JPS63231244A - Cell analysis instrument - Google Patents

Cell analysis instrument

Info

Publication number
JPS63231244A
JPS63231244A JP62063826A JP6382687A JPS63231244A JP S63231244 A JPS63231244 A JP S63231244A JP 62063826 A JP62063826 A JP 62063826A JP 6382687 A JP6382687 A JP 6382687A JP S63231244 A JPS63231244 A JP S63231244A
Authority
JP
Japan
Prior art keywords
light
optical system
cell
cells
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62063826A
Other languages
Japanese (ja)
Inventor
Isao Yamazaki
功夫 山崎
Hiroshi Oki
博 大木
Akira Miyake
亮 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62063826A priority Critical patent/JPS63231244A/en
Publication of JPS63231244A publication Critical patent/JPS63231244A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To reduce the size of an instrument without lowering the efficiency of a continuous optical analysis by detecting the time intervals at which individual cells pass two points on the optical focus of an optical system for projection and measurement, emitting a pulse after lapse of the time of specified times said time intervals and making measurement. CONSTITUTION:A cell suspension marked by a fluorescent label is fed by a pressure through a sample liquid inlet 1 into a flow cell 3 and a physiological salt soln. is fed by a pressure through a sheath liquid inlet 2 into said cell, respectively. The light from a continuous light projection system 5 converges at the central axis of a capillary 4 and is scattered by the cells passing the same. The scattered light is detected by an optical system 6 for detecting the scattered light. The light signals which two photodetecting elements of a photodetector 7 receive are the pulses parted by the time interval T. The pulse of a light emission signal is generated and the pulse light is emitted by a projection system 9 for the pulse light upon lapse of the time nT after the light signals enter the photodetector 7 when the light signals are discriminated as the desired cell in a signal processing system 8 from the height of the pulses.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は細胞懸濁液を毛細管流路に流しまたはノズルよ
り噴出し、個々の細胞に光を照射し、細胞からの散乱光
または蛍光により細胞分析する装置に係り、特に多項目
細胞分析をするのに好適な細胞分析装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention involves pouring a cell suspension into a capillary channel or ejecting it from a nozzle, irradiating each cell with light, and detecting the scattered light or fluorescence from the cells. The present invention relates to a cell analysis device, and particularly to a cell analysis device suitable for multi-item cell analysis.

〔従来の技術〕[Conventional technology]

従来から、細胞を流しながら光計測をし、細胞分析をす
る装置、いわゆるフローサイトメータでは、細胞懸濁液
(サンプル液)を測定部に安定に、しかも目詰りなく流
すために層流状態の急激な縮流を利用して、サンプル液
を生理食塩水で包み込むようにして流す方式を採用して
いる。この方式はシースフロ一方式と呼ばれ、細胞分析
装置のフロー系の有力な手段となっている。従来技術で
はシースフローでサンプル液を十分に絞り込み、その中
に浮遊している細胞の形状、大きさ、種類を分析するた
めに、細胞にレーザ光などの連続光を照射し、細胞から
発する散乱光強度と、予め蛍光標識を付けておいた特定
の細胞から発する蛍光強度を測定している。
Traditionally, so-called flow cytometers, devices that optically measure and analyze cells while flowing cells, require a laminar flow state in order to flow the cell suspension (sample solution) stably into the measurement section without clogging. A method is adopted that utilizes rapid contractions to flow the sample liquid so that it is surrounded by physiological saline. This method is called a sheath-flow one-way method, and is an effective means for flow systems in cell analyzers. In conventional technology, the sample liquid is sufficiently squeezed using a sheath flow, and in order to analyze the shape, size, and type of cells floating inside, the cells are irradiated with continuous light such as a laser beam, and the scattering emitted from the cells is analyzed. The light intensity and the fluorescence intensity emitted from specific cells that have been labeled with fluorescent labels are measured.

