JPH03197841A - Inspection device for body to be inspected - Google Patents

Inspection device for body to be inspected

Info

Publication number
JPH03197841A
JPH03197841A JP1337623A JP33762389A JPH03197841A JP H03197841 A JPH03197841 A JP H03197841A JP 1337623 A JP1337623 A JP 1337623A JP 33762389 A JP33762389 A JP 33762389A JP H03197841 A JPH03197841 A JP H03197841A
Authority
JP
Japan
Prior art keywords
optical system
lens
light
light source
flow cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1337623A
Other languages
Japanese (ja)
Inventor
Moritoshi Miyamoto
守敏 宮本
Yuji Ito
勇二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1337623A priority Critical patent/JPH03197841A/en
Publication of JPH03197841A publication Critical patent/JPH03197841A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the optical axis adjustment of an optical system and to reduce the size of the device by coupling at least parts of an illumination optical system and a photodetection optical system with each other integrally by a coupling member. CONSTITUTION:A laser light source 21, a projection port 21a, a flow cell 23, cylindrical lenses 22 and 24 (arranged coaxially with each other), and objective lenses 26 and 27 (lens 27 provided at right angles to a laser beam made incident on the cell 23) are fixed mutually by the coupling part 28 made of brass, etc., having a small coefficient of thermal expansion. The laser beam projected on the optical axis 01 from the projection port 21a of the light source 21 passes through the lenses 22 and 24 to irradiate particles to be inspected which flow in the distribution part 23a in the cell 23 as an elliptic spot. The forward scattered light which is generated at this time is photodetected by a photodetector through a stopper 25 and the lens 26. The sideward scattered light and fluorescent light are photodetected by a photodetector through the lens 27 on the optical axis 02. Thus, the optical axes 01 and 02 need not be adjusted at all after the assembly and the device is reduced in size on the whole.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、例えばフローサイトメータのように、被検粒
子にレーザービーム等を照射し、散乱光又は蛍光を検出
して被検粒子の性質・構造等を解析する検体検査装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention is applicable to a flow cytometer, for example, in which a laser beam or the like is irradiated onto a test particle, and scattered light or fluorescence is detected to determine the properties of the test particle. -Related to specimen testing equipment that analyzes structure, etc.

[従来の技術] フローサイトメータとは、高速で流れる細胞浮遊溶液、
即ちサンプル液に例えばレーザービームを照射し、その
散乱光・蛍光による光電信号を検出し、細胞の性質・構
造を解明する装置であり、細胞化学、免疫学、血液学、
腫瘍学、遺伝学等の分野で使用されている。
[Conventional technology] A flow cytometer is a cell suspension solution that flows at high speed.
In other words, it is a device that elucidates the properties and structure of cells by irradiating a sample liquid with, for example, a laser beam and detecting the photoelectric signals generated by the scattered light and fluorescence.
It is used in fields such as oncology and genetics.

このフローサイトメータ等に用いられる従来の粒子解析
装置では、フローセルの中央部の例えば2001mX2
00μmの微小な四角形断面を有する流通部内を、シー
ス液に包まれて通過する血球細胞などの被検粒子にレー
ザービーム等の照射光を照射し、その結果として生ずる
前方及び側方散乱光により、被検粒子の形状・大きさ・
屈折率等の粒子的性質を得ることが可能である。また、
蛍光剤により染色され得る被検粒子に対しては、照射光
とほぼ直角方向の側方散乱光から被検粒子の蛍光を検出
することにより、被検粒子を解析するための重要な情報
を求めることができる。
In the conventional particle analysis device used in this flow cytometer, etc., the central part of the flow cell is, for example, 2001 m
A laser beam or other light is irradiated onto test particles, such as blood cells, passing through a flow section with a minute rectangular cross section of 00 μm while being wrapped in a sheath fluid, and the resulting forward and side scattered light is used to Shape/size/
It is possible to obtain particle-like properties such as refractive index. Also,
For test particles that can be stained with a fluorescent agent, important information for analyzing the test particles is obtained by detecting the fluorescence of the test particles from side scattered light in a direction almost perpendicular to the irradiation light. be able to.

