JPS612265A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPS612265A
JPS612265A JP12346684A JP12346684A JPS612265A JP S612265 A JPS612265 A JP S612265A JP 12346684 A JP12346684 A JP 12346684A JP 12346684 A JP12346684 A JP 12346684A JP S612265 A JPS612265 A JP S612265A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode mixture
film
battery
polyvinylpyrrolidone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12346684A
Other languages
Japanese (ja)
Inventor
Koji Koide
小出 浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP12346684A priority Critical patent/JPS612265A/en
Publication of JPS612265A publication Critical patent/JPS612265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide an alkaline battery having good storage life by forming a polyvinyl pyrrolidone film on the surface of positive mix to prevent breakdown of positive mix molding or movement of positive mix particles toward a negative electrode. CONSTITUTION:A solution prepared by dissolving polyvinyl pyrrolidone in a solvent is applied on the surface, which is to be in contact with a separator 4, of a positive mix molding 2, and dried to form a film 3 of polyvinyl pyrrolidone. The film 3 of polyvinyl pyrrolidone prevents breakdown of positive mix molding 2 or movement of positive mix particles toward a negative electrode. Since the polyvinyl pyrrolidone film swells by contacting alkaline electrolyte, electrolyte exists near the positive mix, and no battery reaction is disturbed.

Description

【発明の詳細な説明】 〔技術分野〕 本発明はアルカリ電池に関する。[Detailed description of the invention] 〔Technical field〕 The present invention relates to alkaline batteries.

〔背景技術〕[Background technology]

アルカリ乾電池として一般によく普及しているアルカリ
・マンガン電池の正極合剤にば、二酸化マンガンの微粉
末と黒鉛の微粉末とポリアクリル酸ナトリウム、カルボ
キシメチルセルロースなどのバインダーとを加液混合後
、押出し造粒して、顆粒状合剤となし、それをリング状
に加圧成形したものが用いられてきた。
The positive electrode mixture for alkaline manganese batteries, which are commonly used as alkaline dry batteries, is made by extrusion after mixing fine manganese dioxide powder, fine graphite powder, and a binder such as sodium polyacrylate or carboxymethyl cellulose. It has been used by pulverizing it into a granular mixture, which is then pressure-molded into a ring shape.

このように正極合剤は微粉末の加圧成形体であるため、
電l+!lを長期間保存したり、振動が加わると、その
微粉末成分が成形体から遊離しセパレータの網目中を通
過して負極側に移行し、放電容量の低下を招き、ついに
は負極と正極との内部短絡を引き起こ4−という問題が
あった。
In this way, since the positive electrode mixture is a pressed compact of fine powder,
Electric +! When L is stored for a long period of time or when vibrations are applied, its fine powder components are liberated from the molded body, pass through the separator mesh, and migrate to the negative electrode side, causing a decrease in discharge capacity and eventually causing the negative and positive electrodes to separate. There was a problem of 4- causing an internal short circuit.

そのような正極合剤の粒子崩壊を極力防ぐために、ポリ
アクリル酸ナトリウムやカルボキシメチルセルロースな
どの粘性バインダーが正極合剤中に添加されているが、
それにもかかわらず充分な効果が得られず、上記のよう
な粒子崩壊に基づく放電容量の低Fや内部短絡などが生
じているのが現状である。
In order to prevent such particle collapse of the positive electrode mixture as much as possible, a viscous binder such as sodium polyacrylate or carboxymethyl cellulose is added to the positive electrode mixture.
Despite this, sufficient effects cannot be obtained, and the current situation is that low discharge capacity F and internal short circuits occur due to particle collapse as described above.

そこで、粒子崩壊を引き起こしやすい正極合剤の内周面
すなわちセパレータに接触して負極と対向する正極合剤
表面に前記のようなポリアクリル酸ナトリウムやカルボ
キシメチルセルロースなどの水溶性バインダー溶液を塗
布し、乾燥して正極合剤表面にポリアクリル酸ナトリウ
ムやカルボキシメチルセルロースの被膜を形成して正極
合剤表面の粒子崩壊を防止することが提案されているか
、それらのバインダーが長期保存中に電解液中に溶出゛
し粒子崩壊防止機能が低下して満足すべき結果が得られ
ていない。
Therefore, a water-soluble binder solution such as sodium polyacrylate or carboxymethyl cellulose as described above is applied to the inner circumferential surface of the positive electrode mixture that is likely to cause particle collapse, that is, the surface of the positive electrode mixture that contacts the separator and faces the negative electrode. It has been proposed to dry the positive electrode mixture to form a film of sodium polyacrylate or carboxymethylcellulose on the surface of the positive electrode mixture to prevent particle collapse on the surface of the positive electrode mixture. The function of preventing particle disintegration due to elution is degraded, and satisfactory results are not obtained.

