JP2012047648A - Particle size measurement instrument and particle size measurement method - Google Patents

Particle size measurement instrument and particle size measurement method Download PDF

Info

Publication number
JP2012047648A
JP2012047648A JP2010191572A JP2010191572A JP2012047648A JP 2012047648 A JP2012047648 A JP 2012047648A JP 2010191572 A JP2010191572 A JP 2010191572A JP 2010191572 A JP2010191572 A JP 2010191572A JP 2012047648 A JP2012047648 A JP 2012047648A
Authority
JP
Japan
Prior art keywords
light
particles
particle size
flow path
intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010191572A
Other languages
Japanese (ja)
Other versions
JP5662742B2 (en
Inventor
Toshiaki Iwai
俊昭 岩井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AISTHESIS CORP
Original Assignee
AISTHESIS CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AISTHESIS CORP filed Critical AISTHESIS CORP
Priority to JP2010191572A priority Critical patent/JP5662742B2/en
Priority to CN201180041418.1A priority patent/CN103069265B/en
Priority to PCT/JP2011/069353 priority patent/WO2012026600A1/en
Publication of JP2012047648A publication Critical patent/JP2012047648A/en
Priority to HK13107489.8A priority patent/HK1180394A1/en
Application granted granted Critical
Publication of JP5662742B2 publication Critical patent/JP5662742B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging

Abstract

PROBLEM TO BE SOLVED: To measure a particle size by installing a detector on an optical axis of light irradiated by a light source and detecting back scattered light due to particles included in a particle group, and to unequivocally accurately measure a particle size while reducing the amount of light directly impinging without being scattered by particles, out of light from the light source as much as possible.SOLUTION: Fundamentally, this invention is based on findings that a particle size can be unequivocally measured by measuring a maximum forward scattering intensity while guiding particles included in the particle group to a beam convergence position by means of a radiation pressure generated by a convergent laser beam to reduce, as much as possible, direct transmitted light not scattered by particles. That is, a particle size measurement instrument and a particle size measurement method utilize a radiation pressure of incident light to forcibly move the particles to the convergence position and detect forward scattered light.

Description

本発明は,前方散乱法によって流路内の粒子の粒径を計測する装置及びその方法に関する。本発明は,特に,レーザビームを集光することによって発生する放射圧を利用した粒径計測装置及び粒径計測方法に関する。   The present invention relates to an apparatus and a method for measuring the particle size of particles in a channel by a forward scattering method. The present invention particularly relates to a particle size measuring apparatus and a particle size measuring method using a radiation pressure generated by condensing a laser beam.

従来から,排煙に含まれる化合物粒子や自然環境で発生する粒子の飛散状況をモニタリングする技術が存在する。   Conventionally, there is a technique for monitoring the scattering state of compound particles contained in flue gas and particles generated in the natural environment.

しかしながら,粒径をモニタリングする技術は,実時間性に乏しいものであった。また,近年では,マイクロサイズやナノサイズの環境化学物質のモニタリング技術では,実時間計測ができる技術が存在しない。特に,小型で安価な測定技術が求められている。   However, the technology for monitoring the particle size is poor in real time. Also, in recent years, there is no technology that can perform real-time measurement with micro- and nano-size environmental chemical monitoring technologies. In particular, small and inexpensive measurement technology is required.

また,例えば,特開2000−146812号公報(特許文献1)には,レーザ光を分散している粒子群に照射し,レーザ光の照射によって生じた回折/散乱光を検出し,検出した回折/散乱光強度信号に基づいて粒子群の粒径分布を測定する粒径測定装置が開示されている。このような,従来の粒径測定装置では,光源の光軸上に光強度検出器を設置することとすると,分散している粒子群に散乱されず直接入射する光の強度が強くなりすぎるため,正確に粒径を測定することができない。従って,従来の粒径測定装置では,散乱光の特定角度方向の成分のみを検出することとしていた。   Further, for example, in Japanese Patent Laid-Open No. 2000-146812 (Patent Document 1), a group of particles dispersed with laser light is irradiated, diffraction / scattered light generated by the laser light irradiation is detected, and detected diffraction is detected. / A particle size measuring device for measuring the particle size distribution of a particle group based on a scattered light intensity signal is disclosed. In such a conventional particle size measuring device, if a light intensity detector is installed on the optical axis of the light source, the intensity of the directly incident light becomes too strong without being scattered by the dispersed particles. , The particle size cannot be measured accurately. Therefore, the conventional particle size measuring apparatus detects only the component of the scattered light in the specific angle direction.

しかしながら,従来の粒径測定装置のように散乱光の特定角度方向の成分のみを検出し,ミー散乱理論で計算することとすると,粒径に依存する散乱強度パターンが,角度依存性を直接的に反映する結果となる。図5は,ミー散乱理論で計算された散乱強度パターンを示している。このように,散乱強度パターンに角度依存性が直接的に反映されることは,粒径測定が不正確となる要因となっていた。すなわち,従来の粒径測定装置では,粒径を一意に正確に計測することが困難であった。   However, if only the component in the specific angle direction of the scattered light is detected and calculated by the Mie scattering theory as in the conventional particle size measuring device, the scattering intensity pattern depending on the particle size directly shows the angle dependence. The result is reflected in. FIG. 5 shows a scattering intensity pattern calculated by the Mie scattering theory. As described above, the fact that the angle dependence is directly reflected in the scattering intensity pattern is a cause of inaccurate particle size measurement. In other words, it has been difficult for the conventional particle size measuring device to measure the particle size uniquely and accurately.