第2図は従来例を示し、レーザー光源1の光軸01上に
は照射光学系の結像レンズ2、光軸O1と直交方向に流
通部3aを有するフローセル3、ストッパ4、前方散乱
光受光光学系の集光レンズ5、光検出器6が順次に配列
され、また光軸D1及び流通部3aとそれぞれ直交する
光軸02上には、側方散乱光及び蛍光受光光学系として
フローセル3側から集光レンズ7、ダイクロイックミラ
ー8.9が設けられ、反射光路上にはレンズ11、フィ
ルタ12、光検出器13が設けられ、ダイクロイックミ
ラー9の反射光路上にはレンズ14、フィルタ15、光
検出器16が配列され、反射鏡10の反射光路上にはレ
ンズ17、フィルタ18、光検出器19がそれぞれ配列
されている。
FIG. 2 shows a conventional example. On the optical axis 01 of the laser light source 1, there is an imaging lens 2 of the irradiation optical system, a flow cell 3 having a flow section 3a orthogonal to the optical axis O1, a stopper 4, and a forward scattered light receiver. A condenser lens 5 and a photodetector 6 of the optical system are arranged in sequence, and on the optical axis 02 perpendicular to the optical axis D1 and the flow section 3a, there is a side scattering light receiving optical system and a fluorescence receiving optical system on the flow cell 3 side. A condensing lens 7 and a dichroic mirror 8.9 are provided, a lens 11, a filter 12, and a photodetector 13 are provided on the reflected optical path, and a lens 14, a filter 15, and a light detector are provided on the reflected optical path of the dichroic mirror 9. A detector 16 is arranged, and a lens 17, a filter 18, and a photodetector 19 are arranged on the reflected optical path of the reflecting mirror 10, respectively.

レーザー光源1から出射されたレーザービームは結像レ
ンズ2を経て収斂し、フローセル3の流通部3aを流れ
るサンプル液を照射する。このとき、サンプル液中を1
列になって流れる被検粒子にレーザービームが照射され
、散乱光及び蛍光が生ずる。前方散乱光は集光レンズ5
により集光され光検出器6で受光されるが、この際に被
検粒子により散乱されずにそのまま透過した強力なレー
ザービームはストッパ4により遮断される。
A laser beam emitted from a laser light source 1 is converged through an imaging lens 2, and irradiates a sample liquid flowing through a flow section 3a of a flow cell 3. At this time, 1
A laser beam is irradiated onto the particles to be detected flowing in a line, producing scattered light and fluorescence. Forward scattered light is collected by condensing lens 5
The light is focused by the laser beam and is received by the photodetector 6, but at this time, the strong laser beam that is transmitted without being scattered by the particles to be detected is blocked by the stopper 4.

方、側方教乱光及び蛍光は集光レンズ7により集光され
、側方散乱光はダイクロイックミラー8で反射され、レ
ンズ11、フィルタ12を経て光検出器13で受光され
、緑色蛍光はダイクロイックミラー9で反射され、レン
ズ14、フィルタ15を経て光検出器16で受光され、
また赤色蛍光は反射鏡10で反射され、レンズ17、フ
ィルタ18を経て光検出器19で受光される。更に、こ
れら光検出器13.16.19の出力により粒子解析の
演算がなされる。
On the other hand, side scattered light and fluorescence are collected by a condenser lens 7, side scattered light is reflected by a dichroic mirror 8, passes through a lens 11 and a filter 12, and is received by a photodetector 13, and green fluorescence is collected by a dichroic mirror. The light is reflected by the mirror 9, passes through the lens 14 and the filter 15, and is received by the photodetector 16.
Further, the red fluorescent light is reflected by a reflecting mirror 10, passes through a lens 17 and a filter 18, and is received by a photodetector 19. Furthermore, calculations for particle analysis are performed based on the outputs of these photodetectors 13, 16, and 19.

[発明が解決しようとする課題] しかしながら、上述の従来例においては、レーザー光源
1、照射光学系の結像レンズ2、集光レンズ7等の受光
光学系を独立に配置しているため、これらの光軸を一致
させる調節が複雑かつ困難であり、装置も大型化する。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional example, the laser light source 1, the imaging lens 2 of the irradiation optical system, the light receiving optical system such as the condensing lens 7, etc. are arranged independently. Adjustment to align the optical axes of the two is complicated and difficult, and the equipment also becomes larger.

