JPH03150445A - Particle analyzing device - Google Patents

Particle analyzing device

Info

Publication number
JPH03150445A
JPH03150445A JP1287833A JP28783389A JPH03150445A JP H03150445 A JPH03150445 A JP H03150445A JP 1287833 A JP1287833 A JP 1287833A JP 28783389 A JP28783389 A JP 28783389A JP H03150445 A JPH03150445 A JP H03150445A
Authority
JP
Japan
Prior art keywords
particles
light beams
scanning
acousto
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1287833A
Other languages
Japanese (ja)
Inventor
Junichi Yamayoshi
山吉 純一
Tatsuya Yamazaki
達也 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1287833A priority Critical patent/JPH03150445A/en
Publication of JPH03150445A publication Critical patent/JPH03150445A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To take a measurement in a short time with high accuracy by making a scan while plural beams emitted by an acoustooptic element are made out of phase, and measuring an obtained optical signal and analyzing a particle to be inspected. CONSTITUTION:The device is provided with a means which makes light beams from laser light sources 2 and 3 incident on different positions X1 and X2 of the acoustooptic element 4 and makes a scan while making the light beams, emitted by the acoustooptic element 4, different in scanning direction. Then the acoustooptic element 4 is used to make a scan on the particle to be inspected in fluid with the laser beams at right angles to the moving direction, and the obtained optical signal is measured to analyze the object particle.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フローサイトメータ等のように、フローセル
内を通過する被検粒子にレーザービーム等を照射し、被
検粒子からの光学信号を検出して被検粒子の性質・構造
等を解析する粒子解析装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention, like a flow cytometer, irradiates test particles passing through a flow cell with a laser beam or the like, and collects optical signals from the test particles. This invention relates to a particle analysis device that detects and analyzes the properties, structure, etc. of particles to be detected.

[従来の技術] フローサイトメータとは、高速で流れる細胞浮遊溶液、
即ちサンプル液に例えばレーザービームを照射し、その
散乱光による光電信号を検出し、細胞の性質・構造を解
明する装置であり、細胞化学、免疫学、血液学、腫瘍学
、遺伝学等の分野で使用されている。
[Conventional technology] A flow cytometer is a cell suspension solution that flows at high speed.
In other words, it is a device that irradiates a sample liquid with, for example, a laser beam, detects a photoelectric signal from the scattered light, and elucidates the properties and structure of cells, and is used in fields such as cytochemistry, immunology, hematology, oncology, and genetics. used in

このフローサイトメータ等に用いられる従来の粒子解析
装置では、フローセルの中央部の例えば200μm×2
00μmの微小な四角形断面を有する流通部内を、シー
ス液に包まれて通過する血球細胞などの被検粒子にレー
ザービーム等の照射光を照射し、その結果として生ずる
前方及び側方散乱光により、被検粒子の形状・大きさ・
屈折率等の粒子的性質を得ることが可能である。また、
蛍光剤により染色され得る被検粒子に対しては、照射光
とほぼ直角方向の側方散乱光と共に被検粒子からの蛍光
を検出することにより、被検粒子を解析するための重要
な情報を求めることができる。
In conventional particle analysis devices used in flow cytometers and the like, for example, 200 μm x 2
A laser beam or other light is irradiated onto test particles, such as blood cells, passing through a flow section with a minute rectangular cross section of 00 μm while being wrapped in a sheath fluid, and the resulting forward and side scattered light is used to Shape/size/
It is possible to obtain particle-like properties such as refractive index. Also,
For test particles that can be stained with a fluorescent agent, important information for analyzing the test particles can be obtained by detecting the fluorescence from the test particles along with side scattered light in a direction almost perpendicular to the irradiation light. You can ask for it.