特開2000−146812号公報JP 2000-146812 A

そこで,本発明は,光源が照射する光の光軸上に検出器を設置し,粒子群に含まれる粒子により生じた前方散乱光を検出することによってその粒径を計測することを目的とする。そのために,本発明は,光源からの光が粒子によって散乱されずに直接入射する光の光量を極力減少させつつ,粒径を一意に正確に計測することを目的とする。   Therefore, the present invention has an object to measure the particle diameter by installing a detector on the optical axis of the light emitted from the light source and detecting the forward scattered light generated by the particles contained in the particle group. . Therefore, an object of the present invention is to uniquely and accurately measure the particle size while reducing the amount of light directly incident on the light from the light source without being scattered by the particles.

本発明は,基本的には,集光レーザビームで発生する放射圧を用いて,粒子群に含まれる粒子をビーム集光位置に誘導し,粒子によって散乱されない直接透過光を極力減少させることにより,最大の前方散乱強度を測定し粒径を一意に計測できるという知見に基づく。すなわち,本発明に係る粒径測定装置及び粒径測定方法は,入射光による光放射圧を利用して,粒子を集光位置に強制的に移動させ,前方散乱光を検出する。   The present invention basically uses the radiation pressure generated by the focused laser beam to guide the particles contained in the particle group to the beam focusing position, thereby reducing the direct transmitted light not scattered by the particles as much as possible. Based on the knowledge that the maximum forward scattering intensity can be measured and the particle size can be uniquely measured. That is, the particle size measuring apparatus and the particle size measuring method according to the present invention detect the forward scattered light by forcibly moving the particles to the condensing position using the light radiation pressure by the incident light.

本発明の第1の側面は,光源10,流路20,粒子誘導手段30,検出器40,及び算出手段50を有する粒径測定装置である。
光源10は,流路20に対して光を照射する。
流路20内は,粒径測定の対象である粒子群が流通している。
粒子誘導手段30は,流路20内の粒子を光の集光位置に誘導する手段である。この粒子誘導手段30としては,光源10と流路20の間に配置され,光源10が照射した光を流路20内に集光するレンズが用いられる。すなわち,レンズは,光の放射圧を利用して,流路20内の粒子を光の集光位置に誘導する。
検出器40は,光源10が照射した光の光軸上に1つだけ配置される。そして,流路20内の粒子群に含まれる粒子の存在によって生じる前方散乱光の強度を検出する。
算出手段50は,検出器40が検出した前方散乱光の強度に基づいて,粒子の粒径を求める。
The first aspect of the present invention is a particle size measuring apparatus having a light source 10, a flow path 20, particle guiding means 30, a detector 40, and a calculating means 50.
The light source 10 irradiates the flow path 20 with light.
In the flow channel 20, a particle group that is a target of particle size measurement circulates.
The particle guiding means 30 is a means for guiding particles in the flow path 20 to a light condensing position. As the particle guiding means 30, a lens that is disposed between the light source 10 and the flow path 20 and collects the light irradiated by the light source 10 in the flow path 20 is used. In other words, the lens guides the particles in the flow path 20 to the light condensing position using the light radiation pressure.
Only one detector 40 is arranged on the optical axis of the light emitted from the light source 10. And the intensity | strength of the forward scattered light which arises by presence of the particle | grains contained in the particle group in the flow path 20 is detected.
The calculation means 50 obtains the particle size of the particles based on the intensity of the forward scattered light detected by the detector 40.

本発明は,レンズ30によって流路20内に光を集光するため,光放射圧(つまり,勾配力と散乱力)を利用して,流路内の粒子をビーム集光位置に誘導できる。このようにして,本発明は,粒子をビーム集光位置に誘導することができるため,粒子によって散乱されない入射光の光量を極力減少させることができる。従って,前方散乱光の強度を検出する検出器40を,光源10から照射される照射光の光軸上に配置できる。   In the present invention, since light is collected in the flow path 20 by the lens 30, particles in the flow path can be guided to the beam condensing position using light radiation pressure (that is, gradient force and scattering force). In this way, the present invention can guide the particles to the beam condensing position, so that the amount of incident light not scattered by the particles can be reduced as much as possible. Therefore, the detector 40 that detects the intensity of the forward scattered light can be disposed on the optical axis of the irradiation light emitted from the light source 10.

このように,本発明は,光の放射圧を利用することによって,流路20内の粒子を最大散乱強度が発生する最適な位置(つまり,ビーム集光位置)に誘導することができる。従って,従来のように,粒子がビーム集光位置を通過するように,物理的な構造によって流路を限定したり,流路内に気流を発生させたり必要がないため,装置の構造を簡易なものとすることができる。   As described above, the present invention can guide the particles in the flow path 20 to the optimum position (that is, the beam condensing position) where the maximum scattering intensity is generated by using the radiation pressure of light. Therefore, unlike the conventional case, there is no need to limit the flow path by a physical structure or to generate an air flow in the flow path so that particles pass through the beam condensing position. Can be.

また,本発明は,検出器40を光源10から照射される光の光軸上に配置可能であるため,従来は達成し得なかった様々な効果を奏する。例えば,流路20内に粒子が存在しない場合には,光源10から照射された光の全光量が検出器40に入射するため,予め検出器40のダイナミックレンジを設定できる。また,流路20内に粒子が流通し,光の散乱が発生すると,検出器40に直接入射していた光は散乱光として全空間にわたって散乱されるため,前方の散乱強度が散乱量に応じて減少することを粒径計測に利用できる。   In addition, since the detector 40 can be disposed on the optical axis of the light emitted from the light source 10, the present invention provides various effects that could not be achieved in the past. For example, when there is no particle in the flow path 20, the entire light amount of the light emitted from the light source 10 enters the detector 40, so that the dynamic range of the detector 40 can be set in advance. In addition, when particles flow through the flow path 20 and light scattering occurs, the light directly incident on the detector 40 is scattered as scattered light over the entire space, so the forward scattering intensity depends on the amount of scattering. Can be used for particle size measurement.