本発明の目的は、上述の欠点を解消し、光学系の光軸調
整が容易にでき、小型化が実現できる検体検査装置を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sample testing device that eliminates the above-mentioned drawbacks, allows easy adjustment of the optical axis of an optical system, and can be downsized.

[課題を解決するための手段1 上述の目的を達成するために、本発明に係る検体検査装
置においては、流体中の検体粒子に光ビームを照射し得
られる光学信号から検体粒子の解析を行う検体検査装置
において、検体粒子が通過するフローセル部と、前記光
ビームを出射する光源部と、該光源部から出射される前
記光ビームを前記フローセル部に照射する照射光学系と
、前記光学信号を受光する受光光学系とを有し、前記照
射光学系と前記受光光学系の少な(とも一部同志を結合
部材によって一体的に結合したことを特徴とするもので
ある。
[Means for Solving the Problems 1] In order to achieve the above-mentioned object, the specimen testing device according to the present invention analyzes specimen particles from an optical signal obtained by irradiating specimen particles in a fluid with a light beam. The sample testing device includes a flow cell section through which sample particles pass, a light source section that emits the light beam, an irradiation optical system that irradiates the flow cell section with the light beam emitted from the light source section, and an irradiation optical system that emits the light beam emitted from the light source section. It has a light receiving optical system for receiving light, and is characterized in that a portion of the irradiation optical system and the light receiving optical system are integrally coupled by a coupling member.

[イ′tミ用] 上述の構成を有する検体検査装置は、光ビームを照射光
学系を介してフローセル部に照射し、照射光学系と一体
化された受光光学系により得られた光学信号から検体粒
子の解析を行う。
[For I't Mi] The sample testing device having the above-mentioned configuration irradiates the flow cell section with a light beam through the irradiation optical system, and detects an optical signal from the optical signal obtained by the light receiving optical system integrated with the irradiation optical system. Analyze the sample particles.

[実施例] 本発明を第1図に図示の実施例に基づいて詳細に説明す
る。
[Example] The present invention will be explained in detail based on the example illustrated in FIG.

第1図は実施例の要部拡大図であり、レーザー光源21
の出射口21aの前方に照射光学系のシリンドリカルレ
ンズ22が設けられている。また、フローセル23のレ
ーザー光源21側の側面には、シリンドリカルレンズ2
2と同軸にシリンドリカルレンズ24が取り付けられ、
反対側の前方散乱光受光光学系側にはスットバ25を挟
み、前方散乱光受光用対物レンズ26が取り付けられて
いる。更に、フローセル23に入射するレーザービーム
の方向と直交する方向の側面には、側方散乱光及び蛍光
受光用対物レンズ27が取り付けられている。そして、
これらのレーザー光源21、出射口21a、フローセル
23、シンドリカルレンズ22.24、対物レンズ26
.27は結合部材28によって固定されている。
FIG. 1 is an enlarged view of the main part of the embodiment, and shows the laser light source 21.
A cylindrical lens 22 of the irradiation optical system is provided in front of the exit port 21a. Further, a cylindrical lens 2 is provided on the side surface of the flow cell 23 on the laser light source 21 side.
A cylindrical lens 24 is attached coaxially with 2,
On the opposite side of the forward scattered light receiving optical system side, a forward scattered light receiving objective lens 26 is attached with the stop bar 25 in between. Further, an objective lens 27 for receiving side scattered light and fluorescence is attached to the side surface in a direction perpendicular to the direction of the laser beam incident on the flow cell 23. and,
These laser light source 21, exit aperture 21a, flow cell 23, sindrical lens 22, 24, objective lens 26
.. 27 is fixed by a coupling member 28.

