JPS61165639A - Particle analyser - Google Patents

Particle analyser

Info

Publication number
JPS61165639A
JPS61165639A JP60007040A JP704085A JPS61165639A JP S61165639 A JPS61165639 A JP S61165639A JP 60007040 A JP60007040 A JP 60007040A JP 704085 A JP704085 A JP 704085A JP S61165639 A JPS61165639 A JP S61165639A
Authority
JP
Japan
Prior art keywords
photometric
focus
particle analysis
objective lens
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60007040A
Other languages
Japanese (ja)
Other versions
JPH0660869B2 (en
Inventor
Yuji Ito
勇二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60007040A priority Critical patent/JPH0660869B2/en
Priority to US06/818,263 priority patent/US4690561A/en
Publication of JPS61165639A publication Critical patent/JPS61165639A/en
Publication of JPH0660869B2 publication Critical patent/JPH0660869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enhance measuring accuracy, by detecting the focus matching state of a photometric objective lens from the image of a two-split element of the reflected image obtained by projecting photometric luminous flux to the boundary surface of the laser beam irradiation surface of a specimen particle flowing part and detected by a photoelectric detector. CONSTITUTION:The luminous flux passed through an opening 23 is projected to the front surface 2a and back surface 2b of a flow cell 1 by a light source 22 and two respective reflected opening images of the opening 23 are respectively formed onto a two-split element 26 through a convex lens 25 and, when the focus of an objective lens 8 is matched, two opening images of the opening 23 formed to the two-split surfaces of the element 26 in the same size. Because the lens 8 and a condensing lens 10 are combined so as to form parallel luminous flux between both lenses, an automatic focus unit 9 is moved even if the position of the center axis of the flow cell 1 slightly moves on an optical axis when the flow cell 1 is replaced and two outputs of the element 26 are only made equal to each other to enable the matching of a focus and measuring accuracy can be enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、フローサイトメータ等において、測光用対物
レンズの合焦状態の判定を可能とした粒子解析装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a particle analysis device that is capable of determining the in-focus state of a photometric objective lens in a flow cytometer or the like.

[従来の技術] フローサイトメータ等に用いられる従来の粒子解析装置
では、フローセルの中央部の例えば70p−m X 2
0ルmの微小な矩形断面を有する流通部内を、シース液
に包まれて通過する血球細胞などの検体に照射光を照射
し、その結果生ずる前方及び側方散乱光により、検体の
形状・大きさ・屈折率等の粒子的性質を得ることが可能
である。また、蛍光剤により染色され得る検体に対して
は、照射光とほぼ直角方向の側方散乱光から検体の蛍光
を検出することにより、検体を解析するための重要な情
報を求めることができる。
[Prior Art] In a conventional particle analysis device used in a flow cytometer or the like, for example, a particle size of 70 p-m x 2 in the center of a flow cell is
Irradiation light is irradiated onto a specimen such as blood cells wrapped in sheath liquid and passed through a flow section with a minute rectangular cross section of 0 lumen, and the resulting forward and side scattered light is used to determine the shape and size of the specimen. It is possible to obtain particle-like properties such as refractive index and refractive index. Further, for a specimen that can be stained with a fluorescent agent, important information for analyzing the specimen can be obtained by detecting the fluorescence of the specimen from side scattered light in a direction substantially perpendicular to the irradiation light.

フローサイトメータ等において正確な測定を行うために
は、検体粒子以外の物体からの墾似信号が混入しないよ
うに、測光用の対物レンズにより正確に検体粒子或いは
その極く近傍のみを集光させなければならない、そのた
めに、測光用対物レンズの焦点調整を行う必要があるが
、従来装置においては測定前に標準サンプルを流しなが
ら操作者が目視により手動で焦点調整を行っているので
、操作が繁雑である上に、操作者によって個人差が生じ
、十分に正確な焦点調整を行うことが困難であるのが現
状である。
In order to perform accurate measurements with a flow cytometer, etc., a photometric objective lens must be used to accurately focus only on the sample particles or their immediate vicinity to prevent contamination by contaminant signals from objects other than the sample particles. To do this, it is necessary to adjust the focus of the photometric objective lens, but with conventional equipment, the operator manually adjusts the focus by visual inspection while flowing a standard sample before measurement, making the operation much easier. In addition to being complicated, there are individual differences among operators, and it is currently difficult to perform sufficiently accurate focus adjustment.

