JPH06338657A - Semiconductor laser and its manufacture - Google Patents

Semiconductor laser and its manufacture

Info

Publication number
JPH06338657A
JPH06338657A JP5128724A JP12872493A JPH06338657A JP H06338657 A JPH06338657 A JP H06338657A JP 5128724 A JP5128724 A JP 5128724A JP 12872493 A JP12872493 A JP 12872493A JP H06338657 A JPH06338657 A JP H06338657A
Authority
JP
Japan
Prior art keywords
layer
ingap
resonator
active layer
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5128724A
Other languages
Japanese (ja)
Other versions
JP3254812B2 (en
Inventor
Jiro Tenmyo
二郎 天明
Masanobu Okayasu
雅信 岡安
Masato Wada
正人 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12872493A priority Critical patent/JP3254812B2/en
Publication of JPH06338657A publication Critical patent/JPH06338657A/en
Application granted granted Critical
Publication of JP3254812B2 publication Critical patent/JP3254812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/164Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions comprising semiconductor material with a wider bandgap than the active layer

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a chemically stable buried window structure wherein surface recombination is small in a low temperature process, by burying an InGaP layer in both ends of a resonator so as to intersect an active layer, with a specified length in the direction of a resonator. CONSTITUTION:A semiconductor laser is manufactured by using an active layer 6 composed of a single or multiple InyGa1-yAs quantum well layers (0< y<0.5), clad layers 3, 9 and guide layers 4, 8 composed of AlxGa1-xAs, a contact layer 10, etc. In order to form an InGaP buried window layer 11, etching is performed for each resonator pitch, until the depth intersecting in a stripe type the active layer 6. Further low temperature buried growth of InGaP is executed by using MOVPE. A laser epitaxial growth film provided with the InGaP buried window is completed, by etching InGaP grown on the laser epitaxial growth film except the buried window part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信などにおいて用
いられるファイバ増幅器へ適用可能な高信頼高出力励起
光源並びに第二高調波発生用光源としての利用が可能な
半導体レーザ及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly reliable and high power pumping light source applicable to a fiber amplifier used in optical communication, a semiconductor laser which can be used as a second harmonic generation light source, and a manufacturing method thereof. .

【0002】[0002]

【従来の技術】Er3+イオンがドープされたファイバ増
幅器は、石英系シングルモードファイバ(SMF)の光
伝搬損失が最小となる1.55μm帯での動作が可能である
ため、光通信のキーデバイスとして注目を集めている。
レーザ発振或いは増幅に用いるEr3+イオン励起用の光
源波長としては1.48μm、0.98μm、0.82μm帯が検討
されている。
2. Description of the Related Art A fiber amplifier doped with Er 3+ ions can be operated in the 1.55 μm band where the optical propagation loss of a silica-based single mode fiber (SMF) is minimized, and is therefore a key device for optical communication. Is attracting attention as.
The 1.48 μm, 0.98 μm, and 0.82 μm bands have been studied as the light source wavelengths for exciting Er 3+ ions used for laser oscillation or amplification.

【0003】特に、0.98μm帯では、増幅効率が高く、
ノイズ特性が良いことが確認されており、励起波長帯と
して有望である。この波長帯での励起レーザとしてはT
i:サファイアレーザが用いられてきた。一方、最近のI
nGaAs層を活性層とする歪量子井戸レーザがこの波長
帯で発振することから、小型のレーザとして盛んに研究
されている。低閾値、高効率特性を有する0.98μmレー
ザが報告されているが、高出力時に、結晶内の転位等に
起因する特性劣化が観測され、十分な寿命を持つ半導体
の励起用レーザは得られていない問題があった。
Particularly, in the 0.98 μm band, the amplification efficiency is high,
It has been confirmed that the noise characteristics are good, and it is a promising excitation wavelength band. T as an excitation laser in this wavelength band
i: Sapphire lasers have been used. On the other hand, recent I
Since a strained quantum well laser using an nGaAs layer as an active layer oscillates in this wavelength band, it has been actively studied as a small laser. A 0.98 μm laser with low threshold and high efficiency characteristics has been reported, but at high output, characteristic deterioration due to dislocations in crystals was observed, and a laser for exciting semiconductors with a sufficient lifetime has been obtained. There was no problem.