〔発明の目的〕[Purpose of the invention]

本発明は上述した従来技術の欠点を解消するもので、正
極合剤の粒子崩壊や正極合剤粒子の負極側への移行を防
止して、長期保存性に優れたアルカリ電池を提供するこ
とを目的とするi〔発明の概要〕 本発明はポリビニルピロリドンを溶剤に溶解した溶液を
セパレータと接する正極合剤1面に塗布し、乾燥して正
極合剤表面にポリビニルピロリドンの被膜を形成し、該
ポリビニルピロリドンの被膜によって、正極合剤の粒子
崩壊や正極合剤粒子の負極側への移行を防止し、保存中
の粒子崩壊に基づく性能劣化や内部短絡の発生を防止し
て上記目的を達成したものである。
The present invention solves the above-mentioned drawbacks of the prior art, and aims to provide an alkaline battery with excellent long-term storage stability by preventing particle collapse of the positive electrode mixture and migration of the positive electrode mixture particles to the negative electrode side. Objective i [Summary of the Invention] The present invention applies a solution of polyvinylpyrrolidone dissolved in a solvent to one surface of the positive electrode mixture in contact with the separator, dries it to form a polyvinylpyrrolidone film on the surface of the positive electrode mixture, and The polyvinylpyrrolidone coating prevents particle disintegration of the positive electrode mixture and migration of the positive electrode mixture particles to the negative electrode side, and prevents performance deterioration and internal short circuits due to particle disintegration during storage, thereby achieving the above objectives. It is something.

本発明において用いるポリビニルピロリドンは、水溶性
高分子であって弱アルカリ液には若干溶解するが、アル
カリ電池の電解液として使用されるような強アルカリ水
溶液に対してはその溶解は極微量で膨潤する程度にとど
まっており、また耐酸化性にも優れており、正極活物質
である二酸化マンガンなどの強酸化性物質に対しても化
学的に安定である。
The polyvinylpyrrolidone used in the present invention is a water-soluble polymer and slightly dissolves in weak alkaline solutions, but it dissolves in a very small amount and swells in strong alkaline aqueous solutions such as those used as electrolytes in alkaline batteries. It also has excellent oxidation resistance, and is chemically stable against strong oxidizing substances such as manganese dioxide, which is a positive electrode active material.

ポリビニルピロリドンは上記のように水溶性高分子であ
って水に溶解するが、水辺外にも、メチルアルコールや
エチルアルコール、ブチルアルコールなどのアルコール
類にも可溶であり、また塩化メチレン、クロロホルムな
どのハロゲン化炭化水素にも可溶である。さらにアルコ
ールを助溶剤として、メチルエチルケトン、メチルイソ
ブチルケトンなどのケトン類やトルエン、キシレンなど
の芳香族炭化水素にも溶解するという特異な性質を有し
ている。
As mentioned above, polyvinylpyrrolidone is a water-soluble polymer and dissolves in water, but it is also soluble in alcohols such as methyl alcohol, ethyl alcohol, and butyl alcohol, and is also soluble in alcohols such as methylene chloride, chloroform, etc. It is also soluble in halogenated hydrocarbons. Furthermore, it has the unique property of being soluble in ketones such as methyl ethyl ketone and methyl isobutyl ketone, and aromatic hydrocarbons such as toluene and xylene using alcohol as a co-solvent.

ポリビニルビ「+ IJトンはまた被膜形成能にも優れ
ていて、ポリビニルピロリドンを上記のような溶剤に溶
かし、乾燥すると透明で光沢のある丈夫な被膜が形成さ
れる。
Polyvinylvinylpyrrolidone also has excellent film-forming ability, and when polyvinylpyrrolidone is dissolved in the above-mentioned solvent and dried, a transparent, glossy and durable film is formed.

