JPS6093944A - Light-scattering particle measuring apparatus - Google Patents

Light-scattering particle measuring apparatus

Info

Publication number
JPS6093944A
JPS6093944A JP58203523A JP20352383A JPS6093944A JP S6093944 A JPS6093944 A JP S6093944A JP 58203523 A JP58203523 A JP 58203523A JP 20352383 A JP20352383 A JP 20352383A JP S6093944 A JPS6093944 A JP S6093944A
Authority
JP
Japan
Prior art keywords
aerosol
laser beam
parabolic mirror
scattering method
right angles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58203523A
Other languages
Japanese (ja)
Inventor
Satoshi Okuda
奥田 聰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58203523A priority Critical patent/JPS6093944A/en
Publication of JPS6093944A publication Critical patent/JPS6093944A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to reduce a min. measurable particle size without using a lens in a light condensing system, by crossing a specimen stream and laser beam at right angles at the focus of a first parabolic surface mirror and condensing laser beam to a photoelectric converter provided at the focus position of a second parabolic surface mirror. CONSTITUTION:Specimen gas containing an aerosol passes the inside 17 of a short double pipe and passed the focus of a first rotary parabolic surface mirror 11 as a minute diameter gas stream. Laser beam passes a passage 15 and crosses the specimen stream at right angles at the focus 13 and beams scattered by fine particles are reflected by the parabolic surface mirror 11 and enter a second parabolic surface mirror 21 as parallel beams. The beams reflected by the parabolic surface mirror 21 are condensed to the photodiode 23 at the focus position and converted to a photoelectric signal and the particle size distribution of the aerosol is measured. Therefore, there is no noise based on the scattering on the surface of a lens because no lens is used and a min. measurable particle size becomes small.

Description

【発明の詳細な説明】 光散乱法によるエアロゾル粒子測定装置では、サンプリ
ングエアロゾル流を光束と交差させ、エアロゾル粒子に
よる散乱光を集光光学系によって集光し、7オトマル(
光電子増倍管)又はフォトダイオードなどの光電変換手
段により、光を検知し、これを電気信号に変換し、その
粒子分布を測定するのが一般である。
Detailed Description of the Invention In an aerosol particle measuring device using a light scattering method, a sampling aerosol flow is intersected with a light flux, and the light scattered by the aerosol particles is focused by a condensing optical system.
It is common to detect light using a photoelectric conversion means such as a photomultiplier (photomultiplier tube) or a photodiode, convert it into an electrical signal, and measure the particle distribution.

この光電変換系において、1個のエアロゾル粒子による
散乱光から、その粒径に対応した波高値のパルス信号が
1個得られ、これを信号処理回路により波高値毎に粒径
分類しながら個数を計数することによりエアロゾルの粒
径分布を解析することができる。
In this photoelectric conversion system, one pulse signal with a peak value corresponding to the particle size is obtained from the light scattered by one aerosol particle, and the signal processing circuit classifies the particle size according to the peak value and counts the number of particles. By counting, the particle size distribution of the aerosol can be analyzed.

最近半導体工場などにおいて、LSI(大規模槃積回路
)、■LSI(巨大規模集積回路)の集積度の増大と共
に、製造王室(クリーンルーム)の空気清浄度の向上が
要求され、従来0.5μm乃至0.8μmの粒子を対象
としていたが、最近0.8μm以下の0.2μm又は更
に0.1μmの極微粒子が問題にされるようになって来
ている。又光源としても、従来の白色光に代って、強力
なレーザー光、例えば、He−He光 が使用され、測
定積度の向−ヒがはかられてきた。
Recently, in semiconductor factories, etc., as the degree of integration of LSI (Large-Scale Integrated Circuit) and ■LSI (Large-Scale Integrated Circuit) has increased, there has been a demand for improved air cleanliness in the manufacturing room (clean room). The target was particles of 0.8 μm, but recently, ultrafine particles of 0.8 μm or less, 0.2 μm, or even 0.1 μm have become a problem. Also, as a light source, a powerful laser beam, such as a He--He beam, has been used in place of the conventional white light, and improvements in measurement volume have been attempted.

一般に、光散乱式粒子測定器の光学系には現在、球面レ
ンズ、又は非球面レンズが集光系に使用されている。し
かしながら、光はレンズの表面で散乱され、特に仕上げ
粒塵がよくないときは、可成りの迷光を生じ、ノイズの
原因となって測定精度の低下をもたらし、測定結果を不
正確なものとするという欠点がある。また光がレンズ中
を通過するので、光が吸収され、光量が減少する結果、
最小測定可能粒径を小さくすることができなくなるとい
った欠点がある。
Generally, in the optical system of a light scattering particle measuring instrument, a spherical lens or an aspherical lens is currently used in the condensing system. However, the light is scattered on the surface of the lens, especially when the finishing dust is poor, resulting in considerable stray light, which causes noise and reduces measurement accuracy, making the measurement results inaccurate. There is a drawback. Also, as light passes through the lens, it is absorbed, reducing the amount of light.
There is a drawback that the minimum measurable particle size cannot be reduced.