尚この種に類するものは、米国特許第4,395,39
7号明細書に示されている。
A similar product is disclosed in U.S. Patent No. 4,395,39.
No. 7 specification.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、連続光を光源として用いるため、検
出可能な強度の散乱光及び蛍光を得るためには強力な光
源が必要であり、そのために装置が大型でしかも高価に
なるという欠点があった。
The above conventional technology uses continuous light as a light source, so a powerful light source is required to obtain detectable scattered light and fluorescence, which has the disadvantage of making the device large and expensive. .

特に蛍光標識でマーキングした細胞の蛍光強度を検出す
る場合は、蛍光標識の種類によっては非常に蛍光が弱く
、大出力のレーザを光源としても蛍光が検出できないこ
とがあった。また多種類の蛍光標識をマーキングして、
複数項目の分析を同時に行うためには、それぞれの蛍光
標識に適する波長帯を持つ複数の光源を用いる必要があ
り、ますます装置が大型化することになる。
In particular, when detecting the fluorescence intensity of cells marked with a fluorescent label, depending on the type of fluorescent label, the fluorescence is extremely weak, and even with a high-output laser as the light source, the fluorescence may not be detected. In addition, marking with many types of fluorescent labels,
In order to analyze multiple items at the same time, it is necessary to use multiple light sources with wavelength bands suitable for each fluorescent label, which results in increasingly larger equipment.

パルス光源では、連続光源よりも瞬間光強度の強いもの
があるが、単に連続光源をパルス光源に替えただけでは
、細胞が光学焦点上を通過する瞬間とパルス発光の時間
とのタイミングを合わせることができず1分析の効率が
悪くなってしまう。
Some pulsed light sources have a stronger instantaneous light intensity than continuous light sources, but simply replacing a continuous light source with a pulsed light source does not make it possible to match the timing of the pulsed light emission with the moment when the cell passes over the optical focus. 1 analysis becomes inefficient.

本発明の目的は、分析の効率を下げずに、装置を小型化
することにある。
An object of the present invention is to miniaturize the apparatus without reducing analysis efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、連続光を光源とする第1の照射測定光学系
と、パルス光を光源とする第2の照射測定光学系を設け
、個々の細胞が第1の照射測定光学系の光学焦点上の近
接する2点を通過する時間間隔を検出して、その時間間
隔の一定倍の時間経過後に第2の照射測定光学系でパル
ス光を発し、測定するように構成することにより、達成
される。
The above purpose is to provide a first irradiation measurement optical system that uses continuous light as a light source and a second irradiation measurement optical system that uses pulsed light as a light source, so that individual cells are placed on the optical focus of the first irradiation measurement optical system. This is achieved by detecting the time interval between two adjacent points of .

〔作用〕[Effect]

第1の照射測定光学系は連続光源を用いているために流
れて来る細胞を全て検出することができる。第1の照射
測定光学系ではその光学焦点上の近接した2点を細胞が
横切る時間間隔を測定するので、個々の細胞の速度を検
出できる。第1の照射測定光学系で監視している2点の
間隔の一定倍だけ離れた下流に第2の照射測定光学系が
あるため、第1の照射測定光学系を細胞が通過してから
、その2点間を細胞が横切った時間間隔の一定倍後にパ
ルス光学を発光させれば、第2の照射測定光学系の焦点
を細胞がちょうど横切っている瞬間に測定できる。この
ように構成することにより、大出力の光源を必要としな
い測定は小出力で小型の連続光源を用いた第1の照射測
定光学系で行い、大出力の光源を必要とする測定は瞬間
光強度の大きいパルス光源を用いた第2の照射測定光学
系で行えるので、装置全体を小型化することができる。
Since the first irradiation measurement optical system uses a continuous light source, it can detect all flowing cells. Since the first irradiation measuring optical system measures the time interval at which a cell crosses two adjacent points on the optical focus, it is possible to detect the speed of each individual cell. Since there is a second irradiation measurement optical system downstream that is a certain number of times the distance between the two points monitored by the first irradiation measurement optical system, after the cells pass through the first irradiation measurement optical system, By emitting pulsed light after a certain number of times the time interval at which the cell crosses between these two points, the focus of the second irradiation measuring optical system can be measured at the moment when the cell crosses. With this configuration, measurements that do not require a high-power light source are performed using the first irradiation measurement optical system that uses a small, low-power continuous light source, and measurements that require a high-power light source are performed using instantaneous light. Since this can be carried out using the second irradiation measurement optical system that uses a high-intensity pulsed light source, the entire apparatus can be miniaturized.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