また、測定中に焦点の移動が生じた場合に、その確認が
不可能なため、測定途中で疑似信号が混入したか否かを
判別できず、データの信頼性についての不安も有してい
る。
Additionally, if the focal point moves during measurement, it is impossible to confirm this, so it is impossible to determine whether spurious signals have been mixed in during the measurement, and there are concerns about the reliability of the data. .

更に、ノズルやフローセル等を交換するごとに焦点調整
を必要とし、測定に手間が掛かる欠点がある。また、蛍
光測定を行う場合に微弱な蛍光信号を強化する必要があ
るが、そのために蛍光を検出する光電検出器をフォトマ
ルにすること・蛍光剤の発光効率を向上させること・照
射光源のパワーを増大させること・測光用対物レンズの
集光効率を向上させること等が考えられている。蛍光剤
の発光効率は現在のところ盛んに研究されており、照射
光源のパワーの増大は製造コストを無視すれば相当に増
大させることができるが、反面で極端にパワーを増大さ
せ過ぎると検体粒子を傷付けることにもなり、良い方法
とは云い難い。
Furthermore, it requires focus adjustment every time the nozzle, flow cell, etc. are replaced, which has the disadvantage that measurement is time-consuming. In addition, when performing fluorescence measurements, it is necessary to strengthen weak fluorescence signals, and for this purpose it is necessary to use a photoelectric detector to detect fluorescence, improve the luminous efficiency of the fluorescent agent, and increase the power of the irradiation light source. It is being considered to increase the amount of light and to improve the light collection efficiency of the photometric objective lens. The luminous efficiency of fluorescent agents is currently being actively researched, and increasing the power of the irradiation light source can be considerably increased if manufacturing costs are ignored, but on the other hand, if the power is increased too much, the sample particles It is difficult to say that this is a good method as it can also cause damage to the person.

測光用対物レンズの集光効率の向上は、対物レンズの開
口数を上げれば達成されるが、その代償として焦点深度
が浅くなるという逆効果を伴うことになる。焦点深度が
浅くなれば、流通部と対物レンズとの間の距離が僅かに
移動しただけでも、検体粒子からの信号だけでなく、他
の物体からの信号が混入してしまい、正確な測定を行う
ことができない、このように、従来装置では焦点調整が
繁雑である上に、十分な蛍光信号強度が得られず、解析
精度が向上しないという欠点を有している。
Improving the light collection efficiency of a photometric objective lens can be achieved by increasing the numerical aperture of the objective lens, but this comes with the opposite effect of decreasing the depth of focus. If the depth of focus becomes shallow, even if the distance between the flow section and the objective lens moves slightly, not only signals from the sample particles but also signals from other objects will be mixed in, making it difficult to make accurate measurements. As described above, the conventional apparatus has the disadvantage that focus adjustment is complicated, and sufficient fluorescence signal intensity cannot be obtained, so that analysis accuracy cannot be improved.

[発明の目的] 本発明の目的は、測光用対物レンズの合焦状態を検出す
る合焦光学系を設け、焦点調整を容易にしかも正確に行
い得ると共に、十分な蛍光信号強度を得ることによって
測定精度を向上させ得る粒子解析装置を提供することに
ある。
[Object of the Invention] An object of the present invention is to provide a focusing optical system for detecting the focusing state of a photometric objective lens, to easily and accurately perform focus adjustment, and to obtain sufficient fluorescence signal intensity. An object of the present invention is to provide a particle analysis device that can improve measurement accuracy.

[発明の概要] 上述の目的を達成するための本発明の要旨は。[Summary of the invention] The gist of the present invention is to achieve the above objects.