本発明の第1の側面は,さらに,流路20と検出器40の間に配置され,流路20内の粒子群に含まれる粒子の存在によって生じる前方散乱光を検出器40に集光するための集光系60を有する。   The first aspect of the present invention is further arranged between the flow channel 20 and the detector 40, and collects forward scattered light generated by the presence of particles contained in the particle group in the flow channel 20 on the detector 40. A condensing system 60.

本発明の第1の側面は,さらに,光源10とレンズ30の間に配置され,光源10から照射された光の光径を広狭させる光径変更手段を有する。   The first aspect of the present invention further includes light diameter changing means that is disposed between the light source 10 and the lens 30 and widens or narrows the light diameter of the light emitted from the light source 10.

すなわち,本発明の第1の側面においては,光源10とレンズ30の間に,開口径が可変の開口板を設置する。この開口部の形状は円形となっている。このように,開口径を変化させることによって光源10から照射された光の光径を広狭させる。これにより,流路20内に形成される集光点の径を制御することができる。従って,本粒径測定装置が測定可能な粒子の粒径の範囲を変えることができる。   That is, in the first aspect of the present invention, an aperture plate with a variable aperture diameter is installed between the light source 10 and the lens 30. The shape of the opening is circular. In this way, the diameter of the light emitted from the light source 10 is widened or narrowed by changing the aperture diameter. Thereby, the diameter of the condensing point formed in the flow path 20 can be controlled. Therefore, the range of the particle size of the particles that can be measured by the particle size measuring device can be changed.

また,算出手段50は,粒子の粒径と併せて,粒子の質量を算出することが好ましい。粒子の質量は,ビーム内の位置に応じた粒子にかかる散乱力の変化によって,ビーム内での粒子の速度が変化することに鑑みれば,算出された粒子の粒径に基づいて,粒子にかかる散乱力をも算出することができる。   The calculating means 50 preferably calculates the mass of the particles together with the particle size of the particles. The mass of the particle is applied to the particle based on the calculated particle size in view of the fact that the velocity of the particle in the beam changes due to the change in the scattering force applied to the particle according to the position in the beam. Scattering power can also be calculated.

また,算出手段50は,粒子の粒径及び粒子の質量と併せて,粒子の質量を算出することが好ましい。粒子が球形であると仮定した場合,粒子の粒径から粒子の体積を求め,体積と質量に基づいて粒子の密度を求めることができる。   Moreover, it is preferable that the calculation means 50 calculates the mass of a particle together with the particle size of the particle and the mass of the particle. Assuming that the particles are spherical, the volume of the particles can be obtained from the particle size of the particles, and the density of the particles can be obtained based on the volume and mass.

本発明の第2の側面は,粒径測定方法に関する。粒径測定方法は,レンズ30によって,光源10からの光を集光して粒子群が流通する流路20内に集光点を形成し流路20内の粒子を光の集光位置に誘導する工程と,光源10が照射した光の光軸上に配置され検出器40によって流路20内の粒子群に含まれる粒子の存在によって生じる前方散乱光の強度を検出する工程と,算出手段50によって,検出器40が検出した前方散乱光の強度に基づいて粒子の粒径を算出する工程を含む。   The second aspect of the present invention relates to a particle size measuring method. In the particle size measurement method, the light from the light source 10 is condensed by the lens 30 to form a condensing point in the flow path 20 through which the particle group flows, and the particles in the flow path 20 are guided to the light condensing position. A step of detecting the intensity of the forward scattered light caused by the presence of particles contained in the particle group in the flow channel 20 by the detector 40 arranged on the optical axis of the light irradiated by the light source 10, and the calculating means 50 Thus, a step of calculating the particle size of the particles based on the intensity of the forward scattered light detected by the detector 40 is included.

本発明の第2の側面においては,流路20内の粒子群に含まれる粒子の存在によって生じる回折光および前方散乱光の強度を検出する前に,検出器40によって光源10からの入射光が粒子群の存在しない流路20内を透過した透過光の強度を検出する工程と,算出手段50によって検出器40が検出した粒子が存在しないときの透過光の強度と粒子が存在するときの前方散乱光の強度の強度比を算出する工程を含む。   In the second aspect of the present invention, incident light from the light source 10 is detected by the detector 40 before detecting the intensity of diffracted light and forward scattered light caused by the presence of particles contained in the particle group in the flow path 20. A step of detecting the intensity of the transmitted light transmitted through the flow path 20 in which no particle group exists, the intensity of the transmitted light when there is no particle detected by the detector 40 by the calculation means 50, and the front when the particle is present A step of calculating an intensity ratio of the intensity of scattered light.

一般的な散乱計測においては,光の透過強度と散乱強度の強度比を測定し,理論式と実測値を比較して粒径を決定する。たとえば,媒質が溶液であるような場合に溶媒に依って光の吸収がある場合には,その吸収も考慮することが必要である。そこで,本発明は,まず粒子の存在しない溶媒を透過した透過光の強度を検出しておき,検出した透過光の強度に基づいて入射光の強度との強度比を求める。これにより,媒質がいなかるものであっても散乱光とともに入射光の強度を検出することができる。従って,強度比の測定を,1つの光源と1つの検出器だけで実現できる。   In general scattering measurement, the intensity ratio between the light transmission intensity and the scattering intensity is measured, and the particle size is determined by comparing the theoretical formula with the actual measurement value. For example, when the medium is a solution and there is light absorption depending on the solvent, it is necessary to consider the absorption. Therefore, the present invention first detects the intensity of transmitted light that has passed through a solvent in which particles are not present, and obtains the intensity ratio with the intensity of incident light based on the detected intensity of transmitted light. As a result, the intensity of the incident light can be detected together with the scattered light even if the medium is absent. Therefore, the intensity ratio can be measured with only one light source and one detector.