レーザー光源21の出射口21aから光軸O1上に出射
されたレーザービームは、シリンドリカルレンズ22.
24を介して径が100gmX5μm程度の楕円形状ス
ポットとして、フローセル23内の流通部23aを流れ
る被検粒子を照射し、従来例と同様にその際に発生した
前方散乱光はスットパ25、対物レンズ26を介して図
示しない光検出器で受光される。一方、側方散乱光及び
蛍光は光軸02上の対物レンズ27を介して図示しない
光検出器で受光される。
The laser beam emitted from the exit aperture 21a of the laser light source 21 onto the optical axis O1 passes through the cylindrical lens 22.
The test particles flowing through the flow section 23a in the flow cell 23 are irradiated as an elliptical spot with a diameter of about 100 gm x 5 μm through the stopper 24 and the objective lens 26, as in the conventional example. The light is received by a photodetector (not shown). On the other hand, the side scattered light and fluorescence are received by a photodetector (not shown) via the objective lens 27 on the optical axis 02.

本実施例においては、フローセル23の周囲の光学部材
が、例えば熱膨張率が小さい真鋳等から成る結合部材2
8によって相互に固定されているので、組立後における
光軸O1,02の調整は全く不要となり、装置全体も小
型化される。
In this embodiment, the optical member around the flow cell 23 is a coupling member 2 made of brass or the like having a small coefficient of thermal expansion, for example.
Since the optical axes O1 and O2 are fixed to each other by 8, there is no need to adjust the optical axes O1 and 02 after assembly, and the entire device can be miniaturized.

上述の実施例においては、レーザー光源21の出射口2
1a、フローセル23、照射光学系のジノントリカルレ
ンズ22.24、受光光学系の対物レンズ26.27が
一体化されているが、レンズ22.24.26.27を
結合部材28によって一体化するだけでも、従来例の調
整の煩わしさは相当に解消される。この場合に、対物レ
ンズ26.27は結合部材28によって固定すれば、フ
ローセル23に当接する必要はない。また、シリンドリ
カルレンズ22.24をレーザー光源21の出射口21
aの内部に設けて、出射口21aを結合部材28で固定
することもできる。
In the embodiment described above, the emission aperture 2 of the laser light source 21
1a, the flow cell 23, the dinontrical lens 22.24 of the irradiation optical system, and the objective lens 26.27 of the light receiving optical system are integrated, but the lenses 22, 24, 26, 27 are integrated by the coupling member 28. This alone can considerably eliminate the troublesome adjustment of the conventional example. In this case, the objective lenses 26 and 27 do not need to come into contact with the flow cell 23 if they are fixed by the coupling member 28. In addition, the cylindrical lenses 22 and 24 are connected to the exit port 21 of the laser light source 21.
It is also possible to provide the exit port 21a inside the opening 21a and fix the exit port 21a with the coupling member 28.

[発明の効果] 以上説明したように本発明に係る検体検査装置は、照射
光学系と受光光学系の少なくとも一部同志を結合部材に
より一体化しているので、光学系の光軸調整は容易で、
また小型化が実現できる。
[Effects of the Invention] As explained above, in the specimen testing apparatus according to the present invention, at least a portion of the irradiation optical system and the light receiving optical system are integrated by the coupling member, so the optical axis of the optical system can be easily adjusted. ,
Further, miniaturization can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

図面第1図は本発明に係る検体検査装置の一実施例の要
部構成図であり、第2図は従来例の構成図である。 符号21はレーザー光源、22.24はシリンドリカル
レンズ、23はフローセル、26.27は対物レンズ、
28は結合部材である。 第1図
FIG. 1 is a block diagram of a main part of an embodiment of the specimen testing apparatus according to the present invention, and FIG. 2 is a block diagram of a conventional example. 21 is a laser light source, 22.24 is a cylindrical lens, 23 is a flow cell, 26.27 is an objective lens,
28 is a connecting member. Figure 1

Claims (1)

