JPS62291859A - Cylindrical alkaline battery - Google Patents

Cylindrical alkaline battery

Info

Publication number
JPS62291859A
JPS62291859A JP61135703A JP13570386A JPS62291859A JP S62291859 A JPS62291859 A JP S62291859A JP 61135703 A JP61135703 A JP 61135703A JP 13570386 A JP13570386 A JP 13570386A JP S62291859 A JPS62291859 A JP S62291859A
Authority
JP
Japan
Prior art keywords
separator
polyvinyl alcohol
boric acid
positive electrode
alkaline battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61135703A
Other languages
Japanese (ja)
Inventor
Masato Harada
原田 正人
Takao Yokoyama
孝男 横山
Tadashi Sawai
沢井 忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61135703A priority Critical patent/JPS62291859A/en
Publication of JPS62291859A publication Critical patent/JPS62291859A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0014Alkaline electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To enable deterioration in battery characteristics to be suppressed, even if a very small amount of heterogeneous metal or the like is mixed, by using a separator on which films containing polyvinyl alcohol and boric acid serving as additive are formed. CONSTITUTION:A separator 4 is formed by impregnating alkali-proof resinous fiber with an aqueous solution solving polyvinyl alcohol of 2.5wt% and boric acid of 0.2wt%. And thin cloths composed of films 4a containing polyvinyl alcohol and boric acid serving as additive, which are obtained by a drying process for about twelve hours,are formed on the separator. Otherwise, the films 4a may be formed on only the positive electrode-sided surface, that is, the plane which becomes the outside one after bending the thin cloths. Hence, a cylindrical alkaline battery capable of improving its characteristics, even if a very small amount of heterogeneous metal or the like is mixed, can be obtained by using such a separator 4.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、正極活物質に酸化水銀や二酸化マンガンなど
を用いる円筒形アルカリ電池に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention Field of Industrial Application The present invention relates to a cylindrical alkaline battery using mercury oxide, manganese dioxide, or the like as a positive electrode active material.

従来の技術 円筒形アルカリ電池は、古くから医療用機器や各種測定
器などの電源として広く利用されている。
BACKGROUND OF THE INVENTION Cylindrical alkaline batteries have been widely used as power sources for medical equipment and various measuring instruments for a long time.

この円筒形アルカリ電池に用いられるセパレータは、ポ
リビニルアルコールの皮膜を表面に形成した樹脂繊維ま
たは一切の表面処理を加えない樹脂繊維の薄布からなり
、第3図の4に示すように開口先端部をもつ有底円筒形
に成形されて電池の正極体の中空部へ挿入され、その内
部に充填されたゲル状亜鉛やその他の負極側構成材と組
合わされて、電池を構成していた。
The separator used in this cylindrical alkaline battery is made of resin fibers with a polyvinyl alcohol film formed on the surface or a thin cloth of resin fibers without any surface treatment. It was formed into a cylindrical shape with a bottom and inserted into the hollow part of the positive electrode body of the battery, and was combined with gelled zinc and other negative electrode side constituent materials filled inside to form the battery.

発明が解決しようとする問題点 しかしながら上記のセパレータを用いた電池は、ごく微
量の異種金属などがセパレータ外面に付着していた場合
、あるいは既に正極合剤に混在していた場合、高温保存
中に開路電圧や残存電気容量が著しく劣化した。
Problems to be Solved by the Invention However, batteries using the above-mentioned separators may suffer during high-temperature storage if very small amounts of dissimilar metals adhere to the outer surface of the separator or if they are already mixed in the positive electrode mixture. The open circuit voltage and residual capacitance deteriorated significantly.

本発明は上記問題点に鑑み、ごく微量の異種金属などが
前述のように混入した場合でも、電池特性の劣化を抑制
する円筒形アルカリ電池を提供するものである。
In view of the above problems, the present invention provides a cylindrical alkaline battery that suppresses deterioration of battery characteristics even when a very small amount of a different metal is mixed in as described above.

