JPS6229190A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6229190A
JPS6229190A JP16833785A JP16833785A JPS6229190A JP S6229190 A JPS6229190 A JP S6229190A JP 16833785 A JP16833785 A JP 16833785A JP 16833785 A JP16833785 A JP 16833785A JP S6229190 A JPS6229190 A JP S6229190A
Authority
JP
Japan
Prior art keywords
shell
active layer
electrons
transition metal
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16833785A
Other languages
Japanese (ja)
Inventor
Tomoo Yanase
柳瀬 知夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16833785A priority Critical patent/JPS6229190A/en
Publication of JPS6229190A publication Critical patent/JPS6229190A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3068Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure deep levels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • H01S5/32391Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers based on In(Ga)(As)P

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To realize stable oscillation in a single mode, by having double hetero- structure and composition in which luminous wavelength by shell-to-shell transition of inner shell electrons in transition metal impurities mixed in an active layer is made not shorter than one by recombination of injection carriers. CONSTITUTION:Transition metal impurities are mixed in an active layer of semiconductor laser having double hetero structure. To make a material forming the double hetero structure, zinc Zn-doped InP 11 serves as P-type clad layer, sulfur S-doped InP 12 as N-type clad layer, and erbium Er-doped InGaAsP 13 as active layer. Excitation is performed by current injection in which holes are injected from a P side electrode 14 and electrons into an N side electrode 15. Both sides of the active layer are formed in embedded composition of high resistance InP layer 16 so that the excitation current flows concentrated into the Er-InGaAsP 13 with effect. Thus, oscillation by shell-to-shell transition of inner shell electrons in the mixed transition metal impurities can be realized with extremely narrow gain width of 10<10>-10<11>Hz and stable frequency in a single axial mode.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高効率でかつ安定な波長で発信する半導体レ
ーザに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser that emits light at a highly efficient and stable wavelength.

(従来技術とその問題点) 半導体レーザは、光フアイバ通信の光源として実用化が
始まっている。この用途で用いられる半導体レーザは、
発振モードが少なくかつ温度や駆動電流に対し安定であ
る事が望ましい。発振モードの数が多い半導体レーザを
用いると、光ファイバの材料分散により、伝送可能な帯
域が狭くなったり、発振モードが変化したときに大きな
雑音を発生し、伝送品質の低下を招くことが知られてい
る。ところが、従来の半導体レーザは室温では約10”
)Izのゲイン幅を有しているから、約10”Hz間隔
の軸モードが複数台まれ、単一で安定な周波数で発振さ
せることが非常に困かである。このことは、例えば、ヘ
テロストラフチャー・レーザ(](eterostru
cture La5ers) 、 B巻、アカデミツク
出版(Academic Press) 、 1978
年、B巻(partB) 、 253〜256ページに
記されている。
(Prior art and its problems) Semiconductor lasers have begun to be put into practical use as light sources for optical fiber communications. The semiconductor laser used for this purpose is
It is desirable that there are few oscillation modes and that it is stable with respect to temperature and drive current. It is known that when a semiconductor laser with a large number of oscillation modes is used, the transmission band becomes narrow due to material dispersion in the optical fiber, and large noise is generated when the oscillation mode changes, leading to a decrease in transmission quality. It is being However, conventional semiconductor lasers have a power of about 10” at room temperature.
)Iz gain width, multiple axial modes with an interval of about 10"Hz are generated, making it extremely difficult to oscillate at a single, stable frequency. strufture laser(](eterostru
ture La5ers), Volume B, Academic Press, 1978
2003, Volume B (part B), pages 253-256.

そこで、本発明の目的は、このような従来の欠点を除去
せしめて、単一のモードで安定に発振する半導体レーザ
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate such conventional drawbacks and provide a semiconductor laser that stably oscillates in a single mode.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する手段は
、ダブルヘテロ構造を有する半導体レーザであって、活
性層中に混入きれた遷移金属不純物の内a1を子の殻間
遷移による発光波長が、圧入キャリヤーの再結合による
発光波長より短くないことに特徴がある。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a semiconductor laser having a double heterostructure, in which transition metal impurities mixed into the active layer are eliminated. A feature of a1 is that the emission wavelength due to intershell transition is not shorter than the emission wavelength due to recombination of the injected carriers.

