JPH059902B2 - - Google Patents

Info

Publication number
JPH059902B2
JPH059902B2 JP58099219A JP9921983A JPH059902B2 JP H059902 B2 JPH059902 B2 JP H059902B2 JP 58099219 A JP58099219 A JP 58099219A JP 9921983 A JP9921983 A JP 9921983A JP H059902 B2 JPH059902 B2 JP H059902B2
Authority
JP
Japan
Prior art keywords
positive electrode
graphite
paint
polyvinylpyrrolidone
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58099219A
Other languages
Japanese (ja)
Other versions
JPS59224054A (en
Inventor
Koji Koide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP58099219A priority Critical patent/JPS59224054A/en
Publication of JPS59224054A publication Critical patent/JPS59224054A/en
Publication of JPH059902B2 publication Critical patent/JPH059902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/08Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with cup-shaped electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/122Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Paints Or Removers (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルカリ電池の製造法の改良に係り、
内部抵抗が小さく、かつ放電容量の大きいアルカ
リ電池を提供することを目的とする。 例えば筒形アルカリ・マンガン電池では、電池
容器としての正極缶が正極集電体を兼ねているた
め、正極缶内面の集電能力を高める必要がある。 そのため、正極缶の内面に電導性塗料を塗布す
ることが提案され、そのような目的に使用する電
導性塗料として、ニツケル、銀、黒鉛、アセチレ
ンブラツクなどの電導助剤とポリ塩化ビニル、ポ
リ酢酸ビニル、ポリスチレンなどの合成樹脂をト
ルエン、キシレン、メチルエチルケトン、酢酸エ
チルなどの有機溶媒に溶解、分散させたものが提
案されている。 ところが、そこに使用されている合成樹脂は被
膜形成能に優れ、耐アルカリ性、耐酸化性にも優
れていて、バインダーとしては非常に好適なもの
であるが、その反面、電導助剤の表面層がそれら
合成樹脂で被われ、それが長期間安定で破壊され
ないため、電導助剤の電導性が損なわれることに
なる。そのため、塗料中の合成樹脂量を極力減ら
すことによつて上記欠点を解消しようとしている
が、そうすることによつて、塗布乾燥後のムラや
剥離が生じるという問題がある。 本発明は上述した従来技術の欠点を解消するも
ので、ポリビニルピロリドンを黒鉛のバインダー
として用いることにより、目的を達成したもので
ある。 本発明において用いるポリビニルピロリドンは
水溶性高分子であるが、メチルアルコールやエチ
ルアルコール、ブチルアルコールなどのアルコー
ル類にも可溶であり、また塩化メチレン、クロロ
ホルムなどのハロゲン化炭化水素にも可溶であ
る。さらに、アルコールを助溶剤として、メチル
エチルケトン、メチルイソブチルケトンなどのケ
トン類やトルエン、キシレンなどの芳香族炭化水
素にも溶解するという特異な性質を有する。ま
た、ポリビニルピロリドンは弱アルカリ水溶液に
は若干溶解するが、アルカリ電池の電解液として
使用されるような強アルカリ水溶液に対しては、
その溶解は極微量で膨潤する程度でとどまつてお
り、また正極活物質としての二酸化マンガンなど
の強酸化剤に対しても化学的に安定である。さら
にポリビニルピロリドンは被膜形成能に優れてい
て、ポリビニルピロリドン溶液を塗布し乾燥する
と透明で光沢のある丈夫な被膜が形成され、黒鉛
の粒子同士を結着したり、素地に密着被覆する効
果が優れていて、バインダー効果が良好であり、
しかも電解液との接触により膨潤するため、黒鉛
の電導性を阻害することがない。 本発明はポリビニルピロリドンのこういう特性
を生かしてポリビニルピロリドンを電導性塗料の
バインダーに使用し、有機溶媒にこのポリビニル
ピロリドンを溶解し黒鉛を分散させて電導性塗料
を調製し、従来の合成樹脂バインダーを用いた電
導性塗料の欠点を解消して、内部抵抗が小さく、
かつ放電容量の大きいアルカリ電池を提供したも
のである。 ポリビニルピロリドンは低分子量から高分子量
までの4グレードに分かれ、粉末状で市販されて
いる。市販品の具体例としては、例えばゼネラ
ル・アニリン・アンド・フイルム社(General
Aniline & Film Corp.)またはバーデイツシ
エ・アニリン・アンド・ソーダ社(Badische
Anilin & Soda Fabrik)より市販されている
PVPK−15(平均分子量10000)、PVPK−30(平均
分子量40000)、PVPK−60(平均分子量160000)、
PVPK−90(平均分子量360000)などがあげられ
る。これらは高分子量のものほど高粘度の塗料が
得られる。しかし、低分子量のものも使用量を多
くすれば粘度を上げることができ、他の特性に関
しては高分子量のものとの間に大きな差異はな
い。 電導性塗料は、メチルアルコール、エチルアル
コール、ブチルアルコールなどの有機溶媒に、上
記ポリビニルピロリドンを溶解させ、黒鉛を分散
させることによつて得られる。ポリビニルピロリ
ドンの溶解と黒鉛の分散は、通常、ポリビニルピ
ロリドンを有機溶媒に溶解させ、ついで黒鉛を分
散させる順序で行われるが、ポリビニルピロリド
ンと黒鉛を同時に有機溶媒中に投入して、ポリビ
ニルピロリドンの溶解と黒鉛の分散を同時に行う
こともできるし、また、先に黒鉛を分散させてか
ら、ポリビニルピロリドンを溶解させることもで
きる。 黒鉛としては、熱分解黒鉛、カーボンブラツク
などの人造黒鉛、りん状黒鉛、土状黒鉛などの天
然黒鉛などが用いられる。本発明において、電導
助剤として特に黒鉛を選んだのは、黒鉛が比較的
柔軟で潤滑性が大きく、また、接触抵抗が小さ
く、さらに化学的に安定で、しかも撥水性がある
からであり、ポリビニルピロリドンの膨潤後も黒
鉛表面の電解液が排除され良好な電導性を発揮す
るからである。 電導性塗料の組成は、使用する溶媒やポリビニ
ルピロリドンなどの種類によつても異なるが、通
常は溶媒300部(重量部、以下同様)に対してポ
リビニルピロリドン5〜10部、黒鉛30〜40部の範
囲が好ましい。 上記のごとき電導性塗料の塗布は、通常スプレ
ーによる塗布または電導性塗料を電池容器に注入
し余剰の塗料を吸い出す方法によつて行なわれ
る。そして、塗布は、例えば筒形アルカリ電池で
は、電池容器としての正極缶の正極合剤と接する
面に行なえばよい。 次に本発明の実施例を図面とともに説明する。 実施例 1 エチルアルコール300gに10gのPVPK−90(前
出)を少量ずつ添加して溶解させ、これにりん状
黒鉛粉末(粘度0.5〜7μm)を40g加え、よく分
散させて塗料を調製した。 この塗料をLR6形電池の電池容器としてのニツ
ケルメツキを施した正極缶1の正極合剤と接触す
る部分に塗布し、室温で20時間放置して乾燥し、
第1図に示すように被膜2を形成させた。得られ
た被膜2はほぼ均斉で、その厚さは平均で40μm
であつた。 このようにして電導性被膜2が形成された正極
缶1内に、二酸化マンガンと黒鉛とからなる正極
合剤粉末を加圧成形したリング状の正極合剤成形
体を正極缶1の内壁に沿つて4個積み重ねて収納
し、それら正極合剤の中空部にコアロツドを挿入
し、コアロツドの外周に摺動自在に装着したパン
チを下降させて正極合剤を上方から加圧して、正
極合剤3を正極缶1の内面に形成した前記電導性
被膜2に圧着させた。 圧着後、パンチを引き上げ、ついでコアロツド
を引き抜き、正極缶1の開口部を屈曲させて、そ
の開口端近傍に溝を形成したのち、セパレータ4
を挿入し、ついで電解液をセパレータ4内に注入
してセパレータ4および正極合剤3に浸潤させ
た。 次に、正極缶1内のセパレータ4内に負極剤5