本発明Lel十記のようなポリビニルピロリドンの特性
を活用し、ポリビニルピロリドンを溶剤に溶解した溶液
をセパレータと接する正極合剤表面に塗布し、乾燥して
上記正極合剤表面にポリビニルピロリドンの被膜を形成
させ、該ポリビニルピロリドンの被膜によって正極合剤
の粒子崩壊や正極合剤粒子の負極側への移行を防止して
、長期保存性に優れたアルカリ電池を提供したものであ
る。
Utilizing the properties of polyvinylpyrrolidone as described in the present invention, a solution of polyvinylpyrrolidone dissolved in a solvent is applied to the surface of the positive electrode mixture in contact with the separator, and dried to form a film of polyvinylpyrrolidone on the surface of the positive electrode mixture. The polyvinylpyrrolidone coating prevents particle disintegration of the positive electrode mixture and migration of the positive electrode mixture particles to the negative electrode side, thereby providing an alkaline battery with excellent long-term storage stability.

ポリビニルピロリドンは低分子量から高分子量までの4
グレードに分かれ、粉末状で市販されている。市販品の
具体例としては、例えばゼイラル・アニリン・アンド・
フィルレム社(General  Aniline  
&Fi1m  Corp、 )またはバーディッシェ・
アニリン・アンド・ソーダ社(Badische  A
nilin  &  5oda  Fabrik)より
市販されているP VPK−15(平均分子量10,0
00) 、−P V P K −30(平均分子量40
,000) 、P V P K −60(平均分子量1
60.000 > 、P V P K −90(平均分
子量360,000)などがあげられる。これらは溶液
にしたとき高分子量のものほど高粘度であるが、低分子
量のものも使用量を多くすれば粘度を上げることができ
、他の特性に関しては高分子量のものとの間に大きな差
異はない。
Polyvinylpyrrolidone has 4 types ranging from low molecular weight to high molecular weight.
It is divided into grades and is commercially available in powder form. Specific examples of commercially available products include Zeilal Aniline &
Fillem (General Aniline)
&Fi1m Corp, ) or Badische
Aniline and Soda Company (Badische A)
PVPK-15 (average molecular weight 10,0
00), -PVPK-30 (average molecular weight 40
,000), P V P K -60 (average molecular weight 1
60.000>, PVPK-90 (average molecular weight 360,000), and the like. When these are made into a solution, the higher the molecular weight, the higher the viscosity, but the viscosity of low molecular weight ones can be increased by increasing the amount used, and there are large differences between them and high molecular weight ones in terms of other properties. There isn't.

ポリビニルビl」リドン溶液は、ポリビニルピロリドン
を前記の溶剤に溶解することによってつくられるが、そ
の際の濃度は、ポリビニルピロリドンの分子量やl容剤
の種類によっても異なるが、通常2〜15重晴%にされ
る。
Polyvinylvinyl pyrrolidone solution is prepared by dissolving polyvinylpyrrolidone in the above-mentioned solvent, and the concentration at this time varies depending on the molecular weight of polyvinylpyrrolidone and the type of container, but it is usually 2 to 15% by volume. be done.

上記ポリビニルピロリドン溶液の塗布は、正極合剤のセ
パレータと接する面、すなわち筒形アルカリ電池ではリ
ング状の正極合剤の内周面、ボタン形アルカリ電池では
正極合剤の上面に対して行なわれる。具体的な塗布方法
としては、通常ポリビニルピロリドン溶液をスプレーに
よって塗布するかまたは1.記溶液を正極缶内に収納さ
れたリング状の正極合剤の中空部に注入し余剰の溶液を
吸い出す方法が採用される。
The polyvinylpyrrolidone solution is applied to the surface of the positive electrode mixture in contact with the separator, that is, the inner peripheral surface of the ring-shaped positive electrode mixture in a cylindrical alkaline battery, and the upper surface of the positive electrode mixture in a button-shaped alkaline battery. As a specific application method, a polyvinylpyrrolidone solution is usually applied by spraying, or 1. A method is adopted in which the solution is injected into the hollow part of a ring-shaped positive electrode mixture housed in a positive electrode can and the excess solution is sucked out.