問題点を解決するための手段 この目的を達成するためて、本発明はセパレータとして
、耐アルカリ性の樹脂繊維にポリビニルアルコールと、
添加剤としての硼酸を溶解した水溶液を含浸させた後、
一定時間乾燥することにより皮膜を表面に形成した薄布
を用いること°を特徴とする円筒形アルカリ電池である
Means for Solving the Problems In order to achieve this object, the present invention uses polyvinyl alcohol and alkali-resistant resin fibers as a separator.
After impregnation with an aqueous solution containing boric acid as an additive,
This cylindrical alkaline battery is characterized by using a thin cloth with a film formed on its surface by drying for a certain period of time.

作用 このような電池であれば、少量の異種金属などが前述の
ように混入した電池であっても、用いるセパレータの表
面に硼酸とポリビニルアルコールとが化学結合して増粘
し、ゲル化度が増し、ポリビニルアルコール単独の場合
より耐水接着力のより強く、かつセパレータ内部へのポ
リビニルアルコールの不必要な浸透を防ぐ皮膜が形成さ
れ、電解液存在下で起こる混入物と正極合剤との化学反
応を阻止しうるものであり、セパレータ表面が強化され
て電池の保存特性が向上する。
Function In such a battery, even if a small amount of different metals are mixed in as mentioned above, the boric acid and polyvinyl alcohol will chemically bond to the surface of the separator used, increasing the viscosity, and reducing the degree of gelation. A film is formed that has stronger water-resistant adhesion than polyvinyl alcohol alone and prevents unnecessary penetration of polyvinyl alcohol into the separator, and prevents chemical reactions between contaminants and the positive electrode mixture that occur in the presence of the electrolyte. This strengthens the separator surface and improves the storage characteristics of the battery.

実施例 以下、本発明の実施例を図により説明する。第2図は従
来および本発明により得られたセパレータを用いた円筒
形水銀電池(高さ16.Bug、外径16゜4朋)の半
断面図である。この電池の一般的な製造法は、正極合剤
1を正極ケース2内に正極リング3と共に挿入して加圧
成型する。そして有底円筒形セパレータ4を、成型した
正極合剤1の中空部に挿入し、さらにこのセパレータ4
の内部に氷化亜鉛粉末とゲル化剤とアルカリ電解液とを
混合したゲル状亜鉛負極6の所定量を充填した後、集電
子8を溶接した封口板7と絶縁ガスケット8からなる負
榎端子キャップを装填し、正極ケース2の開口縁部を封
口して電池を構成している。こうちセパレータに本発明
の特徴があり、第1図aに示すようにセパレータ4は耐
アルカリ性樹脂繊維を、ポリビニルアルコール2.6重
量%および硼酸0.2重量%を溶解した水溶液に含浸さ
せた後、45℃で12時間乾燥することにより得られる
ポリビニルアルコールと、添加剤としての硼酸から成る
皮膜4瓢を表面に形成した薄布からなる。上記に説明し
た本発明によるセパレータと、従来のセパレータを各々
用いて実施例の円筒形水銀電池を組立てた。その際、セ
パレータの外側面と正極合剤の内側面との隙間に黄銅粉
末の約5岬を混入させて100個ずつ組立てた。電池完
成後45℃の温度下で下表の日程により開路電圧とご負
荷抵抗62Ωで端子電圧0,9 V Kなるまでの連続
放電持続時間を試験した結果、下表のごとく本発明品に
著しい効果が得られた。開路電圧のデータは試験数10
0の平均値、持続時間のデータは試験数6の平均値であ
る。
EXAMPLES Hereinafter, examples of the present invention will be explained with reference to the drawings. FIG. 2 is a half-sectional view of a cylindrical mercury battery (height: 16 mm, outer diameter: 16.degree. 4 mm) using separators obtained according to the conventional method and the present invention. A general method for manufacturing this battery is to insert a positive electrode mixture 1 into a positive electrode case 2 together with a positive electrode ring 3 and to mold the positive electrode mixture under pressure. Then, a bottomed cylindrical separator 4 is inserted into the hollow part of the molded positive electrode mixture 1, and the separator 4
A negative terminal consisting of a sealing plate 7 and an insulating gasket 8 to which a current collector 8 is welded is filled with a predetermined amount of a gelled zinc negative electrode 6 made of a mixture of frozen zinc powder, a gelling agent, and an alkaline electrolyte. A battery is constructed by loading the cap and sealing the opening edge of the positive electrode case 2. The Kochi separator has a feature of the present invention, and as shown in FIG. It consists of a thin cloth with a film formed on its surface consisting of polyvinyl alcohol obtained by drying at 45° C. for 12 hours and boric acid as an additive. Cylindrical mercury batteries of Examples were assembled using the above-described separator according to the present invention and the conventional separator. At that time, about 5 capes of brass powder were mixed into the gap between the outer surface of the separator and the inner surface of the positive electrode mixture, and 100 separators were assembled. After the battery was completed, we tested the continuous discharge duration until the terminal voltage reached 0.9 VK at an open circuit voltage and a load resistance of 62 Ω according to the schedule shown in the table below at a temperature of 45°C after the battery was completed. It worked. Open circuit voltage data is from 10 tests
The average value of 0 and the duration data are the average values of 6 tests.