を充填し、ついで負極リード棒6およびワツシヤ
7を装着した合成樹脂製封口体8を正極缶1の開
口部に挿入し、正極缶1の溝から先の部分を半径
方向に締め付けて封口体8に密着させ正極缶1の
開口部を封口した。以下、常法により外装を施
し、第2図に示すようなLR6形のアルカリ・マン
ガン電池Aを製造した。第2図中、9は板ばねで
あり、10は負極端子板、11は絶縁リング、1
2,13は樹脂チユーブ、14は正極端子板、1
5は金属外装缶、16は絶縁リングである。 実施例 2 エチルアルコール200gにPVPK−90を10g少
量ずつ溶解させ、ついでトルエン100gを加えて
混合した。 この溶液に実施例1と同様のりん状黒鉛粉末40
gを添加して、よく分散させて塗料を調製した。 この塗料を実施例1と同様のLR6形電池用の正
極缶に塗布し、乾燥して、実施例1と同様に正極
缶の内面に電導性被膜を形成させ、以後実施例1
と同様にしてLR6形電池Bを製造した。 なお、本実施例において、トルエンを添加した
のは、塗料の粘性を低くして、塗布したときの流
動性を向上させることによる。 比較例 1 トルエン300gにポリスチレン10gを溶解させ
たのち、実施例1と同様のりん状黒鉛粉末40gを
添加し、よく分散させて塗料を調製した。 この塗料を実施例1と同様のLR6形電池用の正
極缶に塗布し、乾燥して、正極缶の内面に電導性
被膜を形成させ、以後実施例1と同様にしてLR6
形電池Cを製造した。 比較例 2 メチルエチルケトン300gにポリ塩化ビニル10
gを溶解させたのち、実施例1と同様のりん状黒
鉛粉末40gを添加して、よく分散させて塗料を調
製した。 この塗料を実施例1と同様のLR6形電池用の正
極缶に塗布し、乾燥して、正極缶の内面に電導性
被膜を形成させ、以後実施例1と同様にしてLR6
形電池Dを製造した。 比較例 3 電導性塗料の塗布をまつたく行わなかつたほか
は実施例1と同様にしてLR6形電池Eを製造し
た。 上記のようにして製造された電池A、B、C、
DおよびEの初度、45℃で3カ月貯蔵後および20
℃で12カ月貯蔵後の開路電圧および短絡電流を測
定した。それらの結果を第1表および第2表に示
す。 また、上記5種類の電池の初度、45℃で3カ月
貯蔵後および20℃で12カ月貯蔵後の2Ω間欠放電
(5秒放電/5秒休止)で終止電圧0.9Vで放電さ
せたときの放電時間(正味放電時間)を第3表に
示す。
The present invention relates to an improvement in the manufacturing method of an alkaline battery,
The purpose of the present invention is to provide an alkaline battery with low internal resistance and high discharge capacity. For example, in a cylindrical alkaline manganese battery, the positive electrode can serving as a battery container also serves as a positive electrode current collector, so it is necessary to increase the current collecting ability of the inner surface of the positive electrode can. Therefore, it has been proposed to apply a conductive paint to the inner surface of the positive electrode can, and conductive paints used for this purpose include conductive additives such as nickel, silver, graphite, and acetylene black, as well as polyvinyl chloride and polyacetic acid. It has been proposed that synthetic resins such as vinyl and polystyrene are dissolved and dispersed in organic solvents such as toluene, xylene, methyl ethyl ketone, and ethyl acetate. However, the synthetic resin used there has excellent film-forming ability and excellent alkali resistance and oxidation resistance, making it very suitable as a binder. is covered with these synthetic resins, which remain stable for a long period of time and do not break down, which impairs the conductivity of the conductive aid. Therefore, attempts have been made to eliminate the above-mentioned drawbacks by reducing the amount of synthetic resin in the paint as much as possible, but this results in problems such as unevenness and peeling after coating and drying. The present invention overcomes the above-mentioned drawbacks of the prior art and achieves its objectives by using polyvinylpyrrolidone as a binder for graphite. Polyvinylpyrrolidone used in the present invention is a water-soluble polymer, but it is also soluble in alcohols such as methyl alcohol, ethyl alcohol, and butyl alcohol, and also soluble in halogenated hydrocarbons such as methylene chloride and chloroform. be. Furthermore, it has the unique property of being soluble in ketones such as methyl ethyl ketone and methyl isobutyl ketone, and aromatic hydrocarbons such as toluene and xylene using alcohol as a co-solvent. In addition, polyvinylpyrrolidone is slightly soluble in weak alkaline aqueous solutions, but it dissolves in strong alkaline aqueous solutions such as those used as electrolytes in alkaline batteries.
Its dissolution is limited to a very small amount that causes swelling, and it is also chemically stable against strong oxidizing agents such as manganese dioxide as a positive electrode active material. Furthermore, polyvinylpyrrolidone has excellent film-forming ability, and when a polyvinylpyrrolidone solution is applied and dried, a transparent, glossy, and durable film is formed, which has an excellent effect of binding graphite particles together and adhering to the substrate. It has a good binder effect,
