JPS62245942A - Particle analyzer - Google Patents

Particle analyzer

Info

Publication number
JPS62245942A
JPS62245942A JP61090883A JP9088386A JPS62245942A JP S62245942 A JPS62245942 A JP S62245942A JP 61090883 A JP61090883 A JP 61090883A JP 9088386 A JP9088386 A JP 9088386A JP S62245942 A JPS62245942 A JP S62245942A
Authority
JP
Japan
Prior art keywords
light
flow cell
photodetector
flow
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61090883A
Other languages
Japanese (ja)
Inventor
Yuji Ito
勇二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61090883A priority Critical patent/JPS62245942A/en
Publication of JPS62245942A publication Critical patent/JPS62245942A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To securely adjust an optical axis by enabling a photodetector to detect the projection image of light with which a flow cell is irradiated. CONSTITUTION:A laser beam L converged on the distribution part 1a of the flow cell 1 through an image forming lens 3 is incident on the photodetector 6 through a condenser lens 4 to obtain information on the size of a particle to be analyzed. Then, 90 deg. scattered light and fluorescent light from the objective particle pass through a condenser lens 7 and are made into parallel light by a condenser lens 10 and the parallel light is reflected by dichroic mirrors 11 and 12 and a reflecting mirror 13 and then incident on photodetectors 16, 18, and 20 through condenser lenses 15, 17, and 19 to obtain information on the shape of the objective particle. When the flow cell 1 is replaced and when a sample flow does not run in the center of the flow cell 1, alignment needs to be performed. Namely, the flow cell 1 is lighted by a lighting optical system composed of a light source 23, a slit 22, etc., while the beam L is cut off and the image of the sample flow is projected on the detector 14 through a lens 7 and a mirror 8, so that the optical axis is adjusted securely by using the projection pattern.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フローサイトメータ等において、フローセル
と測光光学系との7ライメントを正確に実施し得る粒子
解析装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a particle analysis device that can accurately perform 7-alignment between a flow cell and a photometric optical system in a flow cytometer or the like.

[従来の技術] フローサイトメータ等に用いられる従来の粒子解析装置
では、フローセルの中央部の例えば200 JLmX 
200 pmの微少な断面を有する流通部内を、シース
液に包まれて通過する検体粒子に照射光を照射し、その
結果生ずる前方及び側方散乱光により、検体粒子の形状
・大きさ・屈折率等の粒子的性質を得ることが可能であ
る。
[Prior Art] In a conventional particle analysis device used in a flow cytometer or the like, a particle size of 200 JLmX in the center of a flow cell, for example, is
Irradiation light is irradiated onto specimen particles passing through a flow section with a minute cross section of 200 pm while being wrapped in sheath liquid, and the resulting forward and side scattered light is used to determine the shape, size, and refractive index of the specimen particles. It is possible to obtain particle-like properties such as

従来の装置における光軸の調整は、検体粒子を含むサン
プル液をシース液と共に流すことにより、その散乱光成
いは蛍光の信号を観察しながら行っている。従って、そ
のアライメント状態が判然としない欠点がある。
Adjustment of the optical axis in conventional devices is performed by flowing a sample liquid containing analyte particles together with a sheath liquid while observing the scattered light and fluorescence signals. Therefore, there is a drawback that the alignment state is not clear.

[発明の目的] 本発明の目的は、上述の従来例の欠点を除去し、視覚的
にモニタ上に表示されたアライメント状態、或いは投影
パターンを観察することにより確実な光軸調整を可能に
する粒子解析装置を提供することにある。
[Object of the Invention] An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional example and to enable reliable optical axis adjustment by visually observing the alignment state or projection pattern displayed on a monitor. The purpose of the present invention is to provide a particle analysis device.