本発明の粒子測定装置は、集光系にレンズを全く使用せ
ず、僅か2枚の放物面鏡を使RIすることにより、上述
の欠点を全く除去した新規な高精度の測定装置を提供す
る。又集光レンズの使用の必要性がなくなって、部品数
が減少し、構造が簡単となり、そのためレーザー光軸の
調整が容易となったほか、全体として小型化が達成され
結果的には製造コストの低減が実現され得るなどの利点
を得ることができた。更に第1枚目の放物面鏡を大きく
することが出来ると同時に、光散乱部分を放物面鏡の内
部に置くことができるので、レンズの場合に比べ、散乱
光捕集角を格段に大きくすることができ、最小測定可能
粒径を非常に小さくすることができるといった利点が得
られた。
The particle measuring device of the present invention does not use any lenses in the condensing system and uses only two parabolic mirrors for RI, thereby providing a new high-precision measuring device that completely eliminates the above-mentioned drawbacks. do. In addition, the need to use a condensing lens is eliminated, the number of parts is reduced, the structure is simplified, and the laser optical axis can be easily adjusted, and the overall size is reduced, resulting in lower manufacturing costs. It was possible to obtain advantages such as a reduction in the amount of Furthermore, since the first parabolic mirror can be made larger and the light scattering part can be placed inside the parabolic mirror, the scattered light collection angle can be greatly improved compared to the case of a lens. The advantage was that the minimum measurable particle size could be made very small.

以下実施例により本発明を詳述する。The present invention will be explained in detail with reference to Examples below.

第1図パは本発明の実施例1を、第2図は実施例2を、
更に第8図は実施例δを示す。これらの図面において、
サンプリングされた、エアロゾルを含む試料気体は短い
2重管の内側17を通過し、空気力学的に微小な半径の
気流となり、外側18を通過する清浄空気のシース70
−によって包み込まれた状態で、第1枚目の回転放物面
鏡11の焦点1&を通過する。気流は、この位置で気流
の方向とは〈直角に配置されたレーザービーム通路を通
るレーザービーム(例えばHs −lie系レーザー波
長682.8mm)と交差する。ここで第1図は、レー
ザービーム通路15を第1の放物面鏡の回転軸と、第2
図はエアロゾル流路を、その回転軸と一致させて構成し
た実施例を示し、又第8図は、エアロゾル流路及びレー
ザービームが第1の放物面鏡の回転軸に対し垂直に設け
られ、かつエアロゾル流路とレーザービームがは!直角
に交差するように設けられた場合である。気流中の微粒
子により散乱されたレーザー光は第1枚目の放物面鏡に
よって反射され、平行光線となって、第2枚目の回転放
物面鏡21に入る。
Figure 1 shows Example 1 of the present invention, Figure 2 shows Example 2,
Furthermore, FIG. 8 shows Example δ. In these drawings,
The sampled sample gas containing aerosol passes through the inner side 17 of the short double tube, becomes an aerodynamic airflow with a small radius, and passes through the outer side 18 of the clean air sheath 70.
- passes through the focal point 1& of the first parabolic mirror 11 of revolution. At this position, the airflow intersects with a laser beam (for example, Hs-lie laser wavelength 682.8 mm) passing through a laser beam path arranged at right angles to the direction of the airflow. Here, FIG. 1 shows that the laser beam path 15 is the rotation axis of the first parabolic mirror and the second parabolic mirror.
The figure shows an embodiment in which the aerosol flow path is aligned with its rotation axis, and FIG. 8 shows an embodiment in which the aerosol flow path and laser beam are arranged perpendicular to the rotation axis of the first parabolic mirror. , and the aerosol flow path and laser beam! This is the case when they are arranged to intersect at right angles. The laser beam scattered by the particles in the airflow is reflected by the first parabolic mirror, becomes a parallel beam, and enters the second parabolic mirror 21 of revolution.