Moreover, since it swells upon contact with the electrolyte, it does not impede the conductivity of graphite. The present invention takes advantage of these properties of polyvinylpyrrolidone, uses polyvinylpyrrolidone as a binder for conductive paint, dissolves this polyvinylpyrrolidone in an organic solvent and disperses graphite to prepare a conductive paint, and replaces the conventional synthetic resin binder. Eliminates the drawbacks of the conductive paint used, and has low internal resistance.
Moreover, an alkaline battery with a large discharge capacity is provided. Polyvinylpyrrolidone is divided into four grades ranging from low molecular weight to high molecular weight, and is commercially available in powder form. Specific examples of commercially available products include General Aniline & Film Co.
Aniline & Film Corp.) or Badische Aniline & Film Corp.
Anilin & Soda Fabrik)
PVPK-15 (average molecular weight 10,000), PVPK-30 (average molecular weight 40,000), PVPK-60 (average molecular weight 160,000),
Examples include PVPK-90 (average molecular weight 360,000). The higher the molecular weight of these materials, the higher the viscosity of the paint. However, the viscosity can be increased by increasing the amount of low-molecular-weight ones, and there is no big difference between them and high-molecular-weight ones in terms of other properties. The conductive paint can be obtained by dissolving the polyvinylpyrrolidone in an organic solvent such as methyl alcohol, ethyl alcohol, butyl alcohol, and dispersing graphite. Dissolution of polyvinylpyrrolidone and dispersion of graphite are usually performed in the order of dissolving polyvinylpyrrolidone in an organic solvent and then dispersing graphite. and graphite can be dispersed at the same time, or graphite can be dispersed first and then polyvinylpyrrolidone can be dissolved. As the graphite, pyrolytic graphite, artificial graphite such as carbon black, natural graphite such as phosphorous graphite, earthy graphite, etc. are used. In the present invention, graphite was specifically selected as the conductive aid because graphite is relatively flexible, has high lubricity, has low contact resistance, is chemically stable, and is water repellent. This is because even after the polyvinylpyrrolidone swells, the electrolyte on the surface of the graphite is removed and good conductivity is exhibited. The composition of the conductive paint varies depending on the type of solvent and polyvinylpyrrolidone used, but it usually contains 5 to 10 parts of polyvinylpyrrolidone and 30 to 40 parts of graphite for 300 parts (by weight, the same applies hereinafter) of the solvent. A range of is preferred. The conductive paint as described above is usually applied by spraying or by pouring the conductive paint into the battery container and sucking out the excess paint. For example, in the case of a cylindrical alkaline battery, the coating may be performed on the surface of a positive electrode can serving as a battery container that comes into contact with the positive electrode mixture. Next, embodiments of the present invention will be described with reference to the drawings. Example 1 10 g of PVPK-90 (described above) was added little by little to 300 g of ethyl alcohol and dissolved, and 40 g of phosphorous graphite powder (viscosity 0.5 to 7 μm) was added thereto and well dispersed to prepare a paint. This paint was applied to the part of the nickel-plated cathode can 1 used as the battery container of the LR6 battery that would come into contact with the cathode mixture, and left to dry at room temperature for 20 hours.
A coating 2 was formed as shown in FIG. The obtained coating 2 is almost uniform, and its thickness is 40 μm on average.