【0004】[0004]

【発明が解決しようとする課題】半導体レーザの劣化姿
態について、これまで幾つかの検討が行われてきてい
る。結晶欠陥の増殖と移動、共振器の光学的損傷破壊
(COD:Catastropic Optical Damage)や表面状態の
変化、及びその他のオーミック電極や点欠陥に起因する
ものに大別される。GaAsを基板とする0.8μm帯短波
長GaAs/AlGaAsレーザにとって、劣化の早い順に、
光学損傷、転位層によるダークライン劣化、反射面劣化
であることが知られている。
Several studies have been conducted so far on the state of deterioration of a semiconductor laser. The defects are roughly classified into those caused by the growth and movement of crystal defects, the optical damage destruction (COD) of the resonator, the change of the surface state, and other ohmic electrodes and point defects. For 0.8 μm band short wavelength GaAs / AlGaAs lasers using GaAs as a substrate,
It is known to be optical damage, dark line deterioration due to a dislocation layer, and reflection surface deterioration.

【0005】CODは、レーザの動作電流を増してゆく
と、突然光出力が低下し、非可逆的な破壊が生じる現象
として知られている。これは、半導体レーザの共振器端
面付近がレーザ光に対し若干吸収領域となっていること
による。半導体結晶表面に存在する表面凖位を介した非
発光再結合が起こり、共振器端部では内部キャリア密度
に比べ低下する。そのため、共振器内部の最大利得が得
られる発振波長に対し端面付近ではキャリア密度低下に
より利得が得られず吸収領域となる。光吸収により端面
付近で温度上昇が起こりバンドギャップEgは減少す
る。さらに吸収が増え温度が上昇するフィードバックが
かかり端面溶融に到り素子が破壊される。
COD is known as a phenomenon in which the optical output suddenly decreases as the operating current of the laser increases, causing irreversible destruction. This is because the vicinity of the end face of the resonator of the semiconductor laser is a slightly absorbing region for laser light. Non-radiative recombination occurs via the surface steps existing on the surface of the semiconductor crystal, which is lower than the internal carrier density at the resonator end. Therefore, for the oscillation wavelength at which the maximum gain inside the resonator is obtained, the gain is not obtained near the end face due to the decrease in carrier density and the region becomes an absorption region. Due to the light absorption, the temperature rises near the end face and the band gap E g decreases. Further, the absorption increases and the temperature rises, and feedback is applied to the end face melting, and the element is destroyed.

【0006】従って、CODの臨界光出力を高くするた
めには、反射面近傍の活性領域がレーザ光の吸収領域に
ならないようにすれば、正帰還がかからなくなり、問題
は解決する。また、臨界光出力は、結晶材料の熱伝導率
が高いほど高くなり、最終的には発熱による熱飽和によ
って決定される。具体的には、反射面近傍の活性層を中
央部の活性層よりもバンドギャップの大きい結晶材料で
構成する(ウィンドウ構造)、または表面再結合の少な
い結晶材料でレーザダイオードを構成することが考えら
れる。
Therefore, in order to increase the critical light output of COD, if the active region in the vicinity of the reflecting surface does not become the absorption region of laser light, positive feedback is not applied and the problem is solved. Further, the critical light output increases as the thermal conductivity of the crystalline material increases, and is finally determined by heat saturation due to heat generation. Specifically, it is considered that the active layer near the reflecting surface is made of a crystalline material having a larger bandgap than the active layer in the central portion (window structure), or the laser diode is made of a crystalline material having less surface recombination. To be