(作用) 本発明は、上述の手段により従来技術の問題点を解決し
た。ダブルヘテロ構造を有する半導体レーザの活性酒中
に遷移金属不純物が混入されているので、この不純物が
n層から注入きれる電子をトラップし、さらにpmから
注入される正孔をトラップし、発光する。このとき、遷
移金属不純物の内殻電子のうち、電子と正孔をトラップ
して受は取ったエネルギに等しい内殻電子の殻間遷移に
よる励起だけが選択的に起こる。そして、励起された内
殻電子は誘導放出をし、レーザ発振に寄与する。結晶中
の遷移金属の内殻電子の遷移のゲイン幅は非常に狭く約
10”〜10日Hzであり、従来の半導体レーザのゲイ
ン幅(約10”Hz)の1/10〜1/100となる。
(Operation) The present invention solves the problems of the prior art by the above-mentioned means. Since a transition metal impurity is mixed into the active liquor of a semiconductor laser having a double heterostructure, this impurity traps electrons injected from the n layer, and further traps holes injected from the pm layer, thereby emitting light. At this time, among the core electrons of the transition metal impurity, only excitation by intershell transition of the core electrons, which is equal to the energy received by trapping electrons and holes, occurs selectively. The excited core electrons then undergo stimulated emission and contribute to laser oscillation. The gain width of the transition of the core electrons of the transition metal in the crystal is very narrow, about 10" to 10 Hz, which is 1/10 to 1/100 of the gain width of a conventional semiconductor laser (about 10" Hz). Become.

そのため、モードは単一となり、かつ安定な周波数で発
振する。遷移金属不純物が用いられた理由は、内殻電子
の殻間遷移で発光するから、外殻電子で保護され高い効
率で電子遷移の発光が得られるからである。
Therefore, the mode becomes single and oscillates at a stable frequency. The reason why transition metal impurities were used is that since they emit light due to intershell transitions of inner shell electrons, they are protected by outer shell electrons and can emit light due to electronic transitions with high efficiency.

(実施例) 以下本発明の実施例について図面を参照して詳細に説明
する。
(Example) Examples of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の半導体レーザを示す断面図
である。本実施例では、ダブル・\テロ構造を形成する
材料として、亜鉛(Zn)をドープしたInpHをp形
りラッド】にし、硫黄(S)をドープしたInp12を
n形りラッド居にし、エルビウム(Er)ヲトーブした
InGaAsP13を活性】にした。励起は、p側電極
14から正孔を注入し、n側電極15から電子を注入す
る電流注入によった。励起Trf、流が、効率よ< E
r−InGaAsP13に集中して流れるようにするた
めに、活性欝の両側が高抵抗Inp層16で埋め込まれ
た埋め込み構造とした。
FIG. 1 is a sectional view showing a semiconductor laser according to an embodiment of the present invention. In this example, as the materials for forming the double \tero structure, InpH doped with zinc (Zn) is made into a p-type rad, Inp12 doped with sulfur (S) is made into an n-type rad, and erbium ( Er) The heated InGaAsP13 was made active. Excitation was carried out by current injection in which holes were injected from the p-side electrode 14 and electrons were injected from the n-side electrode 15. Excitation Trf, flow is efficient < E
In order to concentrate the flow in the r-InGaAsP layer 13, a buried structure was used in which both sides of the active layer were filled with high-resistance Inp layers 16.