【特許請求の範囲】 1、流体中の検体粒子に光ビームを照射し得られる光学
信号から検体粒子の解析を行う検体検査装置において、
検体粒子が通過するフローセル部と、前記光ビームを出
射する光源部と、該光源部から出射される前記光ビーム
を前記フローセル部に照射する照射光学系と、前記光学
信号を受光する受光光学系とを有し、前記照射光学系と
前記受光光学系の少なくとも一部同志を結合部材によっ
て一体的に結合したことを特徴とする検体検査装置。 2、前記結合部材は前記フローセル部を共に結合した請
求項1に記載の検体検査装置。 3、前記結合部材は前記光源部を共に結合した請求項1
に記載の検体検査装置。
[Claims] 1. In a specimen testing device that analyzes specimen particles from optical signals obtained by irradiating specimen particles in a fluid with a light beam,
A flow cell section through which sample particles pass, a light source section that emits the light beam, an irradiation optical system that irradiates the flow cell section with the light beam emitted from the light source section, and a light receiving optical system that receives the optical signal. 1. A specimen testing device comprising: at least a portion of the irradiation optical system and the light receiving optical system integrally connected to each other by a connecting member. 2. The specimen testing device according to claim 1, wherein the connecting member connects the flow cell parts together. 3. Claim 1, wherein the coupling member couples the light source parts together.
The specimen testing device described in .
JP1337623A 1989-12-26 1989-12-26 Inspection device for body to be inspected Pending JPH03197841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337623A JPH03197841A (en) 1989-12-26 1989-12-26 Inspection device for body to be inspected

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337623A JPH03197841A (en) 1989-12-26 1989-12-26 Inspection device for body to be inspected

Publications (1)

Publication Number Publication Date
JPH03197841A true JPH03197841A (en) 1991-08-29

Family

ID=18310399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337623A Pending JPH03197841A (en) 1989-12-26 1989-12-26 Inspection device for body to be inspected

Country Status (1)

Country Link
JP (1) JPH03197841A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846260A4 (en) * 1995-07-28 1998-11-11 Precision Detectors Inc High temperature light scattering measurement device
JP2015227898A (en) * 2011-05-05 2015-12-17 イー・エム・デイー・ミリポア・コーポレイシヨン Devices and methods for enhancing light convergence efficiency in capillary tube-based flow cytometry
JP2021519432A (en) * 2018-03-30 2021-08-10 アイデックス ラボラトリーズ インコーポレイテッドIDEXX Laboratories, Inc. Flow cytometer, its laser optical assembly, and how to assemble the laser optical assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0846260A4 (en) * 1995-07-28 1998-11-11 Precision Detectors Inc High temperature light scattering measurement device
JP2015227898A (en) * 2011-05-05 2015-12-17 イー・エム・デイー・ミリポア・コーポレイシヨン Devices and methods for enhancing light convergence efficiency in capillary tube-based flow cytometry
JP2021519432A (en) * 2018-03-30 2021-08-10 アイデックス ラボラトリーズ インコーポレイテッドIDEXX Laboratories, Inc. Flow cytometer, its laser optical assembly, and how to assemble the laser optical assembly
US11662542B2 (en) 2018-03-30 2023-05-30 Idexx Laboratories, Inc. Flow cytometer, laser optics assembly thereof, and methods of assembling the same

Similar Documents

Publication Publication Date Title
JP4817442B2 (en) Optical system for particle analyzer and particle analyzer using the same
US5631730A (en) Pseudo telecentric optical design for flow cytometric blood cell analyzer
DK174197B1 (en) Particle Analyzer and Method for Particle Analysis
US8427641B2 (en) Compact detector for simultaneous particle size and fluorescence detection
EP0737307B1 (en) Liquid flow cytometer
US4523841A (en) Radiant energy reradiating flow cell system and method
US5446532A (en) Measuring apparatus with optically conjugate radiation fulcrum and irradiated area
JPS586445A (en) Simultaneous measuring analyzing device for quantity of particle and fluorescent characteristic
US4896961A (en) Particle analyzing apparatus
JP2022172075A (en) Optical flow cytometer for epi-fluorescence measurement
US5028135A (en) Combined high spatial resolution and high total intensity selection optical train for laser spectroscopy
WO2020146967A1 (en) Optical test device for sample
JPH03197841A (en) Inspection device for body to be inspected
JPH0486546A (en) Specimen inspection device
JPS63201554A (en) Particle analyzing device
JP2003004625A (en) Flow sight meter
JPS62245942A (en) Particle analyzer
JPS61294334A (en) Particle analyzer
JPS6093944A (en) Light-scattering particle measuring apparatus
JPS6244649A (en) Particle analyzing device
JPH02304333A (en) Flowing cell analyzing instrument
JPH10132728A (en) Scattered light collecting device for particle classifying device
JPH0136109Y2 (en)
JPH01240839A (en) Particle analyser
JPS6214037A (en) Particle analyzer