[発明の概要] 上述の目的を達成するための本発明の要旨は、流体中の
検体粒子に光を第1の方向から照射し、得られる散乱光
・蛍光を測光用対物レンズを介して測光して、検体粒子
の解析を行う装置において、検体粒子を前記第1の方向
と直交する第2のう 方向?徽射する光学系と、前記第2の方向から照射され
た検体粒子の投影像を前記測光用対物レンズを通過後に
光分割器を介して分割型光検出器に形成する光学系とを
有することを特徴とする粒子解析装置である。
[Summary of the Invention] The gist of the present invention for achieving the above-mentioned object is to irradiate sample particles in a fluid with light from a first direction, and photometrically measure the obtained scattered light and fluorescence through a photometric objective lens. In the apparatus for analyzing sample particles, the sample particles are moved in a second direction perpendicular to the first direction. and an optical system that forms a projected image of the sample particles irradiated from the second direction on a split-type photodetector via a light splitter after passing through the photometric objective lens. This is a particle analysis device featuring:

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図は光学系の構成図である。フローセル1の流通部
la内を高速層流となったシース液に包まれて、流体力
学的焦点合わせが行われたサンプル液が通過し、この流
れと直交する方向にレーザー光源2が配置されている。
FIG. 1 is a block diagram of the optical system. A sample liquid, which has been hydrodynamically focused and is surrounded by a sheath liquid in a high-speed laminar flow, passes through the flow section la of the flow cell 1, and a laser light source 2 is arranged in a direction perpendicular to this flow. There is.

このレーザー光源2から照射されたレーザービームLを
流通部1aに導くために、光軸O1上に結像レンズ3が
配置されており、更に検体粒子からの前方散乱光を11
111定するために、フローセルlを挟んで結像レンズ
3と反対側の光軸01上にストッパ4、集光レンズ5、
光検出器6が順次に配列されている。
In order to guide the laser beam L irradiated from the laser light source 2 to the circulation part 1a, an imaging lens 3 is arranged on the optical axis O1, and furthermore, an imaging lens 3 is arranged on the optical axis O1 to guide the laser beam L emitted from the laser light source 2 to the circulation part 1a.
111, a stopper 4, a condensing lens 5,
Photodetectors 6 are arranged in sequence.

また、検体粒子の流れの方向と光軸01にそれぞれ直交
する方向である光軸o2上に、フローセルl側から集光
レンズ7、光分割ミラー8、絞り9、集光レンズ10.
波長選択特性を有するグイクロイックミラー11.12
及び反射ミラー13が順次に配列されている。光分割ミ
ラー8の反射側の絞り9と共役な位置には、所謂CCD
等の分割型光検出器14が配置されている。また、グイ
クロイックミラー10の反射方向には集光レンズ15、
光検出器16が、グイクロイックミラー12の反射方向
には集光レンズ17.光検出器18が、更に反射ミラー
13の反射方向には集光レンズ19.光検出器2oが配
列されている。そして、光軸02上におけるフローセル
1を挟んだ集光レンズ7の反対側には、集光レンズ21
、スリット22、光源23が配置されている。
Further, on the optical axis o2, which is a direction perpendicular to the flow direction of the sample particles and the optical axis 01, from the flow cell l side, a condenser lens 7, a light splitting mirror 8, an aperture 9, a condenser lens 10.
Guicroic mirror with wavelength selective characteristics 11.12
and reflective mirrors 13 are arranged in sequence. At a position conjugate with the aperture 9 on the reflection side of the light splitting mirror 8, there is a so-called CCD.
A split type photodetector 14 such as the like is arranged. In addition, in the reflection direction of the gicroic mirror 10, a condenser lens 15,
A photodetector 16 is provided with a condenser lens 17 in the reflection direction of the gicroic mirror 12. The photodetector 18 further includes a condenser lens 19 in the reflection direction of the reflection mirror 13. Photodetectors 2o are arranged. A condenser lens 21 is located on the optical axis 02 on the opposite side of the condenser lens 7 across the flow cell 1.
, a slit 22, and a light source 23 are arranged.