乾燥は通常40〜80℃程度の温度で行なわれる。Drying is usually carried out at a temperature of about 40 to 80°C.

ポリビニルビ[1リドンの被膜の厚さは正確な測定が困
難であるが、上記ポリビニルピロリドン溶液をリング状
の正極合剤の中空部に注入し、ただちに吸い出し乾燥し
て被膜を形成すると3〜30pm程度の厚さになるが、
そのような薄い被膜でも充分にその効果を発揮する。
It is difficult to accurately measure the thickness of the polyvinylvinylpyrrolidone film, but if the polyvinylpyrrolidone solution is injected into the hollow part of the ring-shaped positive electrode mixture and immediately sucked out and dried to form a film, it is about 3 to 30 pm. The thickness will be
Even such a thin film can sufficiently exhibit its effect.

そしてポリビニルピロリドンの被膜は、アルカリ電解液
との接触により膨潤するので、電解液が正極合剤のそば
に存在でき、電池反応を妨げるようなことはない。
Since the polyvinylpyrrolidone film swells upon contact with the alkaline electrolyte, the electrolyte can be present near the positive electrode mixture without interfering with battery reactions.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 下記に示すようにして第2図に示すアルカリ・マンガン
電池を作製した。
Example 1 The alkaline manganese battery shown in FIG. 2 was produced as shown below.

二酸化マンガン40重量部、黒鉛4重量部、ポリアクリ
ル酸ナトリウム0.2重量部および水1.8重量部から
なる顆粒状合剤を加圧してリング状に成形し、これを4
個積み重ねてLRG形の正極缶1に装填した。それら積
み重ねたリング状正極合剤の中空部にコアロッドを挿入
し、コアロッドの外周に摺動自在に装着したパンチを下
降させ正極合剤を上方から加圧して正極合剤を正極缶1
の内面に圧着さゼた。
A granular mixture consisting of 40 parts by weight of manganese dioxide, 4 parts by weight of graphite, 0.2 parts by weight of sodium polyacrylate and 1.8 parts by weight of water was pressurized and formed into a ring shape.
They were stacked and loaded into an LRG type positive electrode can 1. A core rod is inserted into the hollow part of the stacked ring-shaped positive electrode mixture, and a punch slidably attached to the outer periphery of the core rod is lowered to pressurize the positive electrode mixture from above to transfer the positive electrode mixture to the positive electrode can 1.
It was crimped on the inner surface of the

圧着後、パンチを引き上げ、ついでコアロッドを引き抜
いた後、」二記リング状正極合剤2の中空部に、エチル
アルニJ−ル200重量部にポリビニルピロリドン(前
出のPVPK−90)10重量部を溶解したポリビニル
ピロリドンのアルコール溶液を正極合剤2の1一端を少
し越える程度まで注入した。
After crimping, pull up the punch, and then pull out the core rod, add 10 parts by weight of polyvinylpyrrolidone (PVPK-90 mentioned above) to 200 parts by weight of ethyl aluminum into the hollow part of the ring-shaped positive electrode mixture 2. An alcoholic solution of dissolved polyvinylpyrrolidone was injected into the positive electrode mixture 2 until it slightly exceeded one end.

注入後、ただちに真空ポンプで余剰のポリビニルピロリ
ドン溶液を吸い出し、電池全体を60°Cの熱風乾燥炉
に5分間入れて、アルコールを蒸発させ、第1図に示す
ように正極合剤2の内周面にポリビニルビ1」す1′ン
の被膜3を形成した。ついで正極缶1の開口部を屈曲さ
せて、その開口端近傍に溝を形成したのち、ビニロン−
レーヨン混抄紙とビニロン紙で形成したセパレータ4を
挿入し、つぎに酸化亜鉛を溶解させた35重量%水酸化
カリウム水溶液よりなる電解液をセパレータ4の中空部
に注入してセパレータ4および正極合剤3に吸収させた
Immediately after injection, the excess polyvinylpyrrolidone solution is sucked out using a vacuum pump, and the entire battery is placed in a hot air drying oven at 60°C for 5 minutes to evaporate the alcohol. A coating 3 of polyvinyl vinyl chloride was formed on the surface. Next, after bending the opening of the positive electrode can 1 and forming a groove near the opening end, vinylon
A separator 4 made of rayon mixed paper and vinylon paper is inserted, and then an electrolytic solution consisting of a 35% by weight potassium hydroxide aqueous solution in which zinc oxide is dissolved is injected into the hollow part of the separator 4 to separate the separator 4 and the positive electrode mixture. 3 was absorbed.