上記のように,本発明は,光源が照射する光の光軸上に検出器を設置し,粒子によって生じた前方散乱光を検出することにより粒径計測ができる。   As described above, the present invention can measure the particle size by installing a detector on the optical axis of the light emitted from the light source and detecting the forward scattered light generated by the particles.

図1は,本発明に係る粒径計測装置の構成を示す図であるFIG. 1 is a diagram showing a configuration of a particle size measuring apparatus according to the present invention. 図2は,本発明に係る方法の実験装置の構成を示す図である。FIG. 2 is a diagram showing the configuration of the experimental apparatus of the method according to the present invention. 図3は,本発明に係る方法理論値と実験値を比較したグラフを示す図である。FIG. 3 is a graph showing a comparison between the theoretical method values and the experimental values according to the present invention. 図4は,集光レーザビームによる粒子の捕捉と散乱の様子を示した図である。FIG. 4 is a diagram showing how particles are captured and scattered by the focused laser beam. 図5は,ミー散乱理論で計算された散乱強度パターンを示す図である。FIG. 5 is a diagram showing a scattering intensity pattern calculated by the Mie scattering theory.

以下,図面を用いて,本発明を実施するための形態について説明する。ただし,本発明は,以下の実施の形態に限定されるものではなく,当業者にとって自明な範囲で適宜修正したものを含む。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. However, the present invention is not limited to the following embodiments, and includes modifications appropriately made within the scope obvious to those skilled in the art.

図1は,本発明に係る粒径測定装置の構成を示している。図1に示すように,光源10(レーザ)は,粒子誘導手段30(レンズ)に対して光(レーザビーム)を照射する。また,レンズ30は,集光した光によって流路20内で焦点Fを形成する。集光系60は,レンズ30を介した光を検出器40に照射する。検出器40は,粒子群に含まれる粒子の存在によって生じる前方散乱光の強度を検出する。算出手段50は,検出した前方散乱光の強度に基づいて粒子の粒径を算出する。   FIG. 1 shows the configuration of a particle size measuring apparatus according to the present invention. As shown in FIG. 1, the light source 10 (laser) irradiates the particle guiding means 30 (lens) with light (laser beam). The lens 30 forms a focal point F in the flow path 20 by the condensed light. The condensing system 60 irradiates the detector 40 with light through the lens 30. The detector 40 detects the intensity of forward scattered light caused by the presence of particles included in the particle group. The calculation means 50 calculates the particle size of the particles based on the detected intensity of forward scattered light.

このとき,検出器40は,光源10が照射した光軸L上に配置されている。また,レンズ30,流路20,及び集光系60も,光源10が照射した光軸L上に配置されている。   At this time, the detector 40 is disposed on the optical axis L irradiated by the light source 10. The lens 30, the flow path 20, and the light collecting system 60 are also arranged on the optical axis L irradiated by the light source 10.

光源10は,レーザ光源である。たとえば,市販の半導体レーザを用いることとしてもよい。光源10の光の進行方向には,流路20が設置されている。流路20は,測定対象である粒子群が通過する透明な容器である。また,レンズ30は,光源10と流路20の間に設けられた集光レンズである。図1において,レンズ30は,一のレンズにより表しているが,複数の凸レンズや凹レンズを組み合わせた光学系であってもよい。レンズ30は,光源10からの光を適宜収斂させ,流路20内において集光点Fを形成する。   The light source 10 is a laser light source. For example, a commercially available semiconductor laser may be used. A flow path 20 is installed in the light traveling direction of the light source 10. The channel 20 is a transparent container through which a particle group to be measured passes. The lens 30 is a condensing lens provided between the light source 10 and the flow path 20. In FIG. 1, the lens 30 is represented by a single lens, but may be an optical system in which a plurality of convex lenses and concave lenses are combined. The lens 30 appropriately converges the light from the light source 10 to form a condensing point F in the flow path 20.

流路20内において集光点Fが形成された場合,流路20内の粒子は,光の放射圧によって光軸L上に誘導されて,ビーム集光位置へ移動される。集光点Fを形成する位置は,流路20の中心であることが好ましいが,流路20内であればビーム集光位置に粒子が誘導されるため,流路20内に集光点Fが形成されていればよい。ビーム集光位置の粒子は,最大の散乱強度でビーム光を散乱する。ビームウエストの幅は,例えば,1μm〜100μm,5μm〜80μm,10μm〜70μmである。   When the condensing point F is formed in the flow channel 20, the particles in the flow channel 20 are guided on the optical axis L by the light radiation pressure and moved to the beam condensing position. The position where the condensing point F is formed is preferably the center of the flow path 20, but if it is within the flow path 20, the particles are guided to the beam condensing position, so Should just be formed. The particles at the beam focusing position scatter the beam light with the maximum scattering intensity. The width of the beam waist is, for example, 1 μm to 100 μm, 5 μm to 80 μm, or 10 μm to 70 μm.

