual peak values of the pulse signals obtained by the detection means. It is characterized by having a first calculation means for processing, and a second calculation means for calculating the maximum peak value and/or area integral value of the signal processed by the first calculation means. It is.
[イ乍用]
上記の構成を有する粒子解析装置は、流体中の被検粒子
に流れと交叉する方向に光ビームを走査し、その光学信
号を光検出器で受光して得られたパルス信号のピーク値
をそれぞれ算出し、これらのピーク値によって補間処理
した電気信号から1個の被検粒子に対する信号の最大ピ
ーク値と面積積分値を算出して被検粒子の情報を得る。[For use] A particle analysis device having the above configuration scans a light beam on the particles to be detected in a fluid in a direction intersecting the flow, and receives the optical signal with a photodetector to generate a pulse signal. The maximum peak value and area integral value of the signal for one test particle are calculated from the electrical signals interpolated using these peak values to obtain information about the test particle.
[実施例]
本発明を第1図、第2図に図示の実施例に基づいて詳細
に説明する。[Example] The present invention will be explained in detail based on the example illustrated in FIGS. 1 and 2.
第1図は信号処理系を示し、光検出器10の出力は増幅
器11.高速ピークホールド回路12、A/D変換器1
3、メモリ14、演算処理部15、データ処理部16に
順次に接続されている。また、メモリ14の出力は光検
出器10に接続されている。FIG. 1 shows a signal processing system, in which the output of a photodetector 10 is transmitted to an amplifier 11. High-speed peak hold circuit 12, A/D converter 1
3, the memory 14, the arithmetic processing section 15, and the data processing section 16 are connected in this order. Further, the output of the memory 14 is connected to the photodetector 10.
図示しないレーザー光源から出射されたレーザービーム
の被検粒子による散乱光は、光検出器10により電気信
号に変換され増幅器11で増幅される。このレーザービ
ームは検体粒子の流れと直交する方向に走査されており
、1個の検体粒子を水平方向に走査するので、増幅器1
1から従来例と同様な第5図(al に示すようなパル
ス信号が出力され、高速ピークホールド回路12に入力
される。高速ピークホールド回路12は従来用いられて
いたピークホールド回路6よりもコンデンサの放電間隔
が短縮されており、第2図(a)に示すように各パルス
信号に対してピーク値PO1Pl、・・・、Pnが全て
算出され、A/D変換器13でデジタル値に変換した後
にメモリ14に順次に記憶される。パルス信号がO値を
連続して示し、1個の被検粒子による散乱光のパルス信
号が終了したことが検知されると、メモリ14の内部に
記憶されているピーク値PO1Pl、・・・、Pnが全
て演算処理部に出力され、第2図(b)に示すように全
ピーク値PO1PI、・・・、Pnからパルス信号の補
間処理が行われる。1個の被検粒子に対するレーザービ
ームの走査回数は有限であるから、パルス信号が入力さ
れない無信号時間が存在することは避けられないために
、演算処理部15においては仮に走査回数が無限回にな
った場合に得られるパルス信号は滑らかな連続値をとる
と仮定して補間処理を行い、この補間処理後の信号の最
大ピーク値M2と面積積分値を算出する。Scattered light of a laser beam emitted from a laser light source (not shown) by the test particles is converted into an electrical signal by a photodetector 10 and amplified by an amplifier 11. This laser beam is scanned in the direction perpendicular to the flow of the sample particles, and since it scans one sample particle in the horizontal direction, the amplifier 1
1, a pulse signal as shown in FIG. 5 (al) similar to the conventional example is outputted and input to the high speed peak hold circuit 12. As shown in FIG. 2(a), the peak values PO1Pl, ..., Pn are all calculated for each pulse signal and converted into digital values by the A/D converter 13. After that, the pulse signal is sequentially stored in the memory 14. When it is detected that the pulse signal continuously shows the O value and the pulse signal of the scattered light by one test particle has ended, the pulse signal is stored in the memory 14. All the peak values PO1Pl, ..., Pn are output to the arithmetic processing section, and as shown in Fig. 2(b), interpolation processing of the pulse signal is performed from all the peak values PO1PI, ..., Pn. Since the number of times the laser beam scans one test particle is finite, it is inevitable that there will be a no-signal period in which no pulse signal is input. Interpolation processing is performed on the assumption that the pulse signal obtained when