【0007】これまで、ウィンドウ構造としては、不純
物拡散、並びに再成長による非吸収ミラー(NAM:No
n Absobing Mirror )が提案されている。前者は、Zn,
Si等の熱拡散を利用し、活性層付近で結晶のディスオ
ーダ化をはかり端面付近の実行屈折率を下げ、発振波長
に対し透明になることを利用する。後者は、元のAlGa
As/GaAsレーザエピタキシャル膜において共振器端部
で活性層に達するまでエッチングし、再度、AlxGa1-x
Asを埋め込み成長させた構造としている。ここで、Al
組成比zを活性層バンドギャップEgを考慮して適切に
大きく選ぶことにより共振器端部の層は発振波長に対し
て透明になり、ウィンドウ構造が構成される。
Up to now, as a window structure, a non-absorption mirror (NAM: No) by impurity diffusion and regrowth has been used.
n Absobing Mirror) has been proposed. The former is Zn,
By utilizing the thermal diffusion of Si or the like, the crystal is disordered in the vicinity of the active layer, the effective refractive index in the vicinity of the end face is lowered, and it becomes transparent to the oscillation wavelength. The latter is the original AlGa
In the As / GaAs laser epitaxial film, etching is performed until reaching the active layer at the cavity end, and Al x Ga 1-x is again performed.
It has a structure in which As is embedded and grown. Where Al
By appropriately selecting the composition ratio z in consideration of the active layer bandgap E g , the layer at the resonator end portion becomes transparent to the oscillation wavelength, and the window structure is formed.

【0008】しかし、これまでのGaAs/AlGaAs短波
系レーザのウィンドウ構造形成法では、不純物を拡散さ
せるための高温処理過程や、高品質のAlGaAs膜を得
るため700℃以上の高温でのAlGaAs埋め込みウィ
ンドウ再成長が必要である。高濃度p型キャップ層等の
p型ドーパントの拡散並びに量子井戸層を含むレーザエ
ピタキシャル特性の劣化が懸念されていた。また、化学
的には活性なAlGaAs埋め込み再成長界面の表面再結
合が大きい問題があった。
However, in the conventional window structure forming method for GaAs / AlGaAs short-wave lasers, a high-temperature treatment process for diffusing impurities and an AlGaAs embedded window at a high temperature of 700 ° C. or higher for obtaining a high-quality AlGaAs film. It needs regrowth. There has been concern about diffusion of p-type dopants such as a high-concentration p-type cap layer and deterioration of laser epitaxial characteristics including the quantum well layer. Further, there is a problem that surface recombination at the chemically active AlGaAs embedded regrowth interface is large.

【0009】本発明は、上記従来技術に鑑みて成された
ものであり、低温プロセスで表面再結合が小さく、化学
的に安定な埋め込みウィンドウ構造を提供し、高信頼性
で高出力の0.98μm帯半導体レーザ及びその製造方法を
提供することを目的とする。
The present invention has been made in view of the above-mentioned prior art, provides a chemically stable buried window structure with small surface recombination in a low temperature process, and has high reliability and high output of 0.98 μm. An object of the present invention is to provide a band semiconductor laser and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】斯かる目的を達成する本
発明の半導体レーザの構成は単一或いは多重のInyGa
1-yAs量子井戸層(0<y<0.5)からなる活性層とAlx
a1-xAsからなるクラッド層、ガイド層並びにコンタク
ト層等で構成されたエピタキシャル成長膜を用いた半導
体レーザにおいて、共振器両端部に、共振器方向にある
一定の長さで、活性層を横切ってInGaP層を埋め込む
ことを特徴とする。また、上記目的を達成する本発明の
半導体レーザの製造方法の構成は単一或いは多重のIny
Ga1-yAs量子井戸層(0<y<0.5)からなる活性層とAl
xGa1-xAsからなるクラッド層、ガイド層並びにコンタ
クト層等で構成されたエピタキシャル成長膜を用いた半
導体レーザを製造する方法において、共振器両端部に、
共振器方向にある一定の長さで、活性層を横切ってIn
GaP層を埋め込み成長させる際、活性層よりも深くエ
ッチングされたウィンドウ近傍部以外を除去したストラ
イプ状の絶縁膜を用いることを特徴とする。
The structure of the semiconductor laser of the present invention for achieving the above object is a single or multiple In y Ga.
1-y As quantum well layer (0 <y <0.5) active layer and Al x G
In a semiconductor laser using an epitaxially grown film composed of a clad layer made of a 1-x As, a guide layer, a contact layer, etc., the active layer is crossed at both ends of the cavity with a certain length in the cavity direction. The InGaP layer is embedded. Further, the structure of the method for manufacturing a semiconductor laser according to the present invention, which achieves the above object, has a single or multiple In y
Ga 1-y As quantum well layer (0 <y <0.5) active layer and Al
In a method of manufacturing a semiconductor laser using an epitaxially grown film composed of a cladding layer made of x Ga 1-x As, a guide layer, a contact layer, etc.
A certain length in the cavity direction, across the active layer, In
When the GaP layer is embedded and grown, a stripe-shaped insulating film is used which is removed except the window vicinity portion which is etched deeper than the active layer.