図において、サンプル液入口1より蛍光標識でマーキン
グされた細胞懸濁液が、シース液人口2より生理食塩水
がそれぞれフローセル3に圧入される。フローセル3内
で、細胞懸濁液は周囲を生理食塩水に包み込まれたシー
スフローを形成し、細胞列11となって毛細管4の中心
軸上を層流状態で流れる。″毛細管4は透明体でできて
おり、断面が長方形である。連続光照射系5から出た光
は毛細管4の中心軸の狭い領域に収束しており、そこを
通過する細胞によって散乱される。散乱光は散乱光検出
光学系6で検出される。散乱光検出光学系6の光検出器
7は2つの光検出素子から成っており、それぞれの光検
出素子上には、毛細管11の中心軸上の近接した2点を
細胞が通過する際に散乱する光が像を結ぶ。そのため、
1個の細胞が通過した際の光検出器7の2つの光検出素
子が受ける光信号は、第2図のa)とb)で示したよう
に時間間隔がTだけ離れたパルスとなる。このパルスの
高さは細胞の大きさに関連しており、通過した細胞が目
的としている細胞であるかをパルスの高さから信号処理
系8で判別する。信号処理系8で、目的とする細胞であ
ると判別した場合は、光検出器7に光信号が入ってから
2つの光検出素子の受ける光信号パルスの時間間隔Tの
n倍であるnTだけ時間が経過した後に第2図C)で示
すように発光信号パルスを発生し、パルス光照射系9で
パルス光を発する。パルス光照射系9から出た光は毛細
管4の中心軸上で連続光照射系Sの収束点より下流の点
に収束する。連続光照射系5の収束点とパルス光照射系
9の収束点との間隔は、光検出器7の2つの光検出素子
上に像を結ぶ2点の間隔のn倍となっており、パルス光
を発する瞬間に収束点を細胞が流れていることになる。
In the figure, a cell suspension marked with a fluorescent label is injected into a flow cell 3 through a sample liquid inlet 1, and physiological saline is injected into a flow cell 3 through a sheath fluid inlet 2, respectively. Within the flow cell 3, the cell suspension forms a sheath flow surrounded by physiological saline, forms a cell row 11, and flows on the central axis of the capillary tube 4 in a laminar flow state. ``The capillary tube 4 is made of a transparent material and has a rectangular cross section.The light emitted from the continuous light irradiation system 5 is focused in a narrow area on the central axis of the capillary tube 4, and is scattered by the cells passing through it. The scattered light is detected by the scattered light detection optical system 6. The photodetector 7 of the scattered light detection optical system 6 consists of two photodetecting elements, and the center of the capillary tube 11 is located on each photodetecting element. The light scattered when a cell passes two points close to each other on the axis forms an image.
The optical signals received by the two photodetecting elements of the photodetector 7 when one cell passes are pulses spaced apart by a time interval T, as shown in a) and b) of FIG. The height of this pulse is related to the size of the cell, and the signal processing system 8 determines whether the passed cell is the target cell based on the height of the pulse. When the signal processing system 8 determines that the cell is the target cell, the signal is processed by nT, which is n times the time interval T between the optical signal pulses received by the two photodetecting elements after the optical signal enters the photodetector 7. After the elapse of time, a light emission signal pulse is generated as shown in FIG. 2C), and the pulsed light irradiation system 9 emits pulsed light. The light emitted from the pulsed light irradiation system 9 converges on the central axis of the capillary tube 4 at a point downstream from the convergence point of the continuous light irradiation system S. The interval between the convergence point of the continuous light irradiation system 5 and the convergence point of the pulsed light irradiation system 9 is n times the interval between the two points that form images on the two photodetector elements of the photodetector 7, and the pulse At the moment when light is emitted, cells are flowing through the convergence point.