第2の放物面鏡で反射された光は、自動的に、その焦点
の位置に集光される。集光された光は焦点の位置に置か
れた一フォトマル又はフォトダイオード28により、光
電流信号に変換される。そして個々のエアロゾル粒子の
粒径に応じた波高値のパルス信号を発生し、信号処理部
において「1゛測、引数され、エアロゾルの粒径分布が
知り得られる。
The light reflected by the second parabolic mirror is automatically focused at its focal point. The focused light is converted into a photocurrent signal by a photomultiple or photodiode 28 placed at the focal point. Then, a pulse signal having a peak value corresponding to the particle size of each aerosol particle is generated, and the pulse signal is measured and used as an argument in the signal processing section, and the particle size distribution of the aerosol can be obtained.

而して、第1と第2の放物面鏡の関係であるが、第2の
放物面鏡がより大きな放物面鏡の一部であり、その回転
軸(A)と、第1の放物面鏡の回転軸とがほぼ平行であ
ることが好ましい。
Regarding the relationship between the first and second parabolic mirrors, the second parabolic mirror is a part of a larger parabolic mirror, and its axis of rotation (A) is It is preferable that the rotation axis of the parabolic mirror is substantially parallel to the rotation axis of the parabolic mirror.

以上の説明から明かなように、本発明により、従来の欠
点を克服した、上記の如き利点をもつ新規な技術にもと
づく光散乱粒子測定装置が提供された。
As is clear from the above description, the present invention provides a light scattering particle measuring device based on a novel technique that overcomes the drawbacks of the conventional technology and has the advantages described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第8図は本発明の各実施例を示す。 図において 11は第1枚目の放物面鏡 18は第1枚目の放物1鏡の焦点位置 15はレーザービーム 1フはエアロゾル流路 18は2重管の外管 19は排気口 21は第2枚目の放物面鏡 28は第2枚目の放物面鏡の焦点位に置かれた光電変換
手段 第づ図
FIGS. 1, 2, and 8 show embodiments of the present invention. In the figure, 11 is the first parabolic mirror 18, the focal position 15 of the first parabolic mirror 1 is the laser beam 1, the aerosol flow path 18 is the outer tube 19 of the double tube, and the exhaust port 21 is The second parabolic mirror 28 is a photoelectric conversion means placed at the focal point of the second parabolic mirror.

Claims (1)

【特許請求の範囲】 (1) エアロゾル流と光束をは!直角に交差させ、エ
アリゾル粒子によって散乱された光を集光光学系によっ
て集光し、光電変換手段により検知する光散乱法による
エアリゾ、/I/粒子測定装置において、集光系に2枚
の放物面鏡を用い、その第1枚目の放物面鏡の焦点にお
いて、エアロゾル流とレーザービームとを直角に交差せ
しめ、その第2枚目の放物面鏡は第1枚目の放物面鏡よ
り反射される平行なレーザー光線を捕集し、この第2枚
目の放物面鏡の焦点の位置に置かれたる光電変換手段に
集光するという機構を有することを特徴とするこの光散
乱法によるエアロゾル粒子測定装置。 (2、特許請求の範囲第1項の光散乱法によるエアレゾ
ル粒子測蝋装置において、レーザービーム通路が第1の
回転放物面鏡の回転軸と一致して設けられ、前記エアロ
ゾル流路が、該回転軸と直角に交差するように設けられ
ることを特徴とするこの光散乱法によるエアロゾル粒子
測定装置。 (3)特許請求の範囲第1項の光散乱法によるエアロゾ
ル粒子測定装置において、エアロゾル流路が第1の回転
放物面鏡の回転軸と一致して設けられ、レーザービーム
通路が該回転軸と直角に交差するように設けられること
を特徴とするこの光散乱法によるエアロゾル粒子測定装
置。 (4)特許請求の範囲第1項の光散乱法によるエアロゾ
ル粒子測定装置において、エアロゾル流路及びレーザー
ビームが、第1の放物面鏡の回転軸と垂直に設けられ、
エアロゾル流路及びレーザービームかは!直角に交差す
るように設けられることを特徴とするこの光散乱法によ
るエアロゾル粒子測定装置。
[Claims] (1) Aerosol flow and luminous flux! In an aerosol/particle measurement device using a light scattering method, the light scattered by aerosol particles is collected at right angles by a condensing optical system and detected by a photoelectric conversion means. Using an object mirror, the aerosol flow and laser beam intersect at right angles at the focal point of the first parabolic mirror, and the second parabolic mirror crosses the laser beam at a right angle. This light is characterized by having a mechanism that collects the parallel laser beam reflected from the plane mirror and focuses it on a photoelectric conversion means placed at the focal point of the second parabolic mirror. Aerosol particle measurement device using scattering method. (2. In the aerosol particle wax measurement device using a light scattering method according to claim 1, the laser beam path is provided to coincide with the rotation axis of the first parabolic mirror of revolution, and the aerosol flow path is This aerosol particle measuring device using a light scattering method is characterized in that it is installed to intersect at right angles to the rotation axis. (3) In the aerosol particle measuring device using a light scattering method according to claim 1, the This aerosol particle measuring device using a light scattering method, characterized in that the path is provided to coincide with the rotation axis of the first parabolic mirror of revolution, and the laser beam path is provided to intersect the rotation axis at right angles. (4) In the aerosol particle measuring device using a light scattering method according to claim 1, the aerosol flow path and the laser beam are provided perpendicular to the rotation axis of the first parabolic mirror,
Is it an aerosol flow path or a laser beam? This aerosol particle measuring device using a light scattering method is characterized in that it is installed so as to intersect at right angles.
JP58203523A 1983-10-28 1983-10-28 Light-scattering particle measuring apparatus Pending JPS6093944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58203523A JPS6093944A (en) 1983-10-28 1983-10-28 Light-scattering particle measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58203523A JPS6093944A (en) 1983-10-28 1983-10-28 Light-scattering particle measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6093944A true JPS6093944A (en) 1985-05-25