【0011】[0011]

【実施例】以下、本発明について、図面に示す実施例を
参照して詳細に説明する。図1に本発明の一実施例に係
るレーザエピタキシャル成長膜の断面図(共振器方向)
を示す。1はn+−GaAs基板、2はn+−GaAsバッフ
ァ層、3はn−AlxGa1-xAsクラッド層、4及び8は
AlzGa1-zAsガイド層、5及び7はSCH層(AlGa
As:Al組成比は0からガイド組成比zまでの間の値)
、6はInyGa1-yAs量子井戸活性層、9はp−Alx
a1-xAsクラッド層、10はp+−GaAsコンタクト層、
11はInGaP埋め込みウィンドウ層である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is a sectional view of a laser epitaxial growth film according to an embodiment of the present invention (resonator direction).
Indicates. 1 is an n + -GaAs substrate, 2 is an n + -GaAs buffer layer, 3 is an n-Al x Ga 1-x As cladding layer, 4 and 8 are Al z Ga 1-z As guide layers, 5 and 7 are SCH Layer (AlGa
(As: Al composition ratio is a value between 0 and guide composition ratio z)
, 6 is an In y Ga 1-y As quantum well active layer, and 9 is p-Al x G
a 1-x As clad layer, 10 is a p + -GaAs contact layer,
Reference numeral 11 is an InGaP embedded window layer.

【0012】この構造を実現するためには、先ず、エピ
タキシャル結晶成長装置(MOVPE法:有機金属気相
成長法或いはMBE法:分子エピタキシー法)により、
エピタキシャル層2〜10まで成長する。典型的な値と
しては、n−AlxGa1-xAsクラッド層3、p−AlxGa
1-xAsクラッド層9のAl組成比xは0.3〜0.6、AlzGa
1-zAsガイド層4,8のAl組成比zは0.2〜0.5とし、
n−AlxGa1-xAsクラッド層3にはnドーパントとし
てSe,Si等を、p−AlxGa1-xAsクラッド層9には、
Zn,Mg,Be等を用いそれぞれ5×1017cm-3程度ドープ
する。
In order to realize this structure, first, an epitaxial crystal growth apparatus (MOVPE method: metal organic chemical vapor deposition method or MBE method: molecular epitaxy method) is used.
Epitaxial layers 2 to 10 are grown. Typical values are n-Al x Ga 1-x As cladding layer 3 and p-Al x Ga.
The Al composition ratio x of the 1-x As clad layer 9 is 0.3 to 0.6, and Al z Ga is
The Al composition ratio z of the 1-z As guide layers 4 and 8 is 0.2 to 0.5,
The n-Al x Ga 1-x As cladding layer 3 contains Se, Si or the like as an n-dopant, and the p-Al x Ga 1-x As cladding layer 9 contains
Doping with Zn, Mg, Be or the like is performed at about 5 × 10 17 cm -3 .

【0013】AlzGa1-zAsガイド層4,8には、それ
ぞれn或いはpをドープするか、アンドープで用いる。
InyGa1-yAs井戸層6のIn組成比y及び厚さは、典型
例として、0.2,10nmとする。p+−GaAsコンタクト層
10は、オーミック電極のため5×1019cm-3以上のZn
等のpドーパントの高濃度ドープを行う。
The Al z Ga 1-z As guide layers 4 and 8 are each doped with n or p or used undoped.
The In composition ratio y and the thickness of the In y Ga 1-y As well layer 6 are typically 0.2 and 10 nm. Since the p + -GaAs contact layer 10 is an ohmic electrode, it has a Zn content of 5 × 10 19 cm -3 or more.
High-concentration doping of p dopant such as

【0014】次に、InGaP埋め込みウィンドウ層11
を形成するため、共振器ピッチ長毎に10〜80μmストラ
イプ幅で活性層を横切る深さまでエッチングを行い、そ
の後、600〜650℃で、GaAsに格子整合したInGaPの
選択埋め込み成長をMOVPE法で行う。即ち、図3
(a)に示すように、先ず、レーザエピタキシャル基板
にSiO2或いはSiN等の絶縁膜12をデポする。
Next, the InGaP embedded window layer 11
In order to form the film, etching is performed to a depth across the active layer with a stripe width of 10 to 80 μm for each resonator pitch length, and then selective burying growth of InGaP lattice-matched to GaAs at 600 to 650 ° C. is performed by the MOVPE method. . That is, FIG.
As shown in (a), first, an insulating film 12 such as SiO 2 or SiN is deposited on the laser epitaxial substrate.