従来、この種の装置は、流通部内の流体中を流れる被検
粒子にレーザービームを単一方向から照射することによ
り生ずる前方散乱光を、光検出器で検出することによっ
て被検粒子のサイズを測定している。しかし、流通部内
の被検粒子は流れと直交する方向にばらついており、個
々の被検粒子の位置がレーザービームの強度分布とずれ
て被検粒子に照射され光量が変化するので、散乱光強度
は被検粒子の位置のばらつきの影響が含まれる。
Conventionally, this type of device uses a photodetector to detect the forward scattered light generated by irradiating a laser beam from a single direction onto the particles flowing through the fluid in the flow section, thereby determining the size of the particles. Measuring. However, the test particles in the flow section are scattered in the direction perpendicular to the flow, and the position of each test particle deviates from the intensity distribution of the laser beam, and the amount of light irradiated on the test particle changes, so the scattered light intensity includes the influence of variations in the position of the particles being tested.

シースフロー法を採用することによりこの欠点は相当に
補うことができるが、流れの中心とレーザービームの強
度分布の中心を予め正確に合わせておく微妙な調整操作
が不可欠である。そこで、この調整操作を不要とし、更
には流体中の被検粒子の位置のばらつきが散乱光強度に
影響を及ぼさないようにするために、照射レーザービー
ムを被検粒子の流れと直交する方向に走査して同様の検
出を行う粒子解析装置が提案されている。この走査を音
響光学素子(AOD)を用いて行うものが知られている
が、これは印加電圧を変化することによって偏向角が変
化する音響光学素子にレザービームを入射して、レーザ
ービームを偏向し走査に使用するものである。
Although this drawback can be compensated to a considerable extent by employing the sheath flow method, delicate adjustment operations are essential to accurately align the center of the flow with the center of the laser beam intensity distribution in advance. Therefore, in order to eliminate the need for this adjustment operation and to prevent variations in the position of the particles to be detected in the fluid from affecting the scattered light intensity, the irradiated laser beam is moved in a direction perpendicular to the flow of the particles to be detected. Particle analysis devices that perform similar detection by scanning have been proposed. It is known to perform this scanning using an acousto-optic device (AOD), which deflects the laser beam by inputting the laser beam to an acousto-optic device whose deflection angle changes by changing the applied voltage. This is used for scanning.

[発明が解決しようとする課題] しかしながら、上述の従来例においては、音響光学素子
を用いたレーザービームの走査速度には限界があるので
、1個の被検粒子に対する走査回数を増加して高精度の
測定を行うためには被検粒子の流速を遅くする方法を採
用する。しかし、被検粒子の解析のためには多数の被検
粒子に対して測定して統計的な処理を行うことが必要と
なるので、流速を遅くすると測定にかなりの時間を要す
ることになる。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional example, there is a limit to the scanning speed of the laser beam using the acousto-optic element. In order to measure accuracy, a method is adopted in which the flow velocity of the particles to be measured is slowed down. However, in order to analyze the test particles, it is necessary to measure and perform statistical processing on a large number of test particles, so if the flow rate is slowed down, the measurement will take a considerable amount of time.

本発明の目的は、上述の欠点を解消し、短時間で精度の
高い測定が可能な粒子解析装置を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a particle analysis device that can perform highly accurate measurements in a short time.

[課題を解決するための手段] 上記の目的を達成するために、本発明に係る粒子解析装
置においては、流体中の被検粒子に流れと交叉する方向
に音響光学素子を用いて複数の光ビームを走査し、得ら
れる光学信号を測定して被検粒子の解析を行う粒子解析
装置において、前記複数の光ビームを前記音響光学素子
のそれぞれ異なる位置に入射し、前記音響光学素子から
出射する複数の光ビームの走査方向をずらせて走査する
手段を有することを特徴とするものである。
[Means for Solving the Problems] In order to achieve the above object, in the particle analysis device according to the present invention, an acousto-optic element is used to apply a plurality of light beams to the test particles in the fluid in a direction intersecting the flow. In a particle analysis device that scans a beam and measures the obtained optical signal to analyze a target particle, the plurality of light beams are incident on different positions of the acousto-optic element and emitted from the acousto-optic element. It is characterized by having means for scanning by shifting the scanning directions of a plurality of light beams.