次に本発明における各々の特徴について述べる○セパレ
ータ表面に形成するポリビニルアルコールと硼酸から成
る皮膜の面積であるが、前記実施薄布の両面としたが、
特に正極合剤と混入物による反応がセパレータ表面に対
して強い攻撃となるため、第1図すのように正極側表面
、つまり薄布の折曲げ後、外側になる面のみに皮膜を形
成してもよい。
Next, we will describe each feature of the present invention. ○ The area of the film made of polyvinyl alcohol and boric acid formed on the surface of the separator is on both sides of the thin fabric mentioned above.
In particular, since the reaction between the positive electrode mixture and contaminants causes a strong attack on the separator surface, a film is formed only on the positive electrode side surface, that is, the outer surface after the thin cloth is bent, as shown in Figure 1. You can.

次にポリビニルアルコールと硼酸との水溶液の濃度であ
るが、ポリビニルアルコールの重合度やケン化度により
水溶液性や帯電性および耐水接着力が異なる。しかし、
共通して言えることは前記濃度が高いほどセパレータ表
面は異物反応に対して強化されるが、電池の短絡電流は
低下し、逆に前記濃度が低いほどこれらの特性は逆の傾
向となる。またポリビニルアルコールと硼酸との混合重
量比率であるが、これもポリビニルアルコールの物性水
準により水溶液のゲル化度や相溶性、耐水接着力が異な
る。しかし、共通して言えることは添加剤の重量比率が
高いほど耐水接着力が強くなす、セパレータ内部へのポ
リビニルアルコールの不必要な浸透を防ぎ、セパレータ
の表面が強化さるため生産性も低下する。逆に添加剤の
重量比率が低いほどこれらの特性は逆の傾向となる。
Next, regarding the concentration of the aqueous solution of polyvinyl alcohol and boric acid, the aqueous solubility, charging property, and water-resistant adhesive strength vary depending on the degree of polymerization and saponification of the polyvinyl alcohol. but,
What can be said in common is that the higher the concentration is, the more the separator surface is strengthened against foreign body reactions, but the short circuit current of the battery is lowered, and conversely, the lower the concentration is, the opposite tendency of these characteristics is. Regarding the mixing weight ratio of polyvinyl alcohol and boric acid, the degree of gelation, compatibility, and water-resistant adhesive strength of the aqueous solution also vary depending on the physical property level of the polyvinyl alcohol. However, what can be said in common is that the higher the weight ratio of the additive, the stronger the water-resistant adhesive strength, which prevents unnecessary penetration of polyvinyl alcohol into the separator, and which strengthens the surface of the separator, which also reduces productivity. Conversely, as the weight ratio of the additive is lower, these properties tend to be opposite.