結像レンズ3を介してフローセルlの流通部laに集光
されたレーザービームLは検体粒子によって散乱され、
その前方散乱光は集光レンズ4を介して光検出器6に入
射し、主に検体粒子の大きさに関する情報が得られる。
The laser beam L focused on the flow section la of the flow cell l via the imaging lens 3 is scattered by the sample particles,
The forward scattered light enters the photodetector 6 via the condenser lens 4, and information mainly regarding the size of the sample particles is obtained.

また、検体粒子からの90’散乱光及び蛍光は、集光レ
ンズ7を経て集光レンズ10により平行光とされ、例え
ば検体粒子の性状によってそれぞれの波長領域光ごとに
グイクロイックミラー11.12及び反射ミラー13で
反射され、それぞれ集光レンズ15.17.19を介シ
テ光検出器16.18.2oに入射し、主に検体粒子の
形状に関する情報が得られる。なお、図面には省略しで
あるが各光検出器16.18.20の前にはバリアフィ
ルタを設けて、波長望域光を選択的に通過させることが
よく行われる。
In addition, the 90' scattered light and fluorescence from the sample particles are converted into parallel light by the condenser lens 10 through the condenser lens 7, and the 90' scattered light and fluorescence from the sample particles are converted into parallel light by the condenser lens 10. The light is reflected by the reflecting mirror 13, and enters the photodetector 16, 18, 2o through the condensing lens 15, 17, 19, respectively, and information mainly regarding the shape of the sample particle is obtained. Although not shown in the drawings, barrier filters are often provided in front of each photodetector 16, 18, and 20 to selectively pass light in the desired wavelength range.

側方に側方散乱光・蛍光を取り出すための光学系におい
ては、サンプル流と絞り9は光学的に共役な関係にある
ことが望ましい、それは、検体粒子以外の蛍光等を拾わ
ないためにも重要である。
In an optical system for extracting side-scattered light and fluorescence, it is desirable that the sample flow and the aperture 9 have an optically conjugate relationship, in order to avoid picking up fluorescence, etc. other than the sample particles. is important.

従って、フローセル1を交換した場合や、サンプル流が
必ずしもフローセルlの中心を流れていない場合には、
上述の共役関係を満足するための7ライメントを行う必
要が生ずる。
Therefore, when flow cell 1 is replaced or when the sample flow does not necessarily flow through the center of flow cell 1,
It becomes necessary to perform 7 alignments to satisfy the above-mentioned conjugate relationship.

このアライメントを行うためには、レーザー光源lから
のレーザービームLをカットした状態で、光源23、ス
リット22、集光レンズ21から成る照明光学系によっ
てフローセルlを照明し、集光レンズ7、光分割ミラー
8を用いて分割型光検出器14ヘサンプル流を投影する
In order to perform this alignment, the flow cell l is illuminated by an illumination optical system consisting of a light source 23, a slit 22, and a condensing lens 21 while the laser beam L from the laser light source l is cut. The sample stream is projected onto the split photodetector 14 using the split mirror 8 .

第2図はフローセルlと分割型光検出器14の相対的な
関係を示し、分割型光検出器14上には流通部1aの内
壁1bとサンプル流Sが投影される。いま、サンプル流
Sが光源23の光を吸収する性質を有していれば、第3
図に示すような分布の出力信号波形が得られ、その中央
部にはサンプル流Sの吸収帯Bが現われる。予め、分割
型光検出器14の成るビット位mNと絞り9が光学的に
一致するようにしておけば、70−セル1と側方散乱φ
蛍光光学系を相対的に動かすことにより、ビット位1α
Nの位置で第3図に示すような信号波形が極値をとるよ
うに合わせることによりアライメントを行うことができ
る。
FIG. 2 shows the relative relationship between the flow cell I and the split-type photodetector 14, on which the inner wall 1b of the flow section 1a and the sample flow S are projected. Now, if the sample flow S has the property of absorbing the light from the light source 23, then the third
An output signal waveform having a distribution as shown in the figure is obtained, and an absorption band B of the sample flow S appears in the center thereof. If the bit position mN of the split photodetector 14 and the aperture 9 are made to match optically in advance, 70-cell 1 and side scattering φ
By relatively moving the fluorescence optical system, bit position 1α
Alignment can be performed by aligning so that the signal waveform as shown in FIG. 3 takes an extreme value at position N.