[作用コ 上記の構成を有する粒子解析装置は、音響光学素子を用
いて流体中の被検粒子に対し、その移動方向と直交する
方向に複数のレーザービームを走査して、得られる光学
信号を測定して被検粒子の解析を行う。
[Operation] The particle analysis device having the above configuration uses an acousto-optic element to scan the test particles in a fluid with a plurality of laser beams in a direction perpendicular to the direction of movement of the particles, and generates optical signals. Measure and analyze the target particles.

[実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Example] The present invention will be explained in detail based on illustrated embodiments.

第1図は本発明に係る一実施例の装置構成図であり、1
はフローセルであり、この流通部1aには被検粒子がシ
ース液と共に高速で流れるようになっている。平行して
設けられた2個のレーザー光源2.3からフローセル1
に向けて出射されるレーザービームL1、L2の光路0
1.02上には、圧電材4aと媒質4bから構成される
音響光学素子4、集光レンズ5が設けられており、レー
ザビームL1、L2は媒質4bの異る位置に入射するよ
うにされている。また、流通部la内の被検粒子による
レーザービームL1、L2の前方散乱光を測定するため
に、フローセル1を挟んでレーザー光源2.3と反対側
の光路03上には集光レンズ6、光検出器7が設けられ
、光検出器7の出力は信号処理装置8に接続され、信号
処理装置8の出力は記憶装置9に接続されている。また
、偏向角を制御するための音響光学素子4には、スィー
ブオシレータ10、電源11が順次に接続されている。
FIG. 1 is a diagram showing the configuration of an apparatus according to an embodiment of the present invention.
is a flow cell, and the test particles flow together with the sheath liquid at a high speed through this flow section 1a. Flow cell 1 from two laser light sources 2.3 installed in parallel
Optical path 0 of laser beams L1 and L2 emitted toward
1.02, an acousto-optic element 4 composed of a piezoelectric material 4a and a medium 4b, and a condensing lens 5 are provided, and the laser beams L1 and L2 are made to enter different positions of the medium 4b. ing. In addition, in order to measure the forward scattered light of the laser beams L1 and L2 caused by the test particles in the flow section la, a condenser lens 6, A photodetector 7 is provided, the output of the photodetector 7 is connected to a signal processing device 8, and the output of the signal processing device 8 is connected to a storage device 9. Further, a sweep oscillator 10 and a power source 11 are sequentially connected to the acousto-optic element 4 for controlling the deflection angle.

レーザー光源2.3から出射されたレーザービームL1
、L2は、それぞれ光路の媒質4bの位置x1、x2に
入射されて偏向され、集光レンズ5を経た後に流通部l
a内の被検粒子に照射され、その前方散乱光が集光レン
ズ6を介して光検出器7上で受光され、その受光量が信
号処理装置8内で必要な被検粒子の情報に演算処理され
た後に記憶装置9に記憶される。
Laser beam L1 emitted from laser light source 2.3
, L2 are respectively incident on the positions x1 and x2 of the medium 4b in the optical path, are deflected, and after passing through the condensing lens 5 are sent to the circulation part l.
The forward scattered light is received by the photodetector 7 via the condensing lens 6, and the amount of received light is calculated into the necessary information about the particle in the signal processing device 8. After being processed, it is stored in the storage device 9.

周波数fの交流電圧が音響光学素子4の圧電材4aに加
えられると、媒質4bの端部Aに周波数fに反比例する
波長の超音波が発生して、媒質4b中を端部Aから端部
Bに伝搬する。この超音波の波面によって回折格子が形
成され、媒質4bに入射したレーザービームL1. L
2はこの回折格子によって偏向される。圧電材4aに加
える周波数fを変化させて、媒質4a内に形成する回折
格子の間隔を変えれば、入射したレーザービームL1、
L2の偏向角を変化することができ、レーザー光源L1
、L2の水平方向の走査が可能となる。
When an AC voltage with a frequency f is applied to the piezoelectric material 4a of the acousto-optic element 4, an ultrasonic wave with a wavelength inversely proportional to the frequency f is generated at the end A of the medium 4b, and the ultrasonic wave is transmitted through the medium 4b from the end A to the end. Propagates to B. A diffraction grating is formed by the wavefront of this ultrasonic wave, and the laser beam L1. L
2 is deflected by this grating. By changing the frequency f applied to the piezoelectric material 4a and changing the interval of the diffraction grating formed in the medium 4a, the incident laser beam L1,
The deflection angle of L2 can be changed, and the laser light source L1
, L2 can be scanned in the horizontal direction.