被検粒子の中心にレーザービームが照射された場合に、
散乱光量から最大ピーク値Mlが得られるが、走査回数
は有限であるので、この最大ピーク値M1がパルス信号
のピーク値と一致する確率は低いが、補間処理後の連続
値の信号の最大ピーク値M2とは一致する確率が高くな
る。また、補間処理前の複数のパルス信号から面積積分
値を算出すると、例えば1個のパルス信号に誤差が含ま
れていた場合にも、その誤差が面積積分値に大きく影響
するが、補間処理によってパルス信号が滑らかな連続値
になればその誤差は消去され、得られた面積積分値をデ
ータ処理部16に伝送して演算処理を行い高い精度の情
報を得る。When the laser beam is irradiated to the center of the sample particle,
The maximum peak value Ml can be obtained from the amount of scattered light, but since the number of scans is finite, the probability that this maximum peak value M1 will match the peak value of the pulse signal is low, but the maximum peak value of the continuous value signal after interpolation processing is With the value M2, the probability of matching becomes high. In addition, when calculating the area integral value from multiple pulse signals before interpolation processing, for example, even if one pulse signal contains an error, that error will have a large effect on the area integral value. When the pulse signal becomes a smooth continuous value, the error is eliminated, and the obtained area integral value is transmitted to the data processing section 16 for arithmetic processing to obtain highly accurate information.
[発明の効果1
以上説明したように本発明に係る粒子解析装置は、流体
中の被検粒子に流れと直交する方向に走査する光ビーム
を照射し、その光学信号を受光して、得られたパルス信
号のピーク値をパルス信号ごとにそれぞれ算出し、これ
らの全ピーク値を用いて1個の被検粒子による全信号の
補間処理を行ってから、全信号の最大ピーク値と面積積
分値を算出しているので、パルス信号が人力されない時
間に得られるべき信号を考慮しており、高精度の測定を
することができる。[Advantageous Effects of the Invention 1] As explained above, the particle analysis device according to the present invention irradiates test particles in a fluid with a light beam that scans in a direction perpendicular to the flow, receives the optical signal, and obtains an optical signal. Calculate the peak value of each pulse signal for each pulse signal, use these peak values to perform interpolation processing on all signals for one test particle, and then calculate the maximum peak value and area integral value of all signals. Since the calculation takes into account the signal that should be obtained during the time when the pulse signal is not manually generated, highly accurate measurements can be made.
図面第1図、第2図は本発明に係る粒子解析装置の実施
例を示し、第1図は信号処理系の構成図、第2図(at
fb)は信号処理の説明図であり、第3図は粒子
解析装置の構成図、第4図、第6図は従来例の信号処理
系の構成図、第5図(al fb)は従来例の信号
処理の説明図である。
を号10は光検出器、11は増幅器、13はA/D変換
器、16はデータ処理部、12は高速ピークホールド回
路、14はメモリ、15は演算 0
処理部である。1 and 2 of the drawings show an embodiment of the particle analysis apparatus according to the present invention, FIG. 1 is a configuration diagram of a signal processing system, and FIG. 2 (at
fb) is an explanatory diagram of signal processing, Fig. 3 is a block diagram of a particle analysis device, Figs. 4 and 6 are block diagrams of a conventional signal processing system, and Fig. 5 (al fb) is a block diagram of a conventional example. FIG. 2 is an explanatory diagram of signal processing of FIG. 10 is a photodetector, 11 is an amplifier, 13 is an A/D converter, 16 is a data processing section, 12 is a high-speed peak hold circuit, 14 is a memory, and 15 is an arithmetic processing section.