従って物性がすべて異なる主なポリビニルアルコール4
品種と硼酸の混合重量比率による前述の黄銅粉末混入試
験を行ない、開路電圧が1.350V未満となった電池
数と短絡電流について46℃保存下16日後の結果を次
表に示す。表中のpvム重量%は水溶液1ooに対する
値で、硼酸重量%はpvム1ooに対する値である。
Therefore, the main polyvinyl alcohols with all different physical properties 4
The above-mentioned brass powder mixing test was conducted depending on the product type and the mixing weight ratio of boric acid, and the results of the number of batteries with an open circuit voltage of less than 1.350 V and the short circuit current after 16 days of storage at 46°C are shown in the following table. In the table, the weight percent of pvum is a value for 100 of the aqueous solution, and the weight percent of boric acid is a value for 100 of pvum.

なお、試験数は100個で、各欄のデータとも上段が電
圧劣化数、下段が短絡電流人の平均値である。
The number of tests was 100, and the data in each column shows the number of voltage deteriorations in the upper row and the average value of short circuit current in the lower row.

(以 下 余 白) これによりポリビニルアルコールと硼酸から成る水溶液
の濃度は、ポリビニルアルコールが1.0〜4.0重量
%硼酸はその15重量%以下の範囲が適当であった。な
お、この範囲をセパレータ面積1m’fiたりの塗工量
に換算すると7.6〜3Jj9であった。また硼酸のか
わりに硼砂を用いてもかまわないが、天然産の場合、純
度に問題があり、混合重量比率を設定しにくいが、硼酸
よりも少量でゲル化しやすい長所もある。
(Margin below) As a result, the appropriate concentration of the aqueous solution consisting of polyvinyl alcohol and boric acid is 1.0 to 4.0% by weight of polyvinyl alcohol and 15% by weight or less of boric acid. In addition, when this range was converted into the coating amount per 1 m'fi of separator area, it was 7.6-3Jj9. Also, borax may be used instead of boric acid, but if it is a natural product, there is a problem with purity and it is difficult to set the mixing weight ratio, but it also has the advantage that it gels more easily in a small amount than boric acid.

発明の効果 以上のように本発明はセパレータの材料となる樹脂繊維
の薄布にポリビニルアルコールと、硼酸から成る皮膜を
形成することにより、量産化を容易にし、かつ電池特性
も向上することができるものである。
Effects of the Invention As described above, the present invention facilitates mass production and improves battery characteristics by forming a film made of polyvinyl alcohol and boric acid on a thin resin fiber cloth used as a separator material. It is something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bは本発明におけるセパレータを示す断面図
、第2図は従来および本発明における円筒形アルカリ電
池の半断面図、第3図は従来のセパレータを示す断面図
である。 1・・・・・・正極合剤、2・・・・・・正極ケース、
3・・・・・・正極リング、4・・・・・・セパレータ
、42L・・・・・・ポリビニルアルコールと硼酸から
成る皮膜、6・・・・・・ゲル状亜鉛負極、6・・・・
・・集電子、7・・・・・・封口板、8・・・・・・絶
縁ガスケット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
1A and 1B are sectional views showing a separator according to the present invention, FIG. 2 is a half sectional view of a conventional cylindrical alkaline battery and a cylindrical alkaline battery according to the present invention, and FIG. 3 is a sectional view showing a conventional separator. 1... Positive electrode mixture, 2... Positive electrode case,
3... Positive electrode ring, 4... Separator, 42L... Film consisting of polyvinyl alcohol and boric acid, 6... Gel-like zinc negative electrode, 6...・
...Collector, 7...Sealing plate, 8...Insulating gasket. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
figure

Claims (2)