また,光源10とレンズ30の間に,光源10から照射された光の光径を広狭させる光径変更手段を有することとしてもよい。光径変更手段は,開口径が可変の開口板である。開口板の開口部の形状は円形となっている。光径変更手段は,例えば,アルミや銅,真鍮のような金属が用いられる。光径変更手段の開口径は,例えば,1mm〜50mm,1mm〜10mm,10mm〜30mmの開口径を有する。このように,開口径を変化させることによって光源10から照射された光の光径を広狭させる。これにより,流路20内に形成される集光点の径を制御することができる。従って,本粒径測定装置が測定可能な粒子の粒径の範囲を変えることができる。   Further, a light diameter changing means for widening or narrowing the light diameter of the light emitted from the light source 10 may be provided between the light source 10 and the lens 30. The light diameter changing means is an aperture plate with a variable aperture diameter. The shape of the opening of the opening plate is circular. As the light diameter changing means, for example, a metal such as aluminum, copper, or brass is used. The opening diameter of the light diameter changing means has, for example, opening diameters of 1 mm to 50 mm, 1 mm to 10 mm, and 10 mm to 30 mm. In this way, the diameter of the light emitted from the light source 10 is widened or narrowed by changing the aperture diameter. Thereby, the diameter of the condensing point formed in the flow path 20 can be controlled. Therefore, the range of the particle size of the particles that can be measured by the particle size measuring device can be changed.

集光系60は,流路20と検出器40の間に設けられた集光レンズである。集光系は,単一のレンズであってもよいし,複数の凸レンズや凹レンズを組み合わせた光学系であってもよい。集光系60は,流路20内の粒子によって散乱された光を適宜収斂させ,検出器40に照射する。   The condensing system 60 is a condensing lens provided between the flow path 20 and the detector 40. The condensing system may be a single lens or an optical system that combines a plurality of convex lenses and concave lenses. The condensing system 60 appropriately converges the light scattered by the particles in the flow path 20 and irradiates the detector 40.

検出器40は,光源10から照射される光の光軸L上に配置される。検出器40は,流路20に粒子群が存在しない場合には,光源10からの直接光が入射し,流路20に粒子群が存在する場合には,粒子によって散乱された光が入射する。光検出器40は,具体的には,光電変換素子を含み,光電変換素子は集光系60によって集光された光を電気信号に変換して算出手段に伝達する。光電変換素子は,流路20内の粒子の存在による散乱量に応じた前方の散乱強度の変化を検出することができる。この前方散乱強度は,粒子の粒径に応じて変化するため,光電変換素子の出力信号から粒子の粒径を計測することができる。この光電変換素子としては,一のフォトダイオードを用いることができる。   The detector 40 is disposed on the optical axis L of the light emitted from the light source 10. The detector 40 receives direct light from the light source 10 when there is no particle group in the flow path 20, and receives light scattered by the particles when there is a particle group in the flow path 20. . Specifically, the photodetector 40 includes a photoelectric conversion element, and the photoelectric conversion element converts the light collected by the light collection system 60 into an electric signal and transmits it to the calculation means. The photoelectric conversion element can detect a change in forward scattering intensity according to the amount of scattering due to the presence of particles in the flow path 20. Since the forward scattering intensity changes according to the particle size of the particle, the particle size of the particle can be measured from the output signal of the photoelectric conversion element. As this photoelectric conversion element, one photodiode can be used.

算出手段50は,検出器40により検出された前方散乱光の光強度に基づいて,流路20内の粒子群に含まれる粒子の粒径を算出するコンピュータである。このコンピュータは,光源10の光軸L上に設置した検出器40で検出した前方散乱光の光強度の情報を用いて,粒子の粒径を算出する。   The calculation means 50 is a computer that calculates the particle size of particles contained in the particle group in the flow channel 20 based on the light intensity of the forward scattered light detected by the detector 40. The computer calculates the particle size of the particles using information on the light intensity of the forward scattered light detected by the detector 40 installed on the optical axis L of the light source 10.

具体的に,算出手段50は,光強度のデータを一般化ローレンツ・ミー(GLM)理論に基づいて処理する。GLM理論は,単色集光レーザビームを均一媒質内にある1つの球体に入射させるときに発生する散乱場を表す。GLM理論に従うと,散乱平面内において入射光軸からの散乱角をθとした場合,散乱平面に垂直な偏光方向の散乱光強度関数i(θ)と,散乱平面に平行な偏光方向の散乱光強度関数i(θ)は,それぞれ以下の式によって求められる。 Specifically, the calculation means 50 processes the light intensity data based on the generalized Lorentz-Me (GLM) theory. The GLM theory represents a scattered field generated when a monochromatic focused laser beam is incident on one sphere in a uniform medium. According to the GLM theory, when the scattering angle from the incident optical axis is θ in the scattering plane, the scattered light intensity function i 1 (θ) in the polarization direction perpendicular to the scattering plane and the scattering in the polarization direction parallel to the scattering plane The light intensity function i 2 (θ) is obtained by the following formulas.

Figure 2012047648
Figure 2012047648

このように,算出手段50は,上記GLM理論に基づいて,散乱強度の粒径依存性を数値計算することにより,粒子の粒径を算出する。   Thus, the calculation means 50 calculates the particle size of the particles by numerically calculating the particle size dependence of the scattering intensity based on the GLM theory.

また,算出手段50は,散乱強度の計測によって得られた粒径に基づいて,粒子の質量を求めることとしてもよい。すなわち,ビーム内の位置に応じた粒子にかかる散乱力の変化によって,ビーム内での粒子の速度が変化することに鑑みれば,算出された粒子の粒径に基づいて,粒子にかかる散乱力をも算出することができる。この散乱力と周囲媒質の粘度を考慮すると,以下の方程式によって,粒子の質量を得ることができる。   Further, the calculation means 50 may obtain the mass of the particles based on the particle diameter obtained by measuring the scattering intensity. In other words, considering that the speed of the particles in the beam changes due to the change in the scattering force applied to the particles according to the position in the beam, the scattering force applied to the particles is calculated based on the calculated particle size. Can also be calculated. Considering this scattering force and the viscosity of the surrounding medium, the mass of the particles can be obtained by the following equation.