It was hot. In the positive electrode can 1 on which the conductive film 2 has been formed in this manner, a ring-shaped positive electrode mixture molded body made by pressure-molding a positive electrode mixture powder consisting of manganese dioxide and graphite is placed along the inner wall of the positive electrode can 1. A core rod is inserted into the hollow part of the positive electrode mixture, and a punch slidably attached to the outer periphery of the core rod is lowered to pressurize the positive electrode mixture from above. was pressed onto the conductive film 2 formed on the inner surface of the positive electrode can 1. After crimping, pull up the punch, then pull out the core rod, bend the opening of the positive electrode can 1, form a groove near the opening end, and then insert the separator 4.
was inserted, and then an electrolytic solution was injected into the separator 4 to infiltrate the separator 4 and the positive electrode mixture 3. Next, the negative electrode material 5 is placed inside the separator 4 in the positive electrode can 1.
Then, the synthetic resin sealing body 8 equipped with the negative electrode lead rod 6 and washer 7 is inserted into the opening of the positive electrode can 1, and the portion beyond the groove of the positive electrode can 1 is tightened in the radial direction to close the sealing body 8. The opening of the positive electrode can 1 was sealed. Thereafter, the exterior was applied by a conventional method to produce an LR6 type alkaline manganese battery A as shown in Fig. 2. In Figure 2, 9 is a leaf spring, 10 is a negative terminal plate, 11 is an insulating ring, 1
2 and 13 are resin tubes, 14 is a positive terminal plate, 1
5 is a metal exterior can, and 16 is an insulating ring. Example 2 10 g of PVPK-90 was dissolved little by little in 200 g of ethyl alcohol, and then 100 g of toluene was added and mixed. Add 40% of the same phosphorous graphite powder as in Example 1 to this solution.
g was added and well dispersed to prepare a paint. This paint was applied to a positive electrode can for an LR6 type battery similar to that in Example 1, and dried to form a conductive film on the inner surface of the positive electrode can in the same manner as in Example 1.
LR6 type battery B was manufactured in the same manner. In this example, toluene was added to lower the viscosity of the paint and improve its fluidity when applied. Comparative Example 1 After dissolving 10 g of polystyrene in 300 g of toluene, 40 g of the same phosphorous graphite powder as in Example 1 was added and well dispersed to prepare a paint. This paint was applied to a positive electrode can for an LR6 type battery similar to that in Example 1, and dried to form a conductive film on the inner surface of the positive electrode can.
A type battery C was manufactured. Comparative example 2 300g of methyl ethyl ketone and 10% polyvinyl chloride
After dissolving 40 g of phosphorous graphite powder as in Example 1, the mixture was well dispersed to prepare a paint. This paint was applied to a positive electrode can for an LR6 type battery similar to that in Example 1, and dried to form a conductive film on the inner surface of the positive electrode can.
A type battery D was manufactured. Comparative Example 3 An LR6 type battery E was manufactured in the same manner as in Example 1 except that the conductive paint was not applied. Batteries A, B, C manufactured as above,
D and E initially, after 3 months storage at 45°C and 20
The open circuit voltage and short circuit current were measured after 12 months storage at °C. The results are shown in Tables 1 and 2. In addition, the discharge when the above five types of batteries were initially discharged at a final voltage of 0.9V with 2Ω intermittent discharge (5 seconds discharge/5 seconds pause) after storage at 45℃ for 3 months and after storage at 20℃ for 12 months. The times (net discharge time) are shown in Table 3.