次に本実施例による半導体レーザの製作法について述べ
る。木製作法が従来の半導体レーザの製造と異なる点は
、5−Inp基板上にダブルヘテロ(DH)構造を形成
する工程において、活性届を成長する際Erを気相で混
入する点である。この工程は、気相成長法(Vapor
 Phase Epitaxy、以後は略してVPEと
呼ぶ)によった、この気相成長法によるDH結晶の成長
法が通常の方法と異なるのはEr−InGaAsP活性
届13の成長のときに、原料として工)レビウム・バイ
トランド(ErHs )蒸気を通常のInGaAsP中
料に加えた点である。IncQとGacllガスは、I
nメタル及びGaメタルとHCQとを反応させる温度を
850℃とし、HcQ、と1nメタルやGaメタルと反
応させて得た。そして、えられた11cQとGBcQに
Ph、とAsH、及びErH,を加え700℃のSドー
ブエnp基板上にエビ成長させた。各原料の流量として
、IHcQ用のHcQは5.8cc/min、 Gac
Q用のH(Jは0.25cc/min、Ph、は3.2
5cc/min、 AsH,は1.75cc/minと
し、ErH3としては300″Cに加熱し昇華したガス
を用いた。
Next, a method for manufacturing the semiconductor laser according to this embodiment will be described. The difference between the wood manufacturing method and the conventional manufacturing of semiconductor lasers is that Er is mixed in the vapor phase when growing an active layer in the process of forming a double hetero (DH) structure on a 5-Inp substrate. This process is carried out using the vapor phase growth method (Vapor growth method).
The difference between the growth method of DH crystal using this vapor phase epitaxy method (hereinafter referred to as VPE) is that it differs from the usual method when growing Er-InGaAsP as a raw material. The point is that levium byteland (ErHs) vapor is added to the normal InGaAsP medium. IncQ and Gacll gas are I
The temperature at which n metal and Ga metal are reacted with HCQ was set to 850° C., and HcQ was reacted with 1n metal and Ga metal. Then, Ph, AsH, and ErH were added to the obtained 11cQ and GBcQ, and shrimp were grown on an S dove np substrate at 700°C. As the flow rate of each raw material, HcQ for IHcQ is 5.8cc/min, Gac
H for Q (J is 0.25cc/min, Ph is 3.2
5 cc/min, AsH, 1.75 cc/min, and ErH3 was a gas heated to 300''C and sublimated.

このようにして得られたDH構造を、図に示すような高
抵抗Inputsで埋め込んだ。
The DH structure thus obtained was embedded with high resistance inputs as shown in the figure.

このようにして作られたErドープInGaAsP半導
体レーザに電流を注入してみると、波長1.54P@で
単一軸モードで安定に発振した。
When a current was injected into the Er-doped InGaAsP semiconductor laser thus fabricated, it oscillated stably in a single-axis mode at a wavelength of 1.54P@.

上記実施例においては、ErをInGaAsP中にドー
プしたが、Erの他にNdをドープすると1.06褐や
1.3pの波長で発振する半導体レーザが得られる。N
dの原料としては、(NdH,)蒸気を用いれば良い。
In the above embodiment, Er is doped into InGaAsP, but if Nd is doped in addition to Er, a semiconductor laser that oscillates at a wavelength of 1.06 brown or 1.3p can be obtained. N
As the raw material for d, (NdH,) vapor may be used.

上記実施例においては、InGaAsP中にErを入れ
たが、本発明はこの材料に限定されず、InGaAs、
AQGaAs等でも良い。
In the above example, Er was put into InGaAsP, but the present invention is not limited to this material, and InGaAs,
AQGaAs or the like may also be used.