【0015】次に、図3(b)に示すように、ストライ
プ状の埋め込みウィンドウ用パタン形成を行い、ドライ
エッチング法で絶縁膜12の窓開けエッチングを行う。
そのピッチは、レーザ共振器長に合わせて設定する。そ
の後、図3(c)に示すように、H2SO4系或いはNH
4OH系のエッチング液で活性層6よりも深く、概略2
〜3μmの深さまでエッチングする。エッチングは、基
板面方向を適切に選ぶことにより逆メサ形状にする。こ
の際、リアクティブイオンエッチング等によるドライエ
ッチングも用いることができる。
Next, as shown in FIG. 3 (b), a stripe-shaped buried window pattern is formed, and window opening etching is performed on the insulating film 12 by a dry etching method.
The pitch is set according to the laser resonator length. After that, as shown in FIG. 3C, H 2 SO 4 system or NH
It is deeper than the active layer 6 with a 4 OH-based etching solution and is roughly 2
Etch to a depth of ~ 3 μm. The etching is made into an inverted mesa shape by appropriately selecting the substrate surface direction. At this time, dry etching such as reactive ion etching can also be used.

【0016】引続き、図3(d)に示すように、選択マ
スクとなる絶縁膜12上のポリ成長を避けるため、ホト
プロセスによりウィンドウ近傍を除き、絶縁膜12を除
去し、5〜50μm程度のストライプ幅の選択マスクとし
て複数部残す。この幅は、成長種In,Gaの絶縁膜12
上でのマクグレーション距離より短いため、絶縁膜12
上でのポリ成長はほぼ抑えられる。更に、図3(e)に
示すように、MOVPEを用いてInGaPの低温埋め込
み成長(600〜650℃)を行う。
Subsequently, as shown in FIG. 3D, in order to avoid poly growth on the insulating film 12 serving as a selective mask, the insulating film 12 is removed except for the vicinity of the window by a photo process. Multiple copies are left as a stripe width selection mask. This width corresponds to the insulating film 12 of the growth species In and Ga.
Since it is shorter than the above McGlation distance, the insulating film 12
Poly growth above is almost suppressed. Further, as shown in FIG. 3E, low-temperature embedded growth of InGaP (600 to 650 ° C.) is performed using MOVPE.

【0017】その後、図3(f)に示すように、フォト
プロセスを用いてパターニングを行い、埋め込みウィン
ドウ部以外のレーザエピタキシャル上に成長したInGa
PをHCl等のエッチング液で選択的(GaAsに対し)
にエッチングを行い、最後に絶縁膜12の除去を行い、
InGaP埋め込みウィンドウ付きレーザエピタキシャル
成長膜が完成する。
Thereafter, as shown in FIG. 3 (f), patterning was performed using a photo process, and InGa grown on the laser epitaxial layer other than the buried window portion was patterned.
Selective for P with an etching solution such as HCl (against GaAs)
Etching, and finally removing the insulating film 12,
A laser epitaxial growth film with an InGaP embedded window is completed.

【0018】埋め込み成長の後、図4に示すように、コ
ンタクト層10並びにクラッド層9に幅1.5〜3μm程
度のリッジを形成するため、フォトリソグラフィーでパ
ターニングし、これをマスクとしてウェット或いはドラ
イエッチングでコンタクト層10並びにクラッド層9を
エッチングする。深さは、横モードを考慮して決定し、
ガイド層8までエッチングする場合もある。
After the burying growth, as shown in FIG. 4, in order to form a ridge having a width of about 1.5 to 3 μm on the contact layer 10 and the cladding layer 9, patterning is performed by photolithography, and this is used as a mask for wet or dry. The contact layer 10 and the cladding layer 9 are etched by etching. The depth is determined by considering the transverse mode,
The guide layer 8 may also be etched.