この場合に、光源23の波長領域を赤外光として、光分
割ミラー8はこの波長領域光を分割型光検出器14の方
へ反射し、慴域外の光を通すグイクロイックミラーとす
れば、レーザービームLをカットせずに測光と観察を同
時に効率的に行うことができる・ [発明の効果] 以上説明したように本発明に係る粒子解析装置は、フロ
ーセルに照射した光による投影像を光検出器で把えるこ
とにより、アライメント状態を容易に観察し得るので、
アライメン]・を)It!’t ’liに実施すること
ができる。
In this case, if the wavelength range of the light source 23 is infrared light, the light splitting mirror 8 is a gicchroic mirror that reflects this wavelength range light toward the splitting type photodetector 14 and passes light outside the wavelength range. , photometry and observation can be performed efficiently at the same time without cutting the laser beam L. [Effects of the Invention] As explained above, the particle analysis device according to the present invention can generate a projected image by light irradiated onto the flow cell. The alignment status can be easily observed by detecting it with a photodetector.
Alignment] It! 't'li can be implemented.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る粒子解析装置の実施例を示すもので
あり、第1図は光学的構成図、第2図はブローセルと分
割型光検出器との関係図、第3図は分割型光検出器から
の出力信号波形図である。 符号lはフローセル、1aは流通部、2はレーザー光源
、3は結像レンズ、5.7.10.21は集光レンズ、
6は光検出器、8は光分割ミラー、9は絞り、11.1
2はグイクロイックミラー、13は反射ミラー、14は
分割型光検出器、1B、18.20は光検出器、22は
スリット、23は光源である。
The drawings show an embodiment of the particle analysis device according to the present invention, and FIG. 1 is an optical configuration diagram, FIG. 2 is a relationship diagram between a blow cell and a split-type photodetector, and FIG. 3 is a split-type photodetector. FIG. 3 is a waveform diagram of an output signal from a detector. Symbol l is a flow cell, 1a is a flow section, 2 is a laser light source, 3 is an imaging lens, 5.7.10.21 is a condensing lens,
6 is a photodetector, 8 is a light splitting mirror, 9 is an aperture, 11.1
2 is a guichroic mirror, 13 is a reflecting mirror, 14 is a split type photodetector, 1B, 18.20 is a photodetector, 22 is a slit, and 23 is a light source.

Claims (1)

【特許請求の範囲】 1、流体中の検体粒子に光を第1の方向から照射し、得
られる散乱光・蛍光を測光用対物レンズを介して測光し
て、検体粒子の解析を行う装置において、検体粒子を前
記第1の方向と直交する第2の方向から照射する光学系
と、前記第2の方向から照射された検体粒子の投影像を
前記測光用対物レンズを通過後に光分割器を介して分割
型光検出器に形成する光学系とを有することを特徴とす
る粒子解析装置。 2、前記光分割器は測光波長領域外の光を前記分割型光
検出器に導くようにした特許請求の範囲第1項に記載の
粒子解析装置。 3、前記測光用対物レンズに関して、検体粒子と共役な
位置に絞りを配置し、該絞りと前記分割型光検出器は光
学的に前記光分割器を介して等価な位置に配置するよう
にした特許請求の範囲第1項に記載の粒子解析装置。
[Claims] 1. In an apparatus for analyzing sample particles by irradiating light onto sample particles in a fluid from a first direction and measuring the resulting scattered light and fluorescence through a photometric objective lens. an optical system that irradiates the sample particles from a second direction orthogonal to the first direction; and a light splitter after the projected image of the sample particles irradiated from the second direction passes through the photometric objective lens. 1. A particle analysis device comprising: an optical system formed into a split type photodetector via a split type photodetector. 2. The particle analysis device according to claim 1, wherein the light splitter guides light outside the photometric wavelength range to the split type photodetector. 3. Regarding the photometric objective lens, a diaphragm is arranged at a position conjugate with the sample particles, and the diaphragm and the split-type photodetector are arranged at optically equivalent positions via the light splitter. A particle analysis device according to claim 1.
JP61090883A 1986-04-18 1986-04-18 Particle analyzer Pending JPS62245942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61090883A JPS62245942A (en) 1986-04-18 1986-04-18 Particle analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61090883A JPS62245942A (en) 1986-04-18 1986-04-18 Particle analyzer