つぎに、正極缶1内のセパレータ4の中空部にペースト
状亜鉛よりなる負極剤5を充填し、ついで負極リード棒
6およびワッシャ7を装着した合成樹脂製封口体8を正
極缶lの開口部に挿入し、正極缶1の溝から先の部分を
半径方向に締め付けて封口体8に密着させ正極缶1の開
口部を封口した。以後、常法により外装を施し、第2図
に示すようなLR6形のアルカリ・マンガン電池を作製
した。第2図中、9は板ばねであり、lOは負極端子板
、11は絶縁リング、12.13は樹脂チプ、−ブ、1
4は正極端子板、15は金属外装缶、16は絶縁リング
である。
Next, the hollow part of the separator 4 in the positive electrode can 1 is filled with a negative electrode material 5 made of pasty zinc, and then a synthetic resin sealing body 8 equipped with a negative electrode lead rod 6 and a washer 7 is inserted into the opening of the positive electrode can 1. The opening of the positive electrode can 1 was sealed by radially tightening the portion beyond the groove of the positive electrode can 1 to bring it into close contact with the sealing body 8. Thereafter, the exterior was applied by a conventional method to produce an LR6 type alkaline manganese battery as shown in FIG. In Fig. 2, 9 is a leaf spring, 1O is a negative terminal plate, 11 is an insulating ring, 12.13 is a resin chip, -B, 1
4 is a positive terminal plate, 15 is a metal exterior can, and 16 is an insulating ring.

比較例1 正極合剤の内周面にポリビニルピロリドンの被膜を形成
しなかったほかは実施例1と同様にしてLR6形電池を
製造した。
Comparative Example 1 An LR6 type battery was manufactured in the same manner as in Example 1 except that a polyvinylpyrrolidone film was not formed on the inner peripheral surface of the positive electrode mixture.

比較例2 ポリビニルピロリドンの被膜に代え、濃度5%のポリア
クリル酸ナトリウム水溶液を正極合剤の内周面に実施例
1と同様の方法で塗布、乾燥して、正極合剤の内周面に
ポリアクリル酸す、トリウムの被膜を形成したほかは実
施例1と同様のLR6形電池を製造した。
Comparative Example 2 Instead of the polyvinylpyrrolidone coating, a 5% aqueous sodium polyacrylate solution was applied to the inner circumferential surface of the positive electrode mixture in the same manner as in Example 1, dried, and coated on the inner circumferential surface of the positive electrode mixture. An LR6 type battery was manufactured in the same manner as in Example 1 except that a film of polyacrylic acid and thorium was formed.

比較例3 ポリビニルピロリドンの被膜に代え、ポリスチロール1
0重量部をトルエン200重量部に溶解したポリスチロ
ールのトルエンy8液を正極合剤の内周面に実施例1と
同様の方法で塗布、乾燥して、正極合剤の内周面にポリ
スチロールの被膜を形成したほかは実施例1と同様のL
R6形電池を製造した。
Comparative Example 3 Instead of polyvinylpyrrolidone coating, polystyrene 1
A toluene y8 solution of polystyrene dissolved in 200 parts by weight of toluene is applied to the inner circumferential surface of the positive electrode mixture in the same manner as in Example 1, dried, and polystyrene is applied to the inner circumferential surface of the positive electrode mixture. L was the same as in Example 1 except that a film of
An R6 type battery was manufactured.

上記実施例1の電池および比較例1〜3の電池缶500
個ずつについて45℃で一定時間保存したのち、振動試
験を実施し、内部短絡した電池個数を調べ、その結果を
第1表に示した。なお、振動試験の条件は、振幅1.5
 inm、振動数50H2、振動時間60分、振動方向
は電池の軸方向および軸方向と垂直な方向の2方向とし
た。
The battery of Example 1 and the battery cans 500 of Comparative Examples 1 to 3
After each battery was stored at 45°C for a certain period of time, a vibration test was conducted to determine the number of internally short-circuited batteries, and the results are shown in Table 1. The conditions for the vibration test are an amplitude of 1.5
inm, a vibration frequency of 50 H2, a vibration time of 60 minutes, and two vibration directions: the axial direction of the battery and the direction perpendicular to the axial direction.