細胞は蛍光標識でマーキングされているため、パルス光
照射系9の強力なパルス光によって励起されて蛍光を発
する。細胞から発した蛍光は、蛍光検出光学系10で検
出され、その情報は信号処理系8で統計処理される。
Since the cells are marked with fluorescent labels, they are excited by the strong pulsed light from the pulsed light irradiation system 9 and emit fluorescence. Fluorescence emitted from cells is detected by a fluorescence detection optical system 10, and the information is statistically processed by a signal processing system 8.

本実施例では、比較的弱い光源で測定可能な散乱光の測
定のみを連続光を光源とした照射測定光学系で行ってい
るため、連続光照射系5は小型で安価な物が使える。ま
た1強い光源が必要な蛍光の測定は、小型でも瞬間出力
の高いパルス光源を用いているため、装置の小型化が図
れる。また、1つ1つの細胞が、パルス光照射系9のち
ょうど収束点を通過する瞬間に測定するため、それぞれ
の細胞を同じ条件で測定でき、測定精度を高めることが
できる。また、連続光照射系5の収束点とパルス光照射
系9の収束点を離れた位置に設けであるため、レンズ等
がふつからずにすむ上に、別の光照射系からの光がもれ
入って測定精度を悪くすることを妨げる。また、それぞ
れの細胞の測定するため、流速がある程度変動しても測
定可能であり、細胞フロー系が高精度でなくてもよく、
装置の低価格化が図れる。
In this embodiment, since only the measurement of scattered light that can be measured with a relatively weak light source is performed using the irradiation measurement optical system using continuous light as the light source, a small and inexpensive continuous light irradiation system 5 can be used. In addition, for fluorescence measurements that require a strong light source, a small pulsed light source with high instantaneous output is used, so the device can be made smaller. Furthermore, since each cell is measured at the moment when it passes through the convergence point of the pulsed light irradiation system 9, each cell can be measured under the same conditions, and measurement accuracy can be improved. In addition, since the convergence point of the continuous light irradiation system 5 and the convergence point of the pulsed light irradiation system 9 are located apart, the lenses, etc. do not become cluttered, and the light from another light irradiation system is prevented. This prevents interference from occurring and impairing measurement accuracy. In addition, since each cell is measured, it is possible to measure even if the flow rate fluctuates to some extent, and the cell flow system does not need to be highly accurate.
The cost of the device can be reduced.

更に、散乱光の強度から判別を行っているため。Furthermore, the discrimination is made based on the intensity of the scattered light.

細胞懸濁液に目的の細胞以外の細胞やゴミなどが混じっ
ていてもそれらを除いた測定ができる。
Even if the cell suspension contains cells other than the target cells or dirt, it is possible to remove them from the measurement.

第3図は本発明の別の実施例であり、蛍光検出光学系の
代わりに、撮像器12を用いている。パルス光照射系9
は、発光時間の非常に短いパルス光を発し、流れている
細胞の静止画像を得ることができる。得られた画像情報
から1画像処理等により、それぞれの細胞の分析を行う
FIG. 3 shows another embodiment of the present invention, in which an imager 12 is used instead of the fluorescence detection optical system. Pulsed light irradiation system 9
emits pulsed light with a very short emission time and can obtain still images of flowing cells. From the obtained image information, each cell is analyzed by single image processing or the like.