【0019】リッジ形成後、マスクを剥離し、スパッタ
リング等で絶縁膜11(SiO2等)を表面全体に形成
し、リッジ上部のSiO2をエッチオフした後、Cr/Au
或いはTi/Pt/Au等のp電極13、AuGeNi等のn
電極14を形成する。その後、オーミックシンターし、
図1のレーザ構造が完成する。
[0019] After forming the ridge, and removing the mask, the insulating film 11 by sputtering or the like (SiO 2 or the like) is formed on the entire surface, after the SiO 2 of the ridge top and etched off, Cr / Au
Alternatively, a p-electrode 13 such as Ti / Pt / Au or an n-type such as AuGeNi
The electrode 14 is formed. After that, ohmic sintering,
The laser structure of FIG. 1 is completed.

【0020】上記実施例に係る半導体レーザについて、
電流−光出力特性について測定したところ、図5に示す
結果が得られた。図5において、は、本実施例のIn
GaP埋め込みウィンドウ構造を持つ半導体レーザの結
果であり、はそのようなウィンドウ構造を持たない従
来の半導体レーザの結果である。図5から明らかなよう
に、従来の半導体レーザは高出力時に突発的な光出力の
低下が見られるのに対し、本実施例の半導体レーザは、
高出力時の光出力の突発的な低下が見られず、可逆的な
熱飽和特性が観測されることが判る。従って、本実施例
の半導体レーザは、従来よりも、高電流での長期通電試
験でも、CODによる故障劣化は解決されることにな
る。
Regarding the semiconductor laser according to the above embodiment,
When the current-light output characteristics were measured, the results shown in FIG. 5 were obtained. In FIG. 5, In of the present embodiment is indicated.
Is a result of a semiconductor laser having a GaP embedded window structure, and is a result of a conventional semiconductor laser having no such window structure. As is clear from FIG. 5, the conventional semiconductor laser shows a sudden decrease in optical output at high output, whereas the semiconductor laser of the present embodiment shows
It can be seen that no sudden decrease in light output at high output is observed and reversible thermal saturation characteristics are observed. Therefore, in the semiconductor laser of the present embodiment, the failure deterioration due to COD can be solved even in the long-term energization test with a higher current than in the past.

【0021】尚、上記実施例では、活性層6として単一
量子井戸を用いたが、本発明はこれに限るものではな
く、InyGa1-yAsを井戸層、AlGaAsをバリアとする
多重量子井戸構造を活性層6としたレーザエピタキシャ
ル構造にも適用できるものである。また、0.98±0.05μ
mの発振可能なIn組成比並びに厚さは、0.15<y<0.
3、3〜20nmの範囲で選択出来る。
Although a single quantum well is used as the active layer 6 in the above-described embodiment, the present invention is not limited to this, and a multiple layer having In y Ga 1-y As as a well layer and AlGaAs as a barrier is used. It can also be applied to a laser epitaxial structure using the quantum well structure as the active layer 6. Also, 0.98 ± 0.05μ
The In composition ratio and the thickness of the m that can oscillate are 0.15 <y <0.
It can be selected in the range of 3, 3 to 20 nm.

【0022】図2に本発明2他の実施例を示す。本実施
例は、コンタクト層10に転位発生及び伝搬を抑えるた
めにInを1×1019〜3×1020の濃度でコドープしたも
のであり、その他の構成は図1に示す実施例と同様であ
る。尚、その他、クラッド層にも臨界膜厚の範囲内で、
Inを1×1019〜3×1020の濃度でコドープしても良
い。
FIG. 2 shows another embodiment of the present invention 2. In this embodiment, In is co-doped at a concentration of 1 × 10 19 to 3 × 10 20 to suppress generation and propagation of dislocations in the contact layer 10. Other configurations are the same as those of the embodiment shown in FIG. is there. In addition, within the critical thickness range for the cladding layer,
In may be co-doped at a concentration of 1 × 10 19 to 3 × 10 20 .