Figure 2012047648
Figure 2012047648

また,算出手段50は,上記計算によって算出した粒子の粒径及び質量に基づいて,粒子の密度を求めることとしてもよい。つまり,粒子が球形であると仮定した場合,粒径から粒子の体積を求め,体積と質量に基づいて粒子の密度を求めることができる。   Further, the calculating means 50 may obtain the particle density based on the particle diameter and mass of the particle calculated by the above calculation. That is, assuming that the particles are spherical, the volume of the particles can be obtained from the particle diameter, and the density of the particles can be obtained based on the volume and mass.

また,算出手段50は,検出器40が検出した粒子群が存在しない流路20内を透過した透過光の強度および粒子による前方散乱光の強度に基づいて,入射光と前方散乱光の強度比を算出する。   Further, the calculation means 50 calculates the intensity ratio between the incident light and the forward scattered light based on the intensity of the transmitted light that has passed through the flow path 20 where the particle group detected by the detector 40 does not exist and the intensity of the forward scattered light by the particles. Is calculated.

以下,本発明に係る粒体測定方法の実施例について説明する。図2は,粒体測定方法の実験系を示している。本実験系では,光源10にλ=514.5nmのArイオンレーザを用いた。光源10によって照射されたレーザ光は,レンズ30aを介して平行光となり,レンズ30bによって集光され,流路20内で集光点を形成した。このとき,集光ビームの集光点の径は5μmであった。なお,レンズ30aとレンズ30bの間には偏光子80を介在させた。また,本実験系では,集光ビームによる光放射圧を利用して,流路20内を流通している粒子を焦点位置に強制的に移動させ,粒子の前方散乱光を検出する。また,本実験系においては,図2に示すように,ビーム軸に垂直な方向にカメラ70を設置し,入射光による散乱体の焦光位置への移動とその位置での散乱の様子をモニタリングした。   Examples of the granular material measuring method according to the present invention will be described below. FIG. 2 shows an experimental system for the particle measurement method. In this experimental system, an Ar ion laser with λ = 514.5 nm was used as the light source 10. The laser light emitted from the light source 10 became parallel light through the lens 30 a and was condensed by the lens 30 b to form a condensing point in the flow path 20. At this time, the diameter of the focused point of the focused beam was 5 μm. A polarizer 80 is interposed between the lens 30a and the lens 30b. Further, in this experimental system, using the light radiation pressure by the focused beam, the particles flowing in the flow channel 20 are forcibly moved to the focal position, and the forward scattered light of the particles is detected. In this experimental system, as shown in FIG. 2, a camera 70 is installed in a direction perpendicular to the beam axis, and the movement of the scatterer to the focal position by incident light and the state of scattering at that position are monitored. did.

図3に,異なる5つの粒径サンプルによる実測値と,GLM散乱理論による理論値との比較を示す。図3に示すように,実測値が理論値に近似しており,実験値は理論値に対して非常に良い一致を得ることができた。さらに,図3は,焦点径が5μmのビーム系では,1μmから4μmまでの範囲の粒径に対して,値が一意に定まるものであることを示している。   FIG. 3 shows a comparison between the actually measured values of five different particle size samples and the theoretical values of the GLM scattering theory. As shown in FIG. 3, the actual measurement value approximated the theoretical value, and the experimental value obtained a very good agreement with the theoretical value. Further, FIG. 3 shows that in a beam system having a focal diameter of 5 μm, the value is uniquely determined for a particle diameter in the range of 1 μm to 4 μm.

また,図4は,カメラ70によって撮影された集光レーザビームによる粒子の移動と散乱の様子を示している。図4に示すように,レーザビームLにおける集光位置Wの近傍に粒子Pが移動させられ,強く光を散乱している様子がわかる。このように,本発明に係る粒径測定方法を用いることにより,非常に限定された領域への粒子の移動を可能にし,最大強度の前方散乱光を発生させることができた。   FIG. 4 shows the movement and scattering of particles by the focused laser beam photographed by the camera 70. As shown in FIG. 4, it can be seen that the particles P are moved in the vicinity of the condensing position W in the laser beam L, and the light is strongly scattered. As described above, by using the particle size measurement method according to the present invention, it is possible to move particles to a very limited region and generate forward scattered light with the maximum intensity.

Claims (8)