この実施例では、多量の細胞を流しながら、目的の細胞
の画像を得ることができるので、異常細胞の発見などが
高速に行える。また、細胞が通過する瞬間にパルス光を
発して像を得るため、撮像器11は狭い範囲だけ視れば
よく、したがって拡大倍率の大きい像を撮れることにな
る。
In this embodiment, images of target cells can be obtained while flowing a large amount of cells, so abnormal cells can be discovered quickly. Furthermore, since a pulsed light is emitted to obtain an image at the moment a cell passes, the imager 11 only needs to view a narrow range, and therefore can take an image with a high magnification.

第4図は、第1図の散乱光検出光学系6に用いることの
できる別の光検出法を示したもので、光検出器7は1つ
の光検出素子であるが、その前に2つの長方形の穴のあ
いた遮光板13が置いである。そのため、光検出器7に
は、細胞が近接する2点を通過する際の散乱光が入射し
、1個の細胞が通過した際の光検出器7が受ける光信号
は第5図a)に示したように2つの峰のある波形となる
FIG. 4 shows another light detection method that can be used in the scattered light detection optical system 6 of FIG. A light shielding plate 13 with a rectangular hole is placed there. Therefore, the scattered light when a cell passes two points in close proximity enters the photodetector 7, and the optical signal received by the photodetector 7 when one cell passes is shown in Figure 5 a). As shown, the waveform has two peaks.

信号処理系8で、この2つの峰の間隔Tを測り、第5図
C)で示したようにそのn倍後にパルス光照射系9を発
光させる。この実施例の場合は、散乱光を1つの光検出
素子から成る光検出器を用いるため、低価格化できる。
The signal processing system 8 measures the distance T between these two peaks, and causes the pulsed light irradiation system 9 to emit light after n times the distance T, as shown in FIG. 5C). In this embodiment, since a photodetector consisting of one photodetection element is used to detect scattered light, the cost can be reduced.

第6図は1本発明の別の実施例であり、連続光照射系5
の光軸とパルス光照射系9の光軸が互いに直交するよう
に配置したものである。このように配置することにより
、レンズ等がぶつかり合わないようにできるので、連続
光照射系5の収束点とパルス光照射系9の収束点を近い
位置に設定できる。そのため、パルス光を発する時間の
精度を高めることができる。また1毛細管4の長さを短
くすることができ、フロー系の圧力損失を小さくするこ
とができる。
FIG. 6 shows another embodiment of the present invention, in which a continuous light irradiation system 5
The optical axis of the pulsed light irradiation system 9 and the optical axis of the pulsed light irradiation system 9 are arranged so as to be orthogonal to each other. By arranging them in this way, the lenses and the like can be prevented from colliding with each other, so that the convergence points of the continuous light irradiation system 5 and the convergence points of the pulsed light irradiation system 9 can be set close to each other. Therefore, the accuracy of the time at which pulsed light is emitted can be improved. Furthermore, the length of each capillary tube 4 can be shortened, and pressure loss in the flow system can be reduced.

第7図は1本発明を適用できる別のフロー系を示してい
る。フローセル3には毛細管がなく、噴出口より大気中
に細胞を含んだ液を噴出し、液柱14の部分で測定を行
う、この場合は、液柱14はR囲が気体であるために断
面内での速度分布が小さく、個々の細胞の速度差が小さ
くなる利点がある。
FIG. 7 shows another flow system to which the present invention can be applied. The flow cell 3 does not have a capillary tube, and the liquid containing cells is ejected into the atmosphere from the ejection port, and the measurement is performed at the liquid column 14. In this case, the liquid column 14 has a cross section because the radius R is gas. This has the advantage that the velocity distribution within the cell is small and the difference in velocity between individual cells is small.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、小型の連続光源とパル
ス光源を用いることができるので、装置を小型化するこ
とができる。
As described above, according to the present invention, it is possible to use a compact continuous light source and a pulsed light source, so that the device can be downsized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例の構成図及び動作
説明図、第3図は本発明の別の実施例の構成図、第4図
及び第5図は本発明の別の実施例に用いる光検出器の図
及びその動作説明図、第6図は本発明の他の構成を示す
図、第7図は本発明を適用できる別のフロー系を示す図
である。 3・・・フローセル、5・・・連続光照射系、6・・・
散乱当て 1  口 石 2 図
1 and 2 are a configuration diagram and an operation explanatory diagram of one embodiment of the present invention, FIG. 3 is a configuration diagram of another embodiment of the present invention, and FIGS. 4 and 5 are diagrams of another embodiment of the present invention. FIG. 6 is a diagram showing another configuration of the present invention, and FIG. 7 is a diagram showing another flow system to which the present invention can be applied. 3...Flow cell, 5...Continuous light irradiation system, 6...
Scattered guess 1 Stone 2 Diagram