第2図に示すように、時間的に変化する鋸歯状波電圧が
電源11からスィーブオシレータIOに加えられ、スィ
ーブオシレータ10でこの電圧に比例した周波数の交流
電圧に変換されて圧電材4aに加えられる。そこで、媒
質4b内の端部Aでは波長が周期的に変化する超音波が
次々と発生され、媒質4b中を端部Bに向って伝搬して
回折格子を形成する。このために、同一時刻において位
置xi、 x2における回折格子の間隔が異なるので、
同一波長のレーザービームLl、L2でも入射される位
置によって偏向角に差異が生じ、異なるタイミングで被
検粒子を走査することになる。つまり、平行光により媒
質4bの異なる位置に入射するレーザービームL1、L
2とを異なる方向に周期的に位相をずらすことにより偏
向し、流通部1aを走査でき、レーザービームLlが位
置LlaにあるときはレーザービームL2は位置L2b
にあり、レーザービームL1が位置Llbにあるときは
レーザービームL2は位置L2cにあり、レーザービー
ムL1が位置LlcにあるときはレーザービームL2は
位置L2aにある。
As shown in FIG. 2, a time-varying sawtooth voltage is applied from the power supply 11 to the sweep oscillator IO, and the sweep oscillator 10 converts it into an alternating current voltage with a frequency proportional to this voltage. added to. Therefore, ultrasonic waves whose wavelengths change periodically are generated one after another at the end A in the medium 4b, propagate through the medium 4b toward the end B, and form a diffraction grating. For this reason, the spacing of the diffraction gratings at positions xi and x2 at the same time is different, so
Even if the laser beams Ll and L2 have the same wavelength, the deflection angles will differ depending on the incident position, and the test particles will be scanned at different timings. In other words, the laser beams L1 and L enter different positions of the medium 4b due to parallel light.
2 and 2 by periodically shifting the phase in different directions, the circulation part 1a can be scanned, and when the laser beam Ll is at the position Lla, the laser beam L2 is at the position L2b.
When the laser beam L1 is at the position Llb, the laser beam L2 is at the position L2c, and when the laser beam L1 is at the position Llc, the laser beam L2 is at the position L2a.

従来例のように、レーザー光源を1個だけ用いて走査す
る場合には、光検出器7の受光量は第3図(a)に示す
ようになり、走査時間を短縮してもレーザービームが走
査されていない間には散乱光が受光されることはない。
When scanning is performed using only one laser light source as in the conventional example, the amount of light received by the photodetector 7 is as shown in FIG. 3(a), and even if the scanning time is shortened, the laser beam Scattered light is not received while it is not being scanned.

しかし、2個のレザー光源2.3を用いて、平行して設
置されて17するレーザー光源2と3間の距離、つまり
レーザビームL1とL2の媒質4bの入射位置x1、x
2との間隔と音響光学素子4への電圧変化の周期とを適
宜に設定し、レーザービームL1、L2の走査の位相を
逆にすれば、圧電材4aの受光量は第3図(bl に示
すように、レーザービームL1、L2による交互に受光
して、従来例においては走査することができなかった時
間においても走査することができる。
However, when two laser light sources 2.3 are used, the distance between the laser light sources 2 and 3 that are installed in parallel, that is, the incident positions x1 and x of the laser beams L1 and L2 on the medium 4b.
2 and the period of voltage change to the acousto-optic element 4, and reverse the scanning phases of the laser beams L1 and L2, the amount of light received by the piezoelectric material 4a is as shown in Fig. 3 (bl). As shown, by alternately receiving the laser beams L1 and L2, scanning can be performed even during a time when scanning could not be performed in the conventional example.