【0023】[0023]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、半導体レーザの活性層よりバンドギャップが
大きく化学的にも安定なInGaP層を通して共振器外部
へレーザ光が出射されるので、高電流注入時、長期的に
電流を注入際に起こるCODによる素子劣化は生ぜず、
AlGaAsウィンドウに比較してより高信頼高出力半導
体レーザが得られる。また、低温成長が可能でGaAsと
の選択エッチングが可能なInGaPを埋め込み層として
用いることにより、従来の高温処理に伴う素子特性の劣
化や歩留りの低下を回避することが可能となる。
As described above in detail based on the embodiments, the laser light is emitted to the outside of the resonator through the InGaP layer which has a band gap larger than that of the active layer of the semiconductor laser and is chemically stable. During high current injection, element deterioration due to COD that occurs during long-term current injection does not occur,
A more reliable and high-power semiconductor laser can be obtained as compared with the AlGaAs window. Further, by using InGaP which can be grown at a low temperature and can be selectively etched with GaAs as a buried layer, it is possible to avoid the deterioration of the device characteristics and the reduction of the yield due to the conventional high temperature treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る半導体レーザの断面図
である。
FIG. 1 is a sectional view of a semiconductor laser according to an embodiment of the present invention.

【図2】本発明の他の実施例に係る半導体レーザの断面
図である。
FIG. 2 is a sectional view of a semiconductor laser according to another embodiment of the present invention.

【図3】埋め込みウィンドウ成長プロセスを示す工程図
である。
FIG. 3 is a process diagram showing an embedded window growth process.

【図4】リッジレーザ断面図である。FIG. 4 is a sectional view of a ridge laser.

【図5】光出力特性図である。FIG. 5 is a light output characteristic diagram.

【符号の説明】[Explanation of symbols]

1 n+−GaAs基板 2 n+−GaAsバッファ層 3 n−AlxGa1-xAsクラッド層 4,8 AlzGa1-zAsガイド層 5,7 SCH層(AlGaAs:Al組成比は0からガイ
ド組成比zまでの間の値) 6 InyGa1-yAs量子井戸活性層 9 p−AlxGa1-xAsクラッド層 10 p+−GaAsコンタクト層 11 InGaP埋め込みウィンドウ層
1 n + -GaAs substrate 2 n + -GaAs buffer layer 3 n-Al x Ga 1-x As clad layer 4,8 Al z Ga 1-z As guide layer 5,7 SCH layer (AlGaAs: Al composition ratio is 0 To a guide composition ratio z) 6 In y Ga 1-y As quantum well active layer 9 p-Al x Ga 1-x As clad layer 10 p + -GaAs contact layer 11 InGaP buried window layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 単一或いは多重のInyGa1-yAs量子井
戸層(0<y<0.5)からなる活性層とAlxGa1-xAsから
なるクラッド層、ガイド層並びにコンタクト層等で構成
されたエピタキシャル成長膜を用いた半導体レーザにお
いて、共振器両端部に、共振器方向にある一定の長さ
で、活性層を横切ってInGaP層を埋め込むことを特徴
とする半導体レーザ。
1. An active layer comprising a single or multiple In y Ga 1-y As quantum well layers (0 <y <0.5) and a cladding layer, a guide layer, a contact layer comprising Al x Ga 1-x As, etc. 2. A semiconductor laser using an epitaxially grown film configured as described above, characterized in that an InGaP layer is embedded at both ends of the resonator across the active layer with a certain length in the resonator direction.
【請求項2】 単一或いは多重のInyGa1-yAs量子井
戸層(0<y<0.5)からなる活性層とAlxGa1-xAsから
なるクラッド層、ガイド層並びにコンタクト層等で構成
されたエピタキシャル成長膜を用いた半導体レーザを製
造する方法において、共振器両端部に、共振器方向にあ
る一定の長さで、活性層を横切ってInGaP層を埋め込
み成長させる際、活性層よりも深くエッチングされたウ
ィンドウ近傍部以外を除去したストライプ状の絶縁膜を
用いることを特徴とする半導体レーザの製造方法。
2. An active layer composed of a single or multiple In y Ga 1-y As quantum well layers (0 <y <0.5) and a cladding layer, a guide layer, a contact layer, etc. composed of Al x Ga 1-x As. In a method of manufacturing a semiconductor laser using an epitaxially grown film composed of, when an InGaP layer is embedded and grown across both ends of the resonator with a certain length in the resonator direction, A method of manufacturing a semiconductor laser, characterized in that a stripe-shaped insulating film is used, in which a portion other than a window vicinity portion which is deeply etched is removed.
JP12872493A 1993-05-31 1993-05-31 Semiconductor laser and manufacturing method thereof Expired - Fee Related JP3254812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12872493A JP3254812B2 (en) 1993-05-31 1993-05-31 Semiconductor laser and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12872493A JP3254812B2 (en) 1993-05-31 1993-05-31 Semiconductor laser and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH06338657A true JPH06338657A (en) 1994-12-06
JP3254812B2 JP3254812B2 (en) 2002-02-12