また、実施例1の電池および比較例1〜3の電池缶10
0個の初度と45℃で所定期間保存後の短絡電流を測定
し、その結果を第2表に示した。
In addition, the battery of Example 1 and the battery cans 10 of Comparative Examples 1 to 3
The short-circuit current was measured at 0 and after storage at 45° C. for a predetermined period of time, and the results are shown in Table 2.

さらに、実施例1の電池および比較例1〜3の電池につ
いて10Ω連続放電(終止電圧0.9 V) ’L。
Furthermore, 10Ω continuous discharge (final voltage 0.9 V)'L for the battery of Example 1 and the batteries of Comparative Examples 1 to 3.

たときの放電持続時間を測定し、その結果を第3表に比
較例1の電池の初度放電持続時間を100として指数で
表示した。
The discharge duration was measured, and the results are shown in Table 3 as an index, with the initial discharge duration of the battery of Comparative Example 1 set as 100.

第1表内部短絡発生個数 第2表短絡電流(A) 第3表放電持続時間 第1表〜第3表に示すように、本発明の実施例1の電池
は保存中の内部短絡発生がなく、また保存による放電持
続時間の低下が少なかった。これはポリビニルピロリド
ンの被膜により正極合剤の粒子崩壊や正極合剤粒子の負
極側への移行が防止された結果によるものと考えられる
。また本発明の実施例1の電池は、短絡電流も高く、ポ
リビニルピロリドン被膜の形成による電池反応の低下は
認められなかった。なおポリアクリル酸ナトリウムの被
膜ヲ正極合剤の内周面に形成した比較例2の電池は初度
特性はよいが、保存による性能劣化が大きく、1:ノこ
ポリスチロールの被膜を正極合剤の内周面6.7形成し
た比較例3の電池は該ポリスチロール被膜により電池反
応が妨げられ、内部抵抗の増加による短絡電流の低下や
、放電持続時間の減少が認められた。
Table 1 Number of internal short circuits Table 2 Short circuit current (A) Table 3 Discharge duration As shown in Tables 1 to 3, the battery of Example 1 of the present invention did not have internal short circuits during storage. , and the discharge duration decreased little due to storage. This is considered to be due to the fact that the polyvinylpyrrolidone coating prevented particle collapse of the positive electrode mixture and migration of the positive electrode mixture particles to the negative electrode side. Furthermore, the battery of Example 1 of the present invention had a high short circuit current, and no decrease in battery reaction due to the formation of the polyvinylpyrrolidone film was observed. The battery of Comparative Example 2 in which a film of sodium polyacrylate was formed on the inner peripheral surface of the positive electrode mixture had good initial characteristics, but the performance deteriorated significantly during storage. In the battery of Comparative Example 3 in which the inner peripheral surface was formed with a diameter of 6.7 mm, the polystyrene coating hindered the battery reaction, and a decrease in short circuit current and a decrease in discharge duration due to an increase in internal resistance were observed.