1つのレーザービームを走査するために要する時間を短
かくすることは音響光学素子4を用いては不可能である
が、2個のレーザービーム1..1. L2を使用する
ことにより、走査回数速度を2倍にした場合と同様の効
果で精度の高い測定が短時間で達成できる。
Although it is not possible to shorten the time required to scan one laser beam using the acousto-optic element 4, it is not possible to shorten the time required to scan one laser beam. .. 1. By using L2, highly accurate measurement can be achieved in a short time with the same effect as doubling the scanning speed.

また、レーザービームL1、L2は平行光とじたが、平
行光でなくとも媒質4bの異なる位置x1と×2とに入
射され、レーザービームI、1、L2の入射位置でのな
す角度が検出できれば同様の測定が可能である。また、
2つのレーザービームL1、L2の位相を逆にして走査
したが、複数個、例えば3個のレーザー光源を用いてレ
ーザービーム同志の位相を120度ずつずらして同様の
測定を行えば、更により精度の高い測定が可能となる。
In addition, although the laser beams L1 and L2 are collimated, even if they are not parallel lights, if they are incident on different positions x1 and x2 of the medium 4b, and the angles formed at the incident positions of the laser beams I, 1, and L2 can be detected. Similar measurements are possible. Also,
Although scanning was performed with the phases of the two laser beams L1 and L2 reversed, it would be possible to achieve even greater accuracy by performing similar measurements using multiple, for example three, laser light sources and shifting the phases of the laser beams by 120 degrees. This makes it possible to measure a high degree of

この場合に用いる2個のレーザービームL1、L2の波
長は同一でも異なっていてもよく、またこの実施例にお
いては2個のレーザー光源を用いているが、1個のレー
ザー光源からのレーザービームを平行光として導き、媒
質4aの異なる位置x1とx2とに入射しても同様の効
果が得られる。
The wavelengths of the two laser beams L1 and L2 used in this case may be the same or different, and although two laser light sources are used in this embodiment, the laser beam from one laser light source is The same effect can be obtained even if the light is guided as parallel light and incident on different positions x1 and x2 of the medium 4a.

[発明の効果] 以上説明したように本発明に係る粒子解析装置は、音響
光学素子を用いて複数のレーザービームの位相をずらし
て走査することにより被検粒子を照射しているので、短
時間で高精度の測定ができる。
[Effects of the Invention] As explained above, the particle analysis device according to the present invention irradiates the target particles by scanning the plurality of laser beams with the phase shifted using an acousto-optic element, so it can be used for a short time. allows for highly accurate measurements.

 00

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る粒子解析装置の一実施例を示し、第
1図は構成図、第2図は電源電圧変化の説明図、第3図
(a) 、 fblは光検出器の受光光量のグラフ図で
ある。 符号lはフローセル、2.3はレーザー光源、4は音響
光学素子、4aは圧電材、4bは媒質、7は光検出器、
10はスィーブオシレータ、11は電源である。
The drawings show an embodiment of the particle analysis device according to the present invention, in which Fig. 1 is a configuration diagram, Fig. 2 is an explanatory diagram of power supply voltage change, and Fig. 3 (a), fbl shows the amount of light received by the photodetector. It is a graph diagram. Symbol l is a flow cell, 2.3 is a laser light source, 4 is an acousto-optic element, 4a is a piezoelectric material, 4b is a medium, 7 is a photodetector,
10 is a sweep oscillator, and 11 is a power supply.

Claims (1)

【特許請求の範囲】 1、流体中の被検粒子に流れと交叉する方向に音響光学
素子を用いて複数の光ビームを走査し、得られる光学信
号を測定して被検粒子の解析を行う粒子解析装置におい
て、前記複数の光ビームを前記音響光学素子のそれぞれ
異なる位置に入射し、前記音響光学素子から出射する複
数の光ビームの走査方向をずらせて走査する手段を有す
ることを特徴とする粒子解析装置。 2、前記走査前の複数の光ビームの光路は被検粒子の流
れと垂直方向な平面上にあり、一定の距離を隔てた平行
光とした請求項1に記載の粒子解析装置。
[Claims] 1. Analyze the particles by scanning the particles in the fluid with a plurality of light beams using an acousto-optic device in a direction intersecting the flow, and measuring the obtained optical signal. The particle analysis device is characterized by comprising means for making the plurality of light beams incident on different positions of the acousto-optic element and scanning the plurality of light beams emitted from the acousto-optic element by shifting the scanning direction of the plurality of light beams. Particle analysis device. 2. The particle analysis device according to claim 1, wherein the optical paths of the plurality of light beams before scanning are parallel light beams that are on a plane perpendicular to the flow of the particles to be detected and separated by a certain distance.
JP1287833A 1989-11-07 1989-11-07 Particle analyzing device Pending JPH03150445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1287833A JPH03150445A (en) 1989-11-07 1989-11-07 Particle analyzing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1287833A JPH03150445A (en) 1989-11-07 1989-11-07 Particle analyzing device