Publications (1)

Publication Number Publication Date
JPS62245942A true JPS62245942A (en) 1987-10-27

Family

ID=14010836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61090883A Pending JPS62245942A (en) 1986-04-18 1986-04-18 Particle analyzer

Country Status (1)

Country Link
JP (1) JPS62245942A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028730A (en) * 1988-06-27 1990-01-12 Nippon Tectron Co Ltd Fluorescence measuring apparatus
US5684575A (en) * 1993-03-18 1997-11-04 Steen; Harald Optical arrangement for flow cytometer to facilitate large angle light-scattering measurement
WO2004038350A1 (en) * 2002-10-25 2004-05-06 Arkray, Inc. Light source unit, light-receiving unit, and multichannel optical sensing apparatus using those

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH028730A (en) * 1988-06-27 1990-01-12 Nippon Tectron Co Ltd Fluorescence measuring apparatus
US5684575A (en) * 1993-03-18 1997-11-04 Steen; Harald Optical arrangement for flow cytometer to facilitate large angle light-scattering measurement
WO2004038350A1 (en) * 2002-10-25 2004-05-06 Arkray, Inc. Light source unit, light-receiving unit, and multichannel optical sensing apparatus using those
JPWO2004038350A1 (en) * 2002-10-25 2006-02-23 アークレイ株式会社 Light source unit, light receiving unit, and multi-channel photodetection device using them
US7304723B2 (en) 2002-10-25 2007-12-04 Arkray, Inc. Light source unit, photoreceptive unit and multichannel photodetector using the same
JP4665097B2 (en) * 2002-10-25 2011-04-06 アークレイ株式会社 Light source unit, light receiving unit, and multi-channel photodetection device using them

Similar Documents

Publication Publication Date Title
JP4817442B2 (en) Optical system for particle analyzer and particle analyzer using the same
US4690561A (en) Particle analyzing apparatus
US4896961A (en) Particle analyzing apparatus
JPH05340865A (en) Measuring instrument
JPS61280548A (en) Apparatus for analyzing particle
JPH0224535A (en) Particle analyzing apparatus
JPS62245942A (en) Particle analyzer
JP4262380B2 (en) Light intensity measuring device
JPH03154850A (en) Specimen inspecting device
JPS63201554A (en) Particle analyzing device
JPS61167838A (en) Particle analyzer
JPS61294335A (en) Particle analyzer
JPH01270644A (en) Particle analyser
JPH10153561A (en) Photothermal transduction spectral analyzer
JPS6244649A (en) Particle analyzing device
JPS61294334A (en) Particle analyzer
JPH03128434A (en) Particle measuring instrument
JPH07199075A (en) Scanning type laser microscopic device
JPH03197841A (en) Inspection device for body to be inspected
JPH01240839A (en) Particle analyser
JPH0552896B2 (en)
JP5394718B2 (en) Microscopic observation equipment
JPS61165639A (en) Particle analyser
JPS6396537A (en) Grain analyzer
JPS6291836A (en) Particle analyzing device