(発明の効果) 本発明による半導体レーザは、混入された遷移金属不純
物の内殻電子の殻間遷移によって発振するから、ゲイン
幅が1010〜10”Hzと非常に狭く、そのため単一
の軸モードで安定な周波数で発振した。
(Effects of the Invention) Since the semiconductor laser according to the present invention oscillates by intershell transition of the inner shell electrons of the mixed transition metal impurity, the gain width is very narrow at 1010 to 10"Hz, and therefore only a single axial mode is generated. It oscillated at a stable frequency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図である。 11− Zn−Inpnチク2フ、12−5−Inpり
=/ ラド居、13−Er−InGaAsP活性1台、
14・p側電極、15 ・・・n側電極、16−・・高
抵抗InpNj。 代理人 弁理士 本 庄 伸 介 第1図 Er−1nGaAsP b nイ貝°」唱に亦シ匹
FIG. 1 is a sectional view showing one embodiment of the present invention. 11-Zn-Inpn 2 units, 12-5-Inp =/rad, 13-Er-InGaAsP active 1 unit,
14.p side electrode, 15...n side electrode, 16-...high resistance InpNj. Agent: Patent Attorney Shinsuke Honjo

Claims (1)

【特許請求の範囲】[Claims] ダブルヘテロ構造を有する半導体レーザにおいて、活性
層中に混入された遷移金属不純物の内殻電子の殻間遷移
による発光波長が、注入キャリヤーの再結合による発光
波長より短くないことを特徴とする半導体レーザ。
A semiconductor laser having a double heterostructure, characterized in that an emission wavelength due to intershell transition of inner-shell electrons of a transition metal impurity mixed in an active layer is not shorter than an emission wavelength due to recombination of injected carriers. .
JP16833785A 1985-07-30 1985-07-30 Semiconductor laser Pending JPS6229190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16833785A JPS6229190A (en) 1985-07-30 1985-07-30 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16833785A JPS6229190A (en) 1985-07-30 1985-07-30 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6229190A true JPS6229190A (en) 1987-02-07

Family

ID=15866182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16833785A Pending JPS6229190A (en) 1985-07-30 1985-07-30 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6229190A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795468B2 (en) 1998-02-25 2004-09-21 Internatioal Business Machines Corporation Electric pumping of rare-earth-doped silicon for optical emission
US7403328B2 (en) * 2004-08-18 2008-07-22 National Chiao Tung University Solar-pumped laser
JP2017108061A (en) * 2015-12-11 2017-06-15 三菱電機株式会社 Method of manufacturing semiconductor laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795468B2 (en) 1998-02-25 2004-09-21 Internatioal Business Machines Corporation Electric pumping of rare-earth-doped silicon for optical emission
US7403328B2 (en) * 2004-08-18 2008-07-22 National Chiao Tung University Solar-pumped laser
US7417789B2 (en) * 2004-08-18 2008-08-26 National Chiao Tung University Solar-pumped active device
JP2017108061A (en) * 2015-12-11 2017-06-15 三菱電機株式会社 Method of manufacturing semiconductor laser

Similar Documents

Publication Publication Date Title
JPH09199803A (en) Semiconductor laser and its manufacture method
JP2003332694A (en) Semiconductor laser
JPS6229190A (en) Semiconductor laser
US4158207A (en) Iron-doped indium phosphide semiconductor laser
JPS59152684A (en) Quantum well type surface light emitting semiconductor laser
JPH10284800A (en) Semiconductor light-emitting element and manufacture therefor
JP2758598B2 (en) Semiconductor laser
JPH09214045A (en) Semiconductor laser and its fabrication method
JP2661307B2 (en) Semiconductor laser
JP2771318B2 (en) Semiconductor laser
JP2011114214A (en) Semiconductor laser device
JPH10242561A (en) Semiconductor laser and its manufacture
JP2685778B2 (en) Semiconductor laser device
JPS614291A (en) Surface light-emission laser
JPH06338657A (en) Semiconductor laser and its manufacture
JPH0278290A (en) Semiconductor laser device
JPS61253882A (en) Semiconductor laser device
JPH05129721A (en) Semiconductor laser and manufacture thereof
JP2004165486A (en) Semiconductor laser diode
JP2629194B2 (en) Manufacturing method of semiconductor laser
JP2001358405A (en) Semiconductor laser device and its manufacturing method
JP2003060309A (en) Semiconductor laser
JP2702964B2 (en) Semiconductor laser device
JP3034177B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6054796B2 (en) semiconductor laser