Publications (1)

Publication Number Publication Date
JPH03150445A true JPH03150445A (en) 1991-06-26

Family

ID=17722355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1287833A Pending JPH03150445A (en) 1989-11-07 1989-11-07 Particle analyzing device

Country Status (1)

Country Link
JP (1) JPH03150445A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008120A1 (en) * 1990-10-29 1992-05-14 Macquarie University Pulsed laser flow cytometry
JP2009098049A (en) * 2007-10-18 2009-05-07 Sony Corp Optical measuring part, member for optical measuring, and micro particle measuring device arranged therewith
JP2015531490A (en) * 2012-10-12 2015-11-02 ナノエフシーエム,インコーポレイテッド Nanoparticle detection method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008120A1 (en) * 1990-10-29 1992-05-14 Macquarie University Pulsed laser flow cytometry
JP2009098049A (en) * 2007-10-18 2009-05-07 Sony Corp Optical measuring part, member for optical measuring, and micro particle measuring device arranged therewith
JP4525725B2 (en) * 2007-10-18 2010-08-18 ソニー株式会社 OPTICAL MEASUREMENT UNIT, OPTICAL MEASUREMENT MEMBER, FINE PARTICLE MEASUREMENT DEVICE PROVIDED WITH THE SAME, AND MICROPARTICLE OPTICAL MEASUREMENT METHOD
US8077313B2 (en) 2007-10-18 2011-12-13 Sony Corporation Optical measuring device, optical measuring apparatus and fine particle measuring apparatus using optical measuring device
JP2015531490A (en) * 2012-10-12 2015-11-02 ナノエフシーエム,インコーポレイテッド Nanoparticle detection method
US9739700B2 (en) 2012-10-12 2017-08-22 Nanofcm, Inc. Method for detecting nano-particles using a lens imaging system with a field stop

Similar Documents

Publication Publication Date Title
US11187662B2 (en) Device and method for simultaneously inspecting defects of surface and subsurface of optical element
EP3593110B1 (en) Particle characterisation with a focus tuneable lens
US4920275A (en) Particle measuring device with elliptically-shaped scanning beam
JPH06186155A (en) Particle analyzer
JPH087134B2 (en) Device for investigating particle paths
Brayton et al. Two-component dual-scatter laser Doppler velocimeter with frequency burst signal readout
CN105486665A (en) SPR detection system and method
JPH06186156A (en) Particle analyzer
US6734956B2 (en) Optical configuration and method for differential refractive index measurements
US7029562B2 (en) Capillary array electrophoresis apparatus
CN111366558A (en) Multi-wavelength polarization scattering measuring device
JPH0843292A (en) Detector for measuring luminous intensity of scattered lightwith thin film of colloid-state medium
JPH03150445A (en) Particle analyzing device
JPS6151569A (en) Cell identifying device
JPH03154850A (en) Specimen inspecting device
JPH03150444A (en) Sample inspecting device
JP2756298B2 (en) Sample test equipment
JPH03172736A (en) Particle analyzing device
JP2001272355A (en) Foreign matter inspecting apparatus
JPS59102139A (en) Blood corpuscle counter
JPH03146848A (en) Inspection sample measuring instrument with alignment mechanism
JPH03150446A (en) Particle analyzing device
JPS631952A (en) Particle analyser
JPS62177432A (en) Method and device for measuring particle
JPH02304333A (en) Flowing cell analyzing instrument