光を照射する光源(10)と,
粒子を含む粒子群が流通する流路(20)と,
前記流路(20)内の粒子を光の集光位置に誘導する粒子誘導手段(30)と,
前記光源(10)が照射した光の光軸上に配置され,前記流路(20)内の粒子群に含まれる粒子の存在によって生じる前方散乱光の強度を検出する検出器(40)と,
前記検出器(40)が検出した前方散乱光の強度に基づいて,前記粒子群に含まれる粒子の粒径を算出する算出手段(50)を含み,
前記粒子誘導手段(30)は,前記光源(10)と前記流路(20)の間に配置され,前記光源(10)が照射した光を集光し,前記流路(20)内に集光点を形成するレンズ(30)である
粒径測定装置。
A light source (10) that emits light;
A flow path (20) through which a group of particles including particles flows,
Particle guiding means (30) for guiding particles in the flow path (20) to a light collecting position;
A detector (40) disposed on the optical axis of the light irradiated by the light source (10) and detecting the intensity of forward scattered light caused by the presence of particles contained in the particles in the flow path (20);
Based on the intensity of the forward scattered light detected by the detector (40), including calculation means (50) for calculating the particle size of the particles included in the particle group,
The particle guiding means (30) is disposed between the light source (10) and the flow path (20), collects the light irradiated by the light source (10), and collects the light in the flow path (20). A particle size measuring device which is a lens (30) for forming a light spot.
さらに,
前記流路(20)と前記検出器(40)の間に配置され,記流路(20)内の粒子群に含まれる粒子の存在によって生じる前方散乱光を集光し,前記検出器(40)に照射する集光系(60)を有する
請求項1に記載の粒径測定装置。
further,
It is arranged between the flow path (20) and the detector (40), condenses forward scattered light caused by the presence of particles contained in the particle group in the flow path (20), and collects the detector (40 The particle size measuring device according to claim 1, further comprising a condensing system (60) that irradiates the light source.
前記レンズによって前記流路(20)内に形成された集光点の幅は,1μm以上100μm以下である
請求項1に記載の粒径測定装置。
The particle size measuring apparatus according to claim 1, wherein a width of a condensing point formed in the flow path (20) by the lens is 1 µm or more and 100 µm or less.
さらに,
前記光源(10)と前記レンズ(30)の間に,前記光源(10)から照射された光の光径を広狭させる光径変更手段を有する
請求項1に記載の粒径測定装置。
further,
The particle size measuring device according to claim 1, further comprising: a light diameter changing means for widening or narrowing a light diameter of light emitted from the light source (10) between the light source (10) and the lens (30).
前記算出手段(50)は,さらに,前記算出した粒子の粒径に基づいて,前記粒子の質量を算出する
請求項1に記載の粒径測定装置。
The particle size measuring device according to claim 1, wherein the calculating means (50) further calculates the mass of the particles based on the calculated particle size of the particles.
前記算出手段(50)は,さらに,前記算出した粒子の粒径及び質量に基づいて,前記粒子の質量を算出する。
請求項5に記載の粒径測定装置。
The calculation means (50) further calculates the mass of the particles based on the calculated particle size and mass of the particles.
The particle size measuring apparatus according to claim 5.
レンズ(30)によって,光源(10)からの光を集光して,粒子群が流通する流路(20)内に集光点を形成し,前記流路(20)内の粒子を光源の集光位置に誘導する工程と,
前記光源(10)が照射した光の光軸上に配置され検出器(40)によって,前記流路(20)内の粒子群に含まれる粒子の存在によって生じる前方散乱光の強度を検出する工程と,
算出手段(50)によって,前記検出器(40)が検出した前方散乱光の強度に基づいて,前記粒子群に含まれる粒子の粒径を算出する工程を含む
粒径測定方法。
The lens (30) condenses the light from the light source (10) to form a condensing point in the flow path (20) through which the particle group flows, and the particles in the flow path (20) A process of guiding to a condensing position;
The step of detecting the intensity of forward scattered light generated by the presence of particles contained in the particle group in the flow path (20) by the detector (40) arranged on the optical axis of the light irradiated by the light source (10). When,
A particle size measuring method comprising a step of calculating a particle size of particles contained in the particle group based on the intensity of forward scattered light detected by the detector (40) by a calculating means (50).
前記流路(20)内の粒子群に含まれる粒子の存在によって生じる回折光および前方散乱光の強度を検出する前に,
前記検出器(40)によって,前記光源(10)からの入射光が,前記粒子群が存在しない前記流路(20)内を透過した透過光の強度を検出する工程と,
前記算出手段(50)によって,前記検出器(40)が検出した透過光の強度に基づいて,前記前方散乱光の強度と前記透過光の強度の強度比を算出する工程を含む
請求項7に記載の粒径測定方法。


Before detecting the intensity of diffracted light and forward scattered light caused by the presence of particles contained in the particles in the flow path (20),
Detecting, by the detector (40), the intensity of transmitted light transmitted through the flow path (20) where the incident light from the light source (10) does not exist, and
The calculation means (50) includes a step of calculating an intensity ratio between the intensity of the forward scattered light and the intensity of the transmitted light based on the intensity of the transmitted light detected by the detector (40). The particle diameter measuring method as described.


JP2010191572A 2010-08-27 2010-08-27 Particle size measuring apparatus and particle size measuring method Active JP5662742B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010191572A JP5662742B2 (en) 2010-08-27 2010-08-27 Particle size measuring apparatus and particle size measuring method
CN201180041418.1A CN103069265B (en) 2010-08-27 2011-08-26 Particle diameter measurement device, and particle diameter measurement method
PCT/JP2011/069353 WO2012026600A1 (en) 2010-08-27 2011-08-26 Particle diameter measurement device, and particle diameter measurement method
HK13107489.8A HK1180394A1 (en) 2010-08-27 2013-06-26 Particle diameter measurement device, and particle diameter measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010191572A JP5662742B2 (en) 2010-08-27 2010-08-27 Particle size measuring apparatus and particle size measuring method

Publications (2)

Publication Number Publication Date
JP2012047648A true JP2012047648A (en) 2012-03-08
JP5662742B2 JP5662742B2 (en) 2015-02-04

Family

ID=45723589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010191572A Active JP5662742B2 (en) 2010-08-27 2010-08-27 Particle size measuring apparatus and particle size measuring method

Country Status (4)

Country Link
JP (1) JP5662742B2 (en)
CN (1) CN103069265B (en)
HK (1) HK1180394A1 (en)
WO (1) WO2012026600A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3353527B1 (en) 2015-09-23 2022-12-28 Malvern Panalytical Limited Particle characterisation
US11002655B2 (en) 2015-09-23 2021-05-11 Malvern Panalytical Limited Cuvette carrier
GB201604460D0 (en) 2016-03-16 2016-04-27 Malvern Instr Ltd Dynamic light scattering
EP3379232A1 (en) 2017-03-23 2018-09-26 Malvern Panalytical Limited Particle characterisation
CN107782645A (en) * 2017-12-12 2018-03-09 海宁智测光电科技有限公司 A kind of gas-solid rolling particles particle diameter on-line measurement apparatus and method
CN108444877B (en) * 2018-06-11 2024-02-23 浙江大学 Phase particle interference imaging method and device for measuring liquid drops
JPWO2021131578A1 (en) * 2019-12-27 2021-07-01