Family

ID=16475555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58203523A Pending JPS6093944A (en) 1983-10-28 1983-10-28 Light-scattering particle measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6093944A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856827A1 (en) * 1997-02-04 1998-08-05 Pittway Corporation Photodetector with coated reflector
WO1999018595A1 (en) * 1997-10-03 1999-04-15 The Regents Of The University Of California Portable analyzer for determining size and chemical composition of an aerosol
FR2941529A1 (en) * 2009-01-26 2010-07-30 Univ Claude Bernard Lyon Luminous excitation and collection unit for laser induced breakdown spectroscopy device, has mirror, and another mirror with reflecting surface that faces sample, where mirrors and lens are integrated in monolithic instrumentation block
JP2014112108A (en) * 1997-01-31 2014-06-19 Xy Llc Optical apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509483A (en) * 1973-05-23 1975-01-30
JPS54130186A (en) * 1978-03-20 1979-10-09 Coulter Electronics Radiant ray collector using elliptical and rotary conical reflecting surfaces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS509483A (en) * 1973-05-23 1975-01-30
JPS54130186A (en) * 1978-03-20 1979-10-09 Coulter Electronics Radiant ray collector using elliptical and rotary conical reflecting surfaces

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998215A (en) * 1995-05-01 1999-12-07 The Regents Of The University Of California Portable analyzer for determining size and chemical composition of an aerosol
JP2014112108A (en) * 1997-01-31 2014-06-19 Xy Llc Optical apparatus
EP0856827A1 (en) * 1997-02-04 1998-08-05 Pittway Corporation Photodetector with coated reflector
WO1999018595A1 (en) * 1997-10-03 1999-04-15 The Regents Of The University Of California Portable analyzer for determining size and chemical composition of an aerosol
FR2941529A1 (en) * 2009-01-26 2010-07-30 Univ Claude Bernard Lyon Luminous excitation and collection unit for laser induced breakdown spectroscopy device, has mirror, and another mirror with reflecting surface that faces sample, where mirrors and lens are integrated in monolithic instrumentation block

Similar Documents

Publication Publication Date Title
JP4817442B2 (en) Optical system for particle analyzer and particle analyzer using the same
CA1323995C (en) Particle asymmetry analyser
US4728190A (en) Device and method for optically detecting particles in a fluid
US4523841A (en) Radiant energy reradiating flow cell system and method
CA1135971A (en) Radiant energy reradiating flow cell system and method
CN106769802B (en) Optical sensor of low-light background noise large-flow dust particle counter
JP2002502490A (en) Concave angle irradiation system for particle measuring device
JP4050748B2 (en) Particle measuring device
JPH08159949A (en) Particle detection device
JPS6093944A (en) Light-scattering particle measuring apparatus
JP4688804B2 (en) Improved design of particle sensor system
WO2021097910A1 (en) Detection device and method for tiny particles in liquid
JPH0137689B2 (en)
JPH05172732A (en) Method and apparatus for detecting particle in liquid
CN112730180B (en) High-sensitivity dust particle counting sensor with double detectors
JPS6335395Y2 (en)
Molaie et al. A review on newly designed mobile optical particle counters for monitoring of airborne particulate matter
JPS6029643A (en) Fine particle detector
CN219496065U (en) Novel particle counter light path system
CN219065204U (en) Particle counter and particle counting system
JPH0498145A (en) Counting device for particulates in fluid
JPH0442621B2 (en)
CN104458510B (en) Improve detection of particles size and the optical system of shape of detection accuracy
CN211206179U (en) Detection apparatus for tiny granule in liquid
JPH03197841A (en) Inspection device for body to be inspected