【表】【table】

【表】【table】

【表】 第2表および第3表に示す結果から明らかなよ
うに、本発明による電池AおよびBは、内部抵抗
が小さく、放電性能が優れている。特に貯蔵後の
特性において、本発明の効果が顕著である。また
第1表に示すように本発明による電池AおよびB
は、従来法による電池CおよびDと開路電圧が変
わらずポリビニルピロリドンの使用による電池特
性の低下が認められなかつた。
[Table] As is clear from the results shown in Tables 2 and 3, Batteries A and B according to the present invention have low internal resistance and excellent discharge performance. The effects of the present invention are particularly noticeable in the properties after storage. Further, as shown in Table 1, batteries A and B according to the present invention
The open circuit voltage was the same as that of conventional batteries C and D, and no deterioration in battery characteristics due to the use of polyvinylpyrrolidone was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に係るアルカリ電
池を示す図で、第1図は製造中において正極缶の
内面に電導性被膜を形成した状態を示す断面図、
第2図は製造後の状態を示す部分断面図である。 1……正極缶、2……電導性被膜。
1 and 2 are views showing an alkaline battery according to the present invention, and FIG. 1 is a cross-sectional view showing a state in which a conductive film is formed on the inner surface of a positive electrode can during manufacturing;
FIG. 2 is a partial sectional view showing the state after manufacture. 1... Positive electrode can, 2... Conductive coating.