Claims (1)
を走査して、得られる光学信号を光検出器で受光し被検
粒子の情報を得る粒子解析装置において、1個の検体粒
子を基に前記光検出器で得られる光学信号から複数のパ
ルス信号を求める検出手段と、該検出手段により得られ
た前記パルス信号の個々のピーク値を求めて前記パルス
信号の補間処理を行う第1の演算手段と、該第1の演算
手段により処理された信号の最大ピーク値及び(又は)
面積積分値とを算出する第2の演算手段とを有すること
を特徴とする粒子解析装置。1. In a particle analyzer that scans a light beam across a sample particle in a fluid in a direction intersecting the flow, a photodetector receives the resulting optical signal and obtains information about the sample particle. a detection means for obtaining a plurality of pulse signals from an optical signal obtained by the photodetector based on the detection means; and a detection means for obtaining a peak value of each of the pulse signals obtained by the detection means and performing interpolation processing on the pulse signals. a maximum peak value and/or of a signal processed by the first calculation means;
and second calculation means for calculating an area integral value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1287832A JPH03150446A (en) | 1989-11-07 | 1989-11-07 | Particle analyzing device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1287832A JPH03150446A (en) | 1989-11-07 | 1989-11-07 | Particle analyzing device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03150446A true JPH03150446A (en) | 1991-06-26 |
Family
ID=17722341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1287832A Pending JPH03150446A (en) | 1989-11-07 | 1989-11-07 | Particle analyzing device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03150446A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1008843A1 (en) * | 1998-12-07 | 2000-06-14 | Venturedyne Ltd. | Particle sensor and related method offering improved particle discrimination |
JP2010515055A (en) * | 2006-12-29 | 2010-05-06 | アボット・ラボラトリーズ | Method and apparatus for rapidly counting and identifying suspended particles by scanning |
WO2010090279A1 (en) | 2009-02-06 | 2010-08-12 | 株式会社オンチップ・バイオテクノロジーズ | Disposable chip-type flow cell and flow cytometer using same |
-
1989
- 1989-11-07 JP JP1287832A patent/JPH03150446A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1008843A1 (en) * | 1998-12-07 | 2000-06-14 | Venturedyne Ltd. | Particle sensor and related method offering improved particle discrimination |
JP2010515055A (en) * | 2006-12-29 | 2010-05-06 | アボット・ラボラトリーズ | Method and apparatus for rapidly counting and identifying suspended particles by scanning |
WO2010090279A1 (en) | 2009-02-06 | 2010-08-12 | 株式会社オンチップ・バイオテクノロジーズ | Disposable chip-type flow cell and flow cytometer using same |
US8951474B2 (en) | 2009-02-06 | 2015-02-10 | On-Chip Biotechnologies Co., Ltd. | Disposable chip-type flow cell and flow cytometer using same |
US9945769B2 (en) | 2009-02-06 | 2018-04-17 | On-Chip Biotechnologies Co., Ltd. | Disposable chip-type flow cell and flow cytometer using same |
EP3907488A1 (en) | 2009-02-06 | 2021-11-10 | On-chip Biotechnologies Co., Ltd. | Disposable chip-type flow cell and flow cytometer using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3145487B2 (en) | Particle analyzer | |
JPH06186155A (en) | Particle analyzer | |
JPH06186156A (en) | Particle analyzer | |
CN111366558A (en) | Multi-wavelength polarization scattering measuring device | |
JP3984132B2 (en) | Fluorescence spectrometer | |
US6104491A (en) | System for determining small particle size distribution in high particle concentrations | |
JPH0579970A (en) | Particle analyzer | |
JPH0224535A (en) | Particle analyzing apparatus | |
JPS6151569A (en) | Cell identifying device | |
JPH03150446A (en) | Particle analyzing device | |
JPH0792076A (en) | Grain analyzing device | |
JPH03154850A (en) | Specimen inspecting device | |
JPS6236542A (en) | Particle analyzer | |
JP2756298B2 (en) | Sample test equipment | |
JPS6129737A (en) | Particle analyzing instrument | |
JPH01270644A (en) | Particle analyser | |
JPS63201554A (en) | Particle analyzing device | |
JPS6138447A (en) | Particle analyser | |
JPH03150444A (en) | Sample inspecting device | |
JP2720069B2 (en) | Flow cell analyzer | |
JPH03150445A (en) | Particle analyzing device | |
JPS6135335A (en) | Particle analyzing device | |
JPS62112035A (en) | Particle analyzing instrument | |
JPH03146848A (en) | Inspection sample measuring instrument with alignment mechanism | |
JPH0262180B2 (en) |