Claims (1)

【特許請求の範囲】 1、細胞懸濁液を加圧して光学焦点上へ送り込む細胞フ
ロー系と、この細胞フロー系から流下していく流れの中
に浮遊している細胞に強力な光を照射してその散乱光強
度又は蛍光強度を測定する照射測定光学系と、この照射
測定光学系からの信号により細胞の種類、大きさ、形状
などを分析する信号処理系とから成る生体細胞分析装置
において、連続光を発する光源を持つ第1の照射測定光
学系と、断続的なパルス光を発する光源を持つ第2の照
射測定光学系を有し、連続光を発する光源を持つ第1の
照射測定光学系で近接した2地点を細胞が通過する時間
の間隔を測定し、その間隔の定数倍の時間が経過した後
第2の照射光学系のパルス光を発するように構成したこ
とを特徴とする細胞分析装置。 2、特許請求の範囲第1項記載の細胞分析装置において
、第1の照射測定光学系で細胞からの散乱光の強度を測
定し、その散乱光の強度があらかじめ設定した範囲に入
つている場合にのみ第2の照射測定光学系で対応するパ
ルス光を発する細胞分析装置。 3、特許請求の範囲第1項及び第2項のいずれか1つに
記載の細胞分析装置において、第2の照射測定光学系で
パルス光によつて励起された蛍光を測定する細胞分析装
置。 4、特許請求の範囲第1項及び第2項のいずれか一つに
記載の細胞分析装置において、第2の照射測定光学系に
顕微鏡を用い、細胞の形状を分析する細胞分析装置。
[Claims] 1. A cell flow system that pressurizes a cell suspension and sends it onto an optical focal point, and irradiates cells floating in the flow flowing down from this cell flow system with intense light. A biological cell analyzer consisting of an irradiation measurement optical system that measures the intensity of scattered light or fluorescence intensity, and a signal processing system that analyzes the type, size, shape, etc. of cells based on signals from the irradiation measurement optical system. , a first irradiation measurement optical system having a light source that emits continuous light, and a second irradiation measurement optical system having a light source that emits intermittent pulsed light; The second irradiation optical system is characterized in that it is configured to measure the time interval between cells passing two adjacent points using an optical system, and to emit pulsed light from the second irradiation optical system after a constant multiple of that interval has elapsed. Cell analysis device. 2. In the cell analyzer according to claim 1, when the intensity of scattered light from the cells is measured by the first irradiation measurement optical system and the intensity of the scattered light is within a preset range. A cell analyzer that emits pulsed light corresponding to only the second irradiation measurement optical system. 3. A cell analyzer according to any one of claims 1 and 2, in which the second irradiation measurement optical system measures fluorescence excited by pulsed light. 4. A cell analysis device according to any one of claims 1 and 2, which uses a microscope as the second irradiation measurement optical system to analyze the shape of cells.
JP62063826A 1987-03-20 1987-03-20 Cell analysis instrument Pending JPS63231244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62063826A JPS63231244A (en) 1987-03-20 1987-03-20 Cell analysis instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62063826A JPS63231244A (en) 1987-03-20 1987-03-20 Cell analysis instrument