フローセル内の流通部を流れる検体粒子に光ビームを照
射する照射光学系と、光ビームが検体粒子によって散乱
された散乱光を測定する測光光学系とを備え、前記流通
部の光ビーム照射面の境界面に測光用光束を投射し、光
電検出器で得られる反射像の位置関係により、測光用対
物レンズの合焦状態を検出する焦点検出手段を前記測光
光学系内に設けたことを特徴とする粒子解析装置である
The light beam irradiation surface of the flow cell includes an irradiation optical system that irradiates a light beam onto the sample particles flowing through the flow section in the flow cell, and a photometry optical system that measures the scattered light of the light beam scattered by the sample particles. The photometric optical system is characterized by being provided with focus detection means for projecting a photometric light beam onto the boundary surface and detecting the in-focus state of the photometric objective lens based on the positional relationship of the reflected image obtained by the photoelectric detector. This is a particle analysis device that performs

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図は粒子解析装置の構成図であり、フローセル1の
中央部の紙面に垂直な流通部2内を検体粒子Sが通過し
、この流れと直交する方向にレーザー光源3が配置され
ている。このレーザー光源3から出射されたレーザー光
りの光軸0上に、検体粒子Sに対してレーザー光源3側
に2組のシリンドリカルレンズを直交させて成る結像レ
ンズ4が配置されている。また、検体粒子Sに対してレ
ーザー光源3と反対側の光軸0上に、遮光板5、集光レ
ンズ6、光電検出器7が順次に配列されている。
FIG. 1 is a configuration diagram of a particle analysis device, in which sample particles S pass through a flow section 2 in the center of a flow cell 1 perpendicular to the plane of the paper, and a laser light source 3 is arranged in a direction perpendicular to this flow. . On the optical axis 0 of the laser light emitted from the laser light source 3, an imaging lens 4 made up of two sets of cylindrical lenses orthogonally arranged on the laser light source 3 side with respect to the sample particles S is arranged. Further, on the optical axis 0 on the opposite side of the laser light source 3 with respect to the sample particles S, a light shielding plate 5, a condensing lens 6, and a photoelectric detector 7 are arranged in this order.

また、レーザー光りの光軸0及び検体粒子Sの流れの中
心方向のそれぞれとほぼ直交する方向に、測光用対物レ
ンズ8を含むオートフォーカスユニット(以下AFユニ
ー/ )と云う)9、集光レンズ10.絞り板11、集
光レンズ12、グイクロイックミラー等から成る波長選
別手段13.14.15が順次に配列され、光路に対し
て斜設されたこれらの波長選別手段13.14.15に
より反射された方向の光路上に、バリヤフィルタ16・
光電検出器17、バリヤフィルタ18・光電検出器19
、バリヤフィルタ20*光電検出器21がそれぞれ配置
されている。そして、これらの光電検出器17.19.
21には1例えば微弱光を増強して検出することが可能
なフォトマルが使用されている。
In addition, an autofocus unit (hereinafter referred to as AF unit) 9 including a photometric objective lens 8 and a condenser lens are arranged in a direction substantially perpendicular to the optical axis 0 of the laser beam and the center direction of the flow of the sample particles S. 10. Wavelength selection means 13.14.15 consisting of a diaphragm plate 11, a condensing lens 12, a gicroic mirror, etc. are arranged in sequence, and the wavelength selection means 13.14.15 installed diagonally with respect to the optical path reflect light. A barrier filter 16 is placed on the optical path in the direction in which the
Photoelectric detector 17, barrier filter 18/photoelectric detector 19
, barrier filter 20*photoelectric detector 21 are arranged, respectively. And these photoelectric detectors 17.19.
21 uses, for example, a photomultiplier capable of amplifying and detecting weak light.

従って、レーザー光源3から出射されたレーザー光りは
、2組のシリンドリカルレンズを直交させた結像レンズ
4により任意の長径・短径の結像ビームに成形され、流
通部2内を流れる検体粒子Sに照射される。検体粒子S
に照射され散乱された散乱光のうち、前方散乱光は遮光
板5によって検体粒子Sが無い位置を通過した照射光が
取り除かれ、集光レンズ6を介して光電検出器7に集光
され、検体粒子Sの性状が測定される。
Therefore, the laser light emitted from the laser light source 3 is shaped into an imaging beam with arbitrary long and short diameters by the imaging lens 4, which is made up of two sets of cylindrical lenses orthogonal to each other, and the sample particles S flowing through the flow section 2 is irradiated. Sample particle S
Among the scattered light irradiated and scattered, the forward scattered light is the irradiated light that has passed through the position where there is no sample particle S by the light shielding plate 5, and is focused on the photoelectric detector 7 via the condensing lens 6. The properties of the sample particles S are measured.