Family

ID=14991880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12872493A Expired - Fee Related JP3254812B2 (en) 1993-05-31 1993-05-31 Semiconductor laser and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3254812B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976904A (en) * 1997-01-31 1999-11-02 Oki Electric Industry Co., Ltd Method of manufacturing semiconductor device
FR2788172A1 (en) * 1998-12-30 2000-07-07 Thomson Csf Non absorbent mirror power laser semiconductor structure/manufacture technique having lower substrate/optical cavity layer and quantum well regions with inner etched cavities and upper deposition layers
KR100418617B1 (en) * 2001-07-10 2004-02-11 기아자동차주식회사 Injector disorder determining method in travelling the vehicle
JPWO2018003335A1 (en) * 2016-06-30 2019-04-25 パナソニックIpマネジメント株式会社 Semiconductor laser device, semiconductor laser module and laser light source system for welding
DE102019118993A1 (en) * 2019-07-12 2021-01-14 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung EDGE-EMITTING SEMI-CONDUCTIVE LASER DIODE AND METHOD FOR MANUFACTURING SUCH

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976904A (en) * 1997-01-31 1999-11-02 Oki Electric Industry Co., Ltd Method of manufacturing semiconductor device
FR2788172A1 (en) * 1998-12-30 2000-07-07 Thomson Csf Non absorbent mirror power laser semiconductor structure/manufacture technique having lower substrate/optical cavity layer and quantum well regions with inner etched cavities and upper deposition layers
KR100418617B1 (en) * 2001-07-10 2004-02-11 기아자동차주식회사 Injector disorder determining method in travelling the vehicle
JPWO2018003335A1 (en) * 2016-06-30 2019-04-25 パナソニックIpマネジメント株式会社 Semiconductor laser device, semiconductor laser module and laser light source system for welding
DE102019118993A1 (en) * 2019-07-12 2021-01-14 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung EDGE-EMITTING SEMI-CONDUCTIVE LASER DIODE AND METHOD FOR MANUFACTURING SUCH

Also Published As

Publication number Publication date
JP3254812B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
JP2011101039A (en) Nitride semiconductor laser device
JPH08195529A (en) Semiconductor laser epitaxial crystalline laminate and semiconductor laser
JPH09199803A (en) Semiconductor laser and its manufacture method
JPH07162086A (en) Manufacture of semiconductor laser
JP2006229210A (en) Nitride semiconductor laser device and its manufacturing method
JP2006269568A (en) Semiconductor laser element
JPH0856045A (en) Semiconductor laser device
JP3254812B2 (en) Semiconductor laser and manufacturing method thereof
JPH10284800A (en) Semiconductor light-emitting element and manufacture therefor
JPH10261835A (en) Semiconductor laser device and its manufacture
JP2001057459A (en) Semiconductor laser
JPH0936474A (en) Semiconductor laser and fabrication thereof
EP1109231A2 (en) Semiconductor light emitter and method for fabricating the same
JPH10256647A (en) Semiconductor laser element and fabrication thereof
JPH0521902A (en) Semiconductor laser device
JP2679974B2 (en) Semiconductor laser device
JP2737477B2 (en) Manufacturing method of semiconductor laser
JPH05211372A (en) Manufacture of semiconductor laser
JP2865160B2 (en) Manufacturing method of semiconductor laser
JP3639654B2 (en) Semiconductor laser and manufacturing method thereof
JP2001053381A (en) Semiconductor laser and manufacture thereof
JP2758597B2 (en) Semiconductor laser device
JP2911260B2 (en) Manufacturing method of semiconductor laser
JPH09275239A (en) Semiconductor laser device
JPS60132381A (en) Semiconductor laser device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011106

LAPS Cancellation because of no payment of annual fees