Publications (1)

Publication Number Publication Date
JPS63231244A true JPS63231244A (en) 1988-09-27

Family

ID=13240553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62063826A Pending JPS63231244A (en) 1987-03-20 1987-03-20 Cell analysis instrument

Country Status (1)

Country Link
JP (1) JPS63231244A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561517A (en) * 1993-09-17 1996-10-01 Hitachi, Ltd. Method and apparatus for flow type particle image analysis using a pulse light emitted at any of an odd and even image field reading-out period
JP2002506522A (en) * 1997-06-09 2002-02-26 グアヴァ テクノロジーズ インコーポレイテッド Method and apparatus for detecting microparticles in a fluid sample
JP2007519006A (en) * 2004-01-23 2007-07-12 ベックマン コールター インコーポレイテッド Multiple laser triggering system and method
JP2009008602A (en) * 2007-06-29 2009-01-15 Hokuto Denshi Kogyo Kk Detecting method and device for size of particle in liquid
JP2011185954A (en) * 2000-05-01 2011-09-22 Ondeo Nalco Co Modular fluorometer, and methods of detection and control

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5561517A (en) * 1993-09-17 1996-10-01 Hitachi, Ltd. Method and apparatus for flow type particle image analysis using a pulse light emitted at any of an odd and even image field reading-out period
JP2002506522A (en) * 1997-06-09 2002-02-26 グアヴァ テクノロジーズ インコーポレイテッド Method and apparatus for detecting microparticles in a fluid sample
JP4754661B2 (en) * 1997-06-09 2011-08-24 ミリポア・コーポレイション Method and apparatus for detecting microparticles in a fluid sample
JP2011185954A (en) * 2000-05-01 2011-09-22 Ondeo Nalco Co Modular fluorometer, and methods of detection and control
JP2007519006A (en) * 2004-01-23 2007-07-12 ベックマン コールター インコーポレイテッド Multiple laser triggering system and method
JP2009008602A (en) * 2007-06-29 2009-01-15 Hokuto Denshi Kogyo Kk Detecting method and device for size of particle in liquid

Similar Documents

Publication Publication Date Title
KR101601699B1 (en) Optical detection method and optical detection apparatus for a fine particle
JP4602975B2 (en) Photodetector for particle classification system
US5644388A (en) Imaging flow cytometer nearly simultaneously capturing a plurality of images
US8524489B2 (en) Particle or cell analyzer and method
US8885153B2 (en) Differentiation of flow cytometry pulses and applications
US6813017B1 (en) Apparatus and method employing incoherent light emitting semiconductor devices as particle detection light sources in a flow cytometer
US4920275A (en) Particle measuring device with elliptically-shaped scanning beam
EP2034291B1 (en) Light irradiation device, fine particle analyzing apparatus, and light irradiation method
CN107850537B (en) Radiation carrier and use thereof in an optical sensor
US10302545B2 (en) Automated drop delay calculation
CN110226082B (en) Flow cytometer with multiple intensity peak design
CN111948118B (en) Liquid drop delay calculating device and calculating method thereof
US11898951B2 (en) Forward scattered light detection system, flow cytometer and method for measuring cell diameter
JP3102925B2 (en) Particle analyzer
JPS63231244A (en) Cell analysis instrument
JPS6151569A (en) Cell identifying device
JPS63201554A (en) Particle analyzing device
JP2756298B2 (en) Sample test equipment
JPS59102139A (en) Blood corpuscle counter
EP1070952A2 (en) Method and means for particle measurement
JPH03146848A (en) Inspection sample measuring instrument with alignment mechanism
JPH0448245A (en) Particle measuring instrument
JPH02145941A (en) Cell analyzer
JPH0353147A (en) Specimen measuring instrument
JPH046440A (en) Particle analyzer