また、各種蛍光剤により染色された検体粒子Sについて
は、側方散乱光としてAFユニット9内の測光用対物レ
ンズ8を介して、集光レンズ10により絞り板11に集
光される。側方散乱光及び蛍光は、検体粒子Sに共役な
位置に設置されたこの絞り板11を通過させることによ
り、雑音の少ない測光信号を得ることができる。絞り板
11を通過後の光束を集光レンズ12により平行光束と
し、適当な分光特性を持たせた波長選別手段13によっ
て側方散乱光と蛍光とに分光し、側方散乱光はバリヤフ
ィルタ16及び光電検出器17で検出され、検体粒子S
内部の顆粒性が観測できる。
Further, the specimen particles S dyed with various fluorescent agents are focused as side scattered light onto the aperture plate 11 by the condenser lens 10 via the photometric objective lens 8 in the AF unit 9. By passing the side scattered light and fluorescence through this diaphragm plate 11 installed at a position conjugate to the sample particles S, a photometric signal with less noise can be obtained. The light beam after passing through the diaphragm plate 11 is made into a parallel light beam by a condenser lens 12, separated into side scattered light and fluorescence by a wavelength selection means 13 having appropriate spectral characteristics, and the side scattered light is passed through a barrier filter 16. and detected by the photoelectric detector 17, the sample particles S
Internal granularity can be observed.

一方、蛍光は波長選別手段13を通過し、波長選別手段
14によって例えば緑色蛍光と赤色蛍光とに分光され、
緑色蛍光はバリヤフィルタ18を介して光電検出器19
で検出され、赤色蛍光は波長選別手段15とバリヤフィ
ルタ20を介して光電検出器21で検出され、検体粒子
の生化学的性質が観測される。
On the other hand, the fluorescence passes through the wavelength selection means 13 and is separated into, for example, green fluorescence and red fluorescence by the wavelength selection means 14,
The green fluorescence passes through a barrier filter 18 to a photoelectric detector 19.
The red fluorescence is detected by the photoelectric detector 21 via the wavelength selection means 15 and the barrier filter 20, and the biochemical properties of the sample particles are observed.

なお、蛍光を選別する波長選別手段14.15としては
、緑赤二色のグイクロイックミラーが使用されているが
、例えば波長を連続的に分光できる分光プリズム或いは
回折格子等の波長選別手段を用いてもよい、また、光源
3と結像レンズ4との間に、ビームエキスパンダ又はビ
ームコンプレッサ等のビーム径可変手段を挿入すること
もできる。
Although a green/red dichroic mirror is used as the wavelength selection means 14 and 15 for selecting fluorescence, it is also possible to use wavelength selection means such as a spectroscopic prism or a diffraction grating that can separate wavelengths continuously. Alternatively, a beam diameter variable means such as a beam expander or a beam compressor may be inserted between the light source 3 and the imaging lens 4.

ここで、微弱光の集光効率を上げ、なおかつ正確に合焦
状態を得ることのできるAFユニット9について、第2
図〜第4図により説明する。第2図はAFユニット9を
側方から見た構成図、第3図はフローセル1の水平断面
図である。AFユニット9内の中央には測光用対物レン
ズ8が設置され、下部には光源22がフローセルlに光
を照射するように設置され、光源22の光軸上に開口2
3、凸レンズ24が順次に配置されている。また、フロ
ーセルlの流通部2の前面2aと後面2bとから成る境
界面とによって反射された光の光路上に、凸レンズ25
1分割素子26が順次に配置されている。
Here, we will discuss the second AF unit 9, which can increase the light collection efficiency of weak light and obtain an accurate in-focus state.
This will be explained with reference to FIGS. FIG. 2 is a configuration diagram of the AF unit 9 seen from the side, and FIG. 3 is a horizontal sectional view of the flow cell 1. A photometric objective lens 8 is installed in the center of the AF unit 9, a light source 22 is installed at the bottom to irradiate the flow cell l, and an aperture 2 is placed on the optical axis of the light source 22.
3. Convex lenses 24 are sequentially arranged. Further, a convex lens 25 is placed on the optical path of the light reflected by the boundary surface consisting of the front surface 2a and the rear surface 2b of the flow section 2 of the flow cell l.
The 1-segment elements 26 are sequentially arranged.