【特許請求の範囲】[Claims] (1)ポリビニルアルコールと、添加剤としての硼酸か
ら成る皮膜を表面に形成したセパレータを用いることを
特徴とする円筒形アルカリ電池。
(1) A cylindrical alkaline battery characterized by using a separator whose surface is coated with a film made of polyvinyl alcohol and boric acid as an additive.
(2)セパレータ表面の皮膜が、耐アルカリ性樹脂繊維
の薄布に1.0〜4.0重量%のポリビニルアルコール
と、ポリビニルアルコールの15重量%以下の硼酸を溶
解した水溶液を含浸させた後、一定時間乾燥したもので
ある特許請求の範囲第1項記載の円筒形アルカリ電池。
(2) After the film on the surface of the separator is formed by impregnating a thin cloth of alkali-resistant resin fiber with an aqueous solution containing 1.0 to 4.0% by weight of polyvinyl alcohol and 15% by weight or less of boric acid in the polyvinyl alcohol, The cylindrical alkaline battery according to claim 1, which is dried for a certain period of time.
JP61135703A 1986-06-11 1986-06-11 Cylindrical alkaline battery Pending JPS62291859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61135703A JPS62291859A (en) 1986-06-11 1986-06-11 Cylindrical alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61135703A JPS62291859A (en) 1986-06-11 1986-06-11 Cylindrical alkaline battery

Publications (1)

Publication Number Publication Date
JPS62291859A true JPS62291859A (en) 1987-12-18

Family

ID=15157916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61135703A Pending JPS62291859A (en) 1986-06-11 1986-06-11 Cylindrical alkaline battery

Country Status (1)

Country Link
JP (1) JPS62291859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527091A (en) * 2006-02-16 2009-07-23 エルジー・ケム・リミテッド Electrochemical element with improved heat resistance
US7740984B2 (en) 2004-06-04 2010-06-22 Rovcal, Inc. Alkaline cells having high capacity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7740984B2 (en) 2004-06-04 2010-06-22 Rovcal, Inc. Alkaline cells having high capacity
JP2009527091A (en) * 2006-02-16 2009-07-23 エルジー・ケム・リミテッド Electrochemical element with improved heat resistance
US9017878B2 (en) 2006-02-16 2015-04-28 Lg Chem, Ltd. Lithium secondary battery with enhanced heat-resistance
EP3460877A1 (en) * 2006-02-16 2019-03-27 LG Chem, Ltd. Lithium secondary battery with enhanced heat-resistance
US10305138B2 (en) 2006-02-16 2019-05-28 Lg Chem, Ltd. Lithium secondary battery with enhanced heat-resistance
US10879556B2 (en) 2006-02-16 2020-12-29 Lg Chem, Ltd. Lithium secondary battery with enhanced heat-resistance

Similar Documents

Publication Publication Date Title
JPS62291859A (en) Cylindrical alkaline battery
JPS62291858A (en) Cylindrical alkaline battery
JPH048899B2 (en)
JPS62268053A (en) Manufacture of cylindrical alkaline battery and separator thereof
JPS62291860A (en) Cylindrical alkaline battery
JPS612265A (en) Alkaline battery
JPH11111256A (en) Zinc alkaline battery
JPS58197662A (en) Pasted positive electrode for lead storage battery
JPS62126544A (en) Manufacture of battery
JPH09129198A (en) Flat organic electrolyte battery
JPH059902B2 (en)
JPS58225560A (en) Method of producing separator for chemical battery
JPS5854550A (en) Method of sealing chemical battery
JPS6112341B2 (en)
JP3511710B2 (en) Sealed lead-acid battery
JPS6226915Y2 (en)
JPS61216245A (en) Manufacture of button type alkaline battery
JPS6226145B2 (en)
JPS5882476A (en) Production method of button type alkaline battery
JPH0636772A (en) Manufacture of flat organic electrolyte battery
JPS6127057A (en) Manufacture of battery
JPH0452595B2 (en)
JPS6288274A (en) Manufacture of button type alkaline cell
JPH02152172A (en) Manufacture of microporous membrane for zinc bromide battery
JPS58197675A (en) Alkaline cell