Claims (1)

【特許請求の範囲】[Claims] 1 有機溶媒にポリビニルピロリドンを溶解し黒
鉛粉末を分散してなる電導性塗料を集電体を兼ね
る電池容器の内面に塗布し乾燥して電導性被膜を
形成することを特徴とするアルカリ電池の製造
法。
1. Production of an alkaline battery characterized by applying a conductive paint made by dissolving polyvinylpyrrolidone in an organic solvent and dispersing graphite powder to the inner surface of a battery container that also serves as a current collector and drying it to form a conductive film. Law.
JP58099219A 1983-06-02 1983-06-02 Manufacture of alkaline battery Granted JPS59224054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58099219A JPS59224054A (en) 1983-06-02 1983-06-02 Manufacture of alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58099219A JPS59224054A (en) 1983-06-02 1983-06-02 Manufacture of alkaline battery

Publications (2)

Publication Number Publication Date
JPS59224054A JPS59224054A (en) 1984-12-15
JPH059902B2 true JPH059902B2 (en) 1993-02-08

Family

ID=14241548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58099219A Granted JPS59224054A (en) 1983-06-02 1983-06-02 Manufacture of alkaline battery

Country Status (1)

Country Link
JP (1) JPS59224054A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL76085A0 (en) * 1984-08-21 1985-12-31 Ray O Vac Corp Alkaline primary battery containing coated current collector
CH674096A5 (en) * 1988-01-19 1990-04-30 Lonza Ag
EP0448944B1 (en) * 1990-03-26 1994-09-14 Lonza Ag Method and device for intervalwise spraying of a suspension of lubricant
JP2014167849A (en) * 2013-02-28 2014-09-11 Nitto Denko Corp Conductive laminated sheet and charge collector

Also Published As

Publication number Publication date
JPS59224054A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
US4297231A (en) Process for producing a positive electrode for a non-aqueous electrolytic cell
KR101034432B1 (en) Coating liquid for manufacturing electrode plate, undercoating agent, and use thereof
KR101179378B1 (en) Secondary-battery current collector, secondary-battery cathode, secondary-battery anode, secondary battery and production method thereof
US6399246B1 (en) Latex binder for non-aqueous battery electrodes
TWI483446B (en) A battery collector, a battery positive electrode, a battery negative electrode, a battery, and a manufacturing method
EP2897203A1 (en) Composite current collector for energy storage device electrode, and electrode
TW568931B (en) Pasty materials comprising inorganic, fluid conductors and layers produced therefrom, and electrochemical components made from these layers
JPH059902B2 (en)
US5447809A (en) Alkaline primary battery containing coated current collector
JPS5848361A (en) Alkaline dry cell
JPH1012243A (en) Lithium secondary battery
JPS612265A (en) Alkaline battery
US6153330A (en) Alkaline manganese dioxide electrochemical cell having coated can treated with silicon compounds
EP0175149B1 (en) Alkaline primary battery containing coated current collector
JP3493900B2 (en) Electrode plate for lead storage battery and method of manufacturing the same
JPH05266893A (en) Manufacture of alkaline battery
US4765799A (en) Latex coated electrodes for rechargeable cells
JP2001351583A (en) Alkaline battery
CN114628161A (en) Water-based graphene-based energy storage electrode material 3D printing ink, and preparation method and application thereof
JPS5851472A (en) Manufacture of positive electrode for solid electrolyte battery
JPH07326346A (en) Manufacture of sheet electrode
JPS612262A (en) Alkaline battery
CN101593833B (en) Nickel-cadmium cell cathode, manufacturing method thereof and cell with same
JPS59160959A (en) Alkaline dry cell
JPS62291859A (en) Cylindrical alkaline battery