この場合に、対物レンズ8は流通部2の中心に焦点が合
う状態で、流通部2からの集光光束が対物レンズ8によ
り平行光束になるように配置されており、この状態のと
きAFユニット9内の合焦用光学系は、流通部2の前面
2a及び後面2bを検出するように配置されている。即
ち、光源22により凸レンズ24を介して、開口23を
通過した光束を前面2a及び後面2bに投影し、前面2
a及び後面2bでそれぞれ反射された開口23の2つの
開口像が、凸レンズ25を介して分割素子26上それぞ
れに結像される。
In this case, the objective lens 8 is arranged so that the focus is on the center of the flow section 2 and the condensed light beam from the flow section 2 becomes a parallel light beam by the objective lens 8. In this state, the AF unit A focusing optical system in 9 is arranged to detect the front surface 2a and rear surface 2b of the flow section 2. That is, the light beam passing through the aperture 23 is projected onto the front surface 2a and the rear surface 2b by the light source 22 via the convex lens 24, and the light beam is projected onto the front surface 2a and the rear surface 2b.
Two aperture images of the aperture 23 reflected by the a and rear surfaces 2b are respectively formed on the dividing element 26 via the convex lens 25.

なお、分割素子26としては2分割素子が使用されてお
り、82図の状態においては対物レンズ8は合焦してい
るため、このとき開口23の2つの開口像が第4図(a
)に示すように分割素子26の2分割面に同一の大きさ
Mで結像され、2分割面からの出力が相等しくなるよう
に分割素子26が配置されている。また、第4図(b)
 、 (c)に示すように分割素子26において、開口
像Mが一方側にずれて2分割面の出力に差が生じた場合
には、対物レンズ8が合焦していないことが判る。
Note that a two-split element is used as the splitting element 26, and the objective lens 8 is in focus in the state shown in FIG.
), the dividing element 26 is arranged so that an image of the same size M is formed on the two dividing planes of the dividing element 26, and the outputs from the two dividing planes are equal to each other. Also, Fig. 4(b)
, (c), in the splitting element 26, if the aperture image M shifts to one side and a difference occurs in the output of the two splitting planes, it can be seen that the objective lens 8 is not in focus.

このように分割素子26からの2分割面の出力が相等し
いときには、必ず対物レンズ8は流通部2の中心に合焦
し、常に対物レンズ8からは検体粒子像の平行光束が得
られることになる。また、集光レンズ10の集光位置に
絞り板11が配置されているので、AFユニット9の移
動によって合焦したときには、流通部2は絞り板11と
共役間係になり、検体粒子Sによる散乱光が正確に絞り
板11の位置に集光される。
In this way, when the outputs of the two dividing planes from the dividing element 26 are equal, the objective lens 8 is always focused on the center of the flow section 2, and a parallel light beam of the sample particle image is always obtained from the objective lens 8. Become. In addition, since the aperture plate 11 is arranged at the condensing position of the condenser lens 10, when focusing is achieved by moving the AF unit 9, the flow section 2 becomes in a conjugate relationship with the aperture plate 11, and the sample particles S The scattered light is accurately focused at the position of the aperture plate 11.

ここで、対物レンズ8と集光レンズ10とは、その間が
平行光束になるように組み合わされているため、フロー
セル1等の交換時等にフローセル1の中心軸の位置が光
軸上を若干移動しても、AFユニット9を移動させて、
分割素子26の2つの出力を相等しくさせるだけで焦点
を合わせることができる。また、流通部2における反射
を検出しているので、フローセル1の交換時にフローセ
ルlの大きさ、即ち表面から流通部2までの寸法が若干
具なっても焦点調整には影響を及ぼすことはない。
Here, since the objective lens 8 and the condensing lens 10 are combined so that a parallel light beam is formed between them, the position of the center axis of the flow cell 1 moves slightly on the optical axis when replacing the flow cell 1, etc. Even if you move the AF unit 9,
Focusing can be achieved simply by making the two outputs of the splitting element 26 equal. In addition, since the reflection at the flow section 2 is detected, even if the size of the flow cell 1, that is, the dimension from the surface to the flow section 2 changes slightly when replacing the flow cell 1, the focus adjustment will not be affected. .