〔発明のり1県〕 以上説明したように、本発明によれば正極合剤の粒子筋
j力寸J正極合剤粒子の負極側への移行が防止され、長
町保存性が向上した。
[One Prefecture of Invention] As explained above, according to the present invention, migration of positive electrode mixture particles to the negative electrode side was prevented, and Nagamachi storage stability was improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図お、1び第2図は本発明に係るアルカリ電池を示
す図で、第1図は製造中において正極合剤の内周面にポ
リビニルピロリドンの被膜を形成した状態を示す断面図
、第2図は製造後の状態を示す部分断面図である。 2・・・正極合剤、  3・・・ポリビニルピロリドン
の被膜、 4・・・セパレータ 第10 第2図
1, 1 and 2 are diagrams showing an alkaline battery according to the present invention, and FIG. 1 is a cross-sectional view showing a state in which a polyvinylpyrrolidone film is formed on the inner peripheral surface of the positive electrode mixture during manufacturing, FIG. 2 is a partial sectional view showing the state after manufacture. 2... Positive electrode mixture, 3... Polyvinylpyrrolidone coating, 4... Separator No. 10 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)ポリビニルピロリドンを溶剤に溶解してなる溶液
をセパレータ4と接する正極合剤2の表面に塗布、乾燥
してポリビニルピロリドンの被膜3を形成したことを特
徴とするアルカリ電池。
(1) An alkaline battery characterized in that a solution prepared by dissolving polyvinylpyrrolidone in a solvent is applied to the surface of the positive electrode mixture 2 in contact with the separator 4 and dried to form a coating 3 of polyvinylpyrrolidone.
JP12346684A 1984-06-14 1984-06-14 Alkaline battery Pending JPS612265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12346684A JPS612265A (en) 1984-06-14 1984-06-14 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12346684A JPS612265A (en) 1984-06-14 1984-06-14 Alkaline battery

Publications (1)

Publication Number Publication Date
JPS612265A true JPS612265A (en) 1986-01-08

Family

ID=14861324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12346684A Pending JPS612265A (en) 1984-06-14 1984-06-14 Alkaline battery

Country Status (1)

Country Link
JP (1) JPS612265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087917A (en) * 2005-08-26 2007-04-05 Sanyo Electric Co Ltd Electrode plate for cell and manufacturing method of cell using plate
JP2009129664A (en) * 2007-11-22 2009-06-11 Fdk Energy Co Ltd Positive electrode can for alkaline cell, alkaline cell, and manufacturing method thereof
JP2010062013A (en) * 2008-09-04 2010-03-18 Fdk Energy Co Ltd Positive electrode can for alkaline battery, and alkaline battery
US8262746B2 (en) 2005-08-26 2012-09-11 Sanyo Electric Co., Ltd. Method of producing electrode plate filled with active material, method of producing battery using thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087917A (en) * 2005-08-26 2007-04-05 Sanyo Electric Co Ltd Electrode plate for cell and manufacturing method of cell using plate
US8262746B2 (en) 2005-08-26 2012-09-11 Sanyo Electric Co., Ltd. Method of producing electrode plate filled with active material, method of producing battery using thereof
JP2009129664A (en) * 2007-11-22 2009-06-11 Fdk Energy Co Ltd Positive electrode can for alkaline cell, alkaline cell, and manufacturing method thereof
JP2010062013A (en) * 2008-09-04 2010-03-18 Fdk Energy Co Ltd Positive electrode can for alkaline battery, and alkaline battery

Similar Documents

Publication Publication Date Title
US5187033A (en) Lithium secondary battery
US5419977A (en) Electrochemical device having operatively combined capacitor
JP2004527887A (en) Conformal separator for electrochemical cells containing cross-linked polymer
JP3202668B2 (en) Method for manufacturing solid electrolytic capacitor
JP2002117860A (en) Electrode and lithium secondary battery
EP0149494B1 (en) Method for preparing positive electrode for non-aqueous electrolyte cell
JP5172292B2 (en) Alkaline battery and manufacturing method thereof
JPS612265A (en) Alkaline battery
JPS5848361A (en) Alkaline dry cell
JPH059902B2 (en)
US4765799A (en) Latex coated electrodes for rechargeable cells
JP2002033093A (en) Nickel hydrogen storage battery and manufacturing method for it
JP2612002B2 (en) Battery
JPS5851472A (en) Manufacture of positive electrode for solid electrolyte battery
JPS612262A (en) Alkaline battery
JP2003017081A (en) Alkaline dry battery
JP2001325965A (en) Manufacturing method of manganese dry battery
JPH0433249A (en) Nonaqueous solvent secondary battery
JP2992781B2 (en) Manganese dry cell
JP2001351583A (en) Alkaline battery
JP2000306784A (en) Electrode for capacitor, manufacture thereof, and capacitor
JPS6211462B2 (en)
KR20020002301A (en) Hydrogen Absorbing Alloy Electrode, Method of Fabricating The Same and Alkaline Storage Battery
JPS62268053A (en) Manufacture of cylindrical alkaline battery and separator thereof
JPH01134856A (en) Secondary battery