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153546A (en) * 1984-12-26 1986-07-12 Canon Inc Particle analyzer
JPH0213829A (en) * 1988-06-30 1990-01-18 Canon Inc Particle measuring apparatus
JPH046465A (en) * 1990-04-25 1992-01-10 Canon Inc Method for treating specimen and method and apparatus for measuring specimen
JPH04232442A (en) * 1990-07-02 1992-08-20 Internatl Business Mach Corp <Ibm> Particle classifying apparatus
JPH11352048A (en) * 1998-06-04 1999-12-24 Toray Eng Co Ltd Device for measuring fine particles in liquid
JP2000325729A (en) * 1999-05-21 2000-11-28 Yokogawa Electric Corp Fine particle concentrator and fine particle analyser using that
JP2007003474A (en) * 2005-06-27 2007-01-11 Mitsui Eng & Shipbuild Co Ltd Position control method of particles in sample liquid and particle measuring instrument

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1292628C (en) * 1986-02-12 1991-12-03 James Phinazee Sutton Iii In situ particle size measuring device
US5198369A (en) * 1990-04-25 1993-03-30 Canon Kabushiki Kaisha Sample measuring method using agglomeration reaction of microcarriers
CN2251721Y (en) * 1995-08-28 1997-04-09 周定益 Laser tester for investigating particle size

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61153546A (en) * 1984-12-26 1986-07-12 Canon Inc Particle analyzer
JPH0213829A (en) * 1988-06-30 1990-01-18 Canon Inc Particle measuring apparatus
JPH046465A (en) * 1990-04-25 1992-01-10 Canon Inc Method for treating specimen and method and apparatus for measuring specimen
JPH04232442A (en) * 1990-07-02 1992-08-20 Internatl Business Mach Corp <Ibm> Particle classifying apparatus
JPH11352048A (en) * 1998-06-04 1999-12-24 Toray Eng Co Ltd Device for measuring fine particles in liquid
JP2000325729A (en) * 1999-05-21 2000-11-28 Yokogawa Electric Corp Fine particle concentrator and fine particle analyser using that
JP2007003474A (en) * 2005-06-27 2007-01-11 Mitsui Eng & Shipbuild Co Ltd Position control method of particles in sample liquid and particle measuring instrument

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN7014002406; 岩井俊昭, 古西宏治, 石井勝弘, 井上久遠: '光の放射圧と自己組織化を利用した微粒子配列' レーザー研究 Vol.30 No.2, 20020215, Page.70-74 *
JPN7014002407; 山本条太郎, 岩井俊昭: '一般化ローレンツ・ミー理論を用いた時分割光ポテンシャルにおける微粒子動態解析' 応用物理学関係連合講演会講演予稿集 Vol.56th No.3, 20090330, 1089 *
JPN7014002408; 大森良太, 鈴木篤之: '一般化ローレンツ・ミー理論による核燃料粒子に作用するレーザー光放射圧の解析 三次元的光トラッピングの' 日本原子力学会春の年会要旨集 Vol.35th, 199703, 第3分冊, 485 *
JPN7014002409; 大森良太, 鈴木篤之: 'UO2 粉末に作用する炭酸ガスレーザー光の光放射圧の解析' 日本原子力学会秋の大会予稿集 Vol.1998, 199809, 第3分冊, 601 *

Also Published As

Publication number Publication date
HK1180394A1 (en) 2013-10-18
CN103069265B (en) 2015-05-27
CN103069265A (en) 2013-04-24
WO2012026600A1 (en) 2012-03-01
JP5662742B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5662742B2 (en) Particle size measuring apparatus and particle size measuring method
JP5381741B2 (en) Optical measuring apparatus and optical measuring method
US10670522B2 (en) Micro object detection apparatus
JP3412606B2 (en) Laser diffraction / scattering particle size distribution analyzer
KR101857950B1 (en) High accuracy real-time particle counter
CN109477783B (en) Method for determining the average particle size of particles suspended in liquids and flowing media by means of dynamic light scattering and device therefor
WO2021132017A1 (en) Particle measurement device
CN108956402B (en) High-sensitivity dust concentration detection method with composite multi-photosensitive-area structure
JP2017530347A5 (en)
JP2021517963A (en) Particle sizing improved by light diffraction
US7362421B2 (en) Analysis of signal oscillation patterns
JPH0843292A (en) Detector for measuring luminous intensity of scattered lightwith thin film of colloid-state medium
CN110823786A (en) Device and method for detecting tiny particles in liquid
JPH0749302A (en) Method and apparatus of measuring particle size of microparticle in fluid
JP4716055B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP2001021480A (en) Flow cell and particle measuring apparatus using the flow cell
JP2021503608A (en) Optical flow cytometer for epifluorescence measurement
JP3531557B2 (en) Laser diffraction / scattering particle size distribution analyzer
JP3528359B2 (en) Laser diffraction / scattering particle size distribution analyzer
US20210396645A1 (en) Analyzer and Analysis Method
JPH02193041A (en) Particle size distribution apparatus
CN211206179U (en) Detection apparatus for tiny granule in liquid
KR101836674B1 (en) Muti­axis laser Doppler velocimeter for fluid velocity visualization
JPS60161548A (en) Apparatus for measuring scattered light of flowing fine particulate material
Vámos et al. Particle sizing by photon correlation laser Doppler anemometer in the submicron/nanometer size range

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141205

R150 Certificate of patent or registration of utility model

Ref document number: 5662742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250