このように、実施例では容易にしかも正確に焦点を合わ
せることができるため、正確なピントを保持させたまま
対物レンズ8の開口数を上げ、光学系の集光効率を向上
させて、信号強度を増大させることができることになる
。なお、合焦用光源22の波長は、フローセル1内での
散乱光等により測定に影響を及ぼさないように、レーザ
ー光源3の波長や蛍光の波長と分離している方が好まし
いので、赤外光源を使用することが好適である。
In this way, in the embodiment, it is possible to focus easily and accurately, so the numerical aperture of the objective lens 8 is increased while maintaining accurate focus, the light collection efficiency of the optical system is improved, and the signal strength is increased. This means that it is possible to increase the Note that the wavelength of the focusing light source 22 is preferably separated from the wavelength of the laser light source 3 and the wavelength of fluorescence so that the measurement is not affected by scattered light within the flow cell 1. Preferably, a light source is used.

また、分割素子26の出力信号によって駆動される機構
を設け、分割素子26の2つの面に開口23の開口像M
がそれぞれ結像されるまで、AFユニット9を駆動機構
により光軸上を探索移動させ、合焦した信号により駆動
機構を停止ヒさせるようにすれば、自動的に合焦状態が
得られ、更に操作性が良くなる。また、AFユニット9
の駆動機構が停止した状態の信号、或いは合焦時の分割
素子26の出力信号により、粒子解析装置の測定開始信
号を発するようにすれば、対物レンズ8が合焦していな
いときには、不正確な測定が行われないで済む、更に分
割素子26の所定位置に、開口23の開口像Mが結像し
たことを知らせる合焦信号を表示する手段を設けること
もでき、手動でAFユニット9を操作する場合には、こ
の合焦信号が出力された時点で測定を始めるようにすれ
ばよい。
Further, a mechanism driven by the output signal of the dividing element 26 is provided, and an aperture image M of the aperture 23 is provided on two surfaces of the dividing element 26.
If the AF unit 9 is searched and moved on the optical axis by a drive mechanism until each of Improved operability. In addition, the AF unit 9
If the measurement start signal of the particle analyzer is emitted by the signal when the drive mechanism is stopped or the output signal from the splitting element 26 when in focus, the measurement start signal of the particle analyzer can be emitted when the objective lens 8 is not in focus. In addition, a means for displaying a focusing signal indicating that the aperture image M of the aperture 23 has been formed can be provided at a predetermined position of the dividing element 26, and the AF unit 9 can be manually activated. When operating, measurement may be started at the time this focusing signal is output.

なお、AFユニット9内の合焦検知用光学系の配置は実
施例だけに限らず、例えば光源22を測光用対物レンズ
8の上方に配置してもよい、また実施例においては、側
方散乱光の測光光学系内にAFユニット9を設置した場
合を説明したが、前方散乱光用の測光光学系においても
、遮光板5と集光レンズ6との間にAFユニットを配置
し、同様の効果を得ることができる。このようなAFユ
ニットを側方・前方の再測光光学系に設置すれば、更に
良好な結果が得られることは勿論である。
Note that the arrangement of the focus detection optical system in the AF unit 9 is not limited to that in the embodiment; for example, the light source 22 may be arranged above the photometric objective lens 8; Although the case where the AF unit 9 is installed in the photometric optical system for light has been described, in the photometric optical system for forward scattered light, the AF unit is placed between the light shielding plate 5 and the condensing lens 6, and the same method is used. effect can be obtained. Of course, even better results can be obtained by installing such an AF unit in the side/front re-photometry optical system.

[発明の効果] 以上説明したように本発明に係る粒子解析装置光学系は
、測光光学系内に焦点検出手段を設置することによって
、測光用対物レンズの焦点調整を容易にかつ正確に行う
、ことを可能とし、測定精度を向上させ、対物レンズの
開口数を増すこともでき、これによって蛍光測光強度を
向上させ、高精度な解析を可能としている。
[Effects of the Invention] As explained above, the particle analyzer optical system according to the present invention easily and accurately adjusts the focus of the photometric objective lens by installing the focus detection means in the photometric optical system. This makes it possible to improve measurement accuracy and increase the numerical aperture of the objective lens, thereby improving fluorescence photometry intensity and enabling highly accurate analysis.

また所望によっては、焦点検出手段を駆動する機構を設
けることによって、全自動的に焦点調整を行うことも可
能となり、更に合焦信号表示機構を設けることによって
、手動でも容易に焦点調整を行うことを可能とし、また
合焦状態にのみ装置が可動する機構を設けて、測定を更
に容易にすることもできる。
Furthermore, if desired, by providing a mechanism that drives the focus detection means, it becomes possible to perform fully automatic focus adjustment, and by providing a focus signal display mechanism, it is possible to easily perform focus adjustment manually. It is also possible to provide a mechanism that allows the device to move only when it is in focus, making the measurement even easier.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る粒子解析装置の一実施例を示し、第
1図は光学系の構成図、第2図はAFユニットを側方か
ら見た光学系配置図、第3図はフローセルの断面図、第
4図は分割素子面上の光像分布の説明図である。 符号1はフローセル、2は流通部、2aは前面、2bは
後面、3はレーザー光源、4は結像レンズ、8は対物レ
ンズ、9J:l:AFユニット、10.12は集光レン
ズ、11は絞り板、13.14.15は波長選別手段、
16.18.20はバリヤフィルタ、17.19.21
は光電検出器、22は光源、23は開口、24.25は
凸レンズ、26は分割素子である。
The drawings show an embodiment of the particle analysis device according to the present invention, in which Fig. 1 is a configuration diagram of the optical system, Fig. 2 is a layout diagram of the optical system as seen from the side of the AF unit, and Fig. 3 is a cross-section of the flow cell. FIG. 4 is an explanatory diagram of the light image distribution on the split element surface. Reference numeral 1 is a flow cell, 2 is a flow section, 2a is a front surface, 2b is a rear surface, 3 is a laser light source, 4 is an imaging lens, 8 is an objective lens, 9J:l: AF unit, 10.12 is a condensing lens, 11 is an aperture plate, 13.14.15 is a wavelength selection means,
16.18.20 is barrier filter, 17.19.21
22 is a photodetector, 22 is a light source, 23 is an aperture, 24.25 is a convex lens, and 26 is a dividing element.

Claims (1)

【特許請求の範囲】 1、フローセル内の流通部を流れる検体粒子に光ビーム
を照射する照射光学系と、光ビームが検体粒子によって
散乱された散乱光を測定する測光光学系とを備え、前記
流通部の光ビーム照射面の境界面に測光用光束を投射し
、光電検出器で得られる反射像の位置関係により、測光
用対物レンズの合焦状態を検出する焦点検出手段を前記
測光光学系内に設けたことを特徴とする粒子解析装置。 2、前記流通部の光ビーム照射面の2つの境界面に照射
する光束を平行光束とした特許請求の範囲第1項に記載
の粒子解析装置。 3、前記流通部からの2つの反射光を検出する前記光電
検出器を分割型素子とした特許請求の範囲第2項に記載
の粒子解析装置。 4、前記測光用対物レンズと前記焦点検出手段とは、同
一のユニット内の所定位置に分離して配置するようにし
た特許請求の範囲第1項に記載の粒子解析装置。 5、前記ユニットを前記測光光学系の光軸に沿って移動
可能にした特許請求の範囲第4項に記載の粒子解析装置
。 6、前記ユニットを合焦状態に至るまで自動的に探索移
動する機構を設けた特許請求の範囲第5項に記載の粒子
解析装置。 7、前記測光光学系内に集光レンズを設け、前記対物レ
ンズ及び該集光レンズに関して検体粒子と共役な位置に
開口絞りを設置した特許請求の範囲第1項に記載の粒子
解析装置。 8、前記焦点検出手段は測光に使用する波長領域外の波
長域の光を使用するようにした特許請求の範囲第1項に
記載の粒子解析装置。 9、前記焦点検出手段からの信号による合焦状態表示手
段を設けた特許請求の範囲第1項に記載の粒子解析装置
。 10、前記測光用対物レンズが合焦状態にあるときにの
み、測定を行い得るようにした特許請求の範囲第1項に
記載の粒子解析装置。
[Scope of Claims] 1. An irradiation optical system that irradiates a light beam onto sample particles flowing through a flow section in a flow cell, and a photometric optical system that measures scattered light caused by the light beam being scattered by the sample particles; The photometric optical system includes a focus detection means for projecting a photometric light beam onto the boundary surface of the light beam irradiation surface of the distribution part and detecting the focused state of the photometric objective lens based on the positional relationship of the reflected image obtained by the photoelectric detector. A particle analysis device characterized by being installed inside. 2. The particle analysis device according to claim 1, wherein the light beam irradiated onto the two boundary surfaces of the light beam irradiation surface of the flow section is a parallel light beam. 3. The particle analysis device according to claim 2, wherein the photoelectric detector that detects two reflected lights from the flow section is a split type element. 4. The particle analysis apparatus according to claim 1, wherein the photometric objective lens and the focus detection means are arranged separately at predetermined positions within the same unit. 5. The particle analysis apparatus according to claim 4, wherein the unit is movable along the optical axis of the photometric optical system. 6. The particle analysis device according to claim 5, further comprising a mechanism for automatically searching and moving the unit until it reaches a focused state. 7. The particle analysis device according to claim 1, wherein a condenser lens is provided in the photometric optical system, and an aperture stop is installed at a position conjugate with the sample particle with respect to the objective lens and the condenser lens. 8. The particle analysis device according to claim 1, wherein the focus detection means uses light in a wavelength range outside the wavelength range used for photometry. 9. The particle analysis apparatus according to claim 1, further comprising focus state display means based on a signal from the focus detection means. 10. The particle analysis apparatus according to claim 1, wherein measurement can be performed only when the photometric objective lens is in focus.
JP60007040A 1985-01-18 1985-01-18 Particle analyzer Expired - Fee Related JPH0660869B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60007040A JPH0660869B2 (en) 1985-01-18 1985-01-18 Particle analyzer
US06/818,263 US4690561A (en) 1985-01-18 1986-01-13 Particle analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60007040A JPH0660869B2 (en) 1985-01-18 1985-01-18 Particle analyzer

Publications (2)

Publication Number Publication Date
JPS61165639A true JPS61165639A (en) 1986-07-26
JPH0660869B2 JPH0660869B2 (en) 1994-08-10

Family

ID=11654931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60007040A Expired - Fee Related JPH0660869B2 (en) 1985-01-18 1985-01-18 Particle analyzer

Country Status (1)

Country Link
JP (1) JPH0660869B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139234A (en) * 1986-12-02 1988-06-11 Canon Inc Optical apparatus
JP2001299527A (en) * 2000-04-27 2001-10-30 Okamura Corp Post height adjustment device for furniture and access terminal using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63139234A (en) * 1986-12-02 1988-06-11 Canon Inc Optical apparatus
JP2001299527A (en) * 2000-04-27 2001-10-30 Okamura Corp Post height adjustment device for furniture and access terminal using it

Also Published As

Publication number Publication date
JPH0660869B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
US4690561A (en) Particle analyzing apparatus
US8467054B2 (en) Virtual core flow cytometry
US4896961A (en) Particle analyzing apparatus
JPS61280548A (en) Apparatus for analyzing particle
IE58991B1 (en) Methods and apparatus for analysis of particles and cells
JPS62168033A (en) Particle analyzing device
JPH10253624A (en) Particle measuring device
JPH0224535A (en) Particle analyzing apparatus
WO1991003725A1 (en) Combined optical train for laser spectroscopy
JP2023510615A (en) Electro-optical device for flow measurement
JPH061241B2 (en) Particle analyzer
JPS61167838A (en) Particle analyzer
JPS61165639A (en) Particle analyser
JP2009145044A (en) Fluorescence detector
KR102077071B1 (en) Inspection module and inspection apparatus for agricultural products and livestock products
US20180299365A1 (en) Cytometric method and cytometer unit
JPH0486546A (en) Specimen inspection device
JPH0552896B2 (en)
JPH03154850A (en) Specimen inspecting device
JPS61165638A (en) Particle analyser
JPS61294334A (en) Particle analyzer
JPS6244649A (en) Particle analyzing device
JPS62245942A (en) Particle analyzer
JPS628038A (en) Apparatus for analyzing particle
JP2749912B2 (en) Sample measuring device and sample measuring method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees