JPS5882476A - Production method of button type alkaline battery - Google Patents

Production method of button type alkaline battery

Info

Publication number
JPS5882476A
JPS5882476A JP18205481A JP18205481A JPS5882476A JP S5882476 A JPS5882476 A JP S5882476A JP 18205481 A JP18205481 A JP 18205481A JP 18205481 A JP18205481 A JP 18205481A JP S5882476 A JPS5882476 A JP S5882476A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
separator
solution
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18205481A
Other languages
Japanese (ja)
Inventor
Akihiro Amari
甘利 昭弘
Hideyuki Shima
秀幸 島
Hiromichi Aoki
青木 大陸
Yasusaburo Yagyu
柳生 泰三郎
Hayashi Hayakawa
早川 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18205481A priority Critical patent/JPS5882476A/en
Publication of JPS5882476A publication Critical patent/JPS5882476A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/12Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To improve the resistance against liquid leakage and stabilize the short-circuit current for the battery performance by assembling the battery after fixing a seperator by dropping a viscous solution which is made by adding a thickner in an alkaline solution on the surface of positive electrode depolarizing mix and removing various unstable factors caused by a shift of the position of the separator. CONSTITUTION:A desirable amount of a mixture 3 of hardened zinc powder, and carboxy-methyl cellulose powder is put into the assembled sealed plate which is used as a container, and also being used as a negative terminal, which is made by fitting insulating sealing ring 1 on which an sealing agent is painted, to the periphery of sealing plate 2; then a material to be impregnated 4 is placed; and a desirable amount of electrolyte solution which contains potassium hydroxide is poured. Then, a specified amount of positive electrode depolarizing mix 6 is inserted in the positive electrode case 5 having a step, and pressured. High viscous solution 7 which is made by adding the thickener into an alkaline solution is dropped on the surface of positive electrode, and the separator 8 is fixed, then, a battery is assembled by combining a negative electrode and a positive electrode.

Description

【発明の詳細な説明】 本発明はボタン型アルカリ電池の製造法に関し、特に正
極ケースの側面が段付の場合のセパレータの挿入方法を
改良して優れた量産性と保存性を有した製造方法を提供
するものである。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing button-type alkaline batteries, and in particular, a method for manufacturing button-type alkaline batteries that has excellent mass productivity and storage stability by improving the separator insertion method when the side surface of the positive electrode case is stepped. It provides:

従来のボタン型アルカリ電池のセパレータ挿入方式には
大きく分類して、次の2通りの方法が採用されている。
The separator insertion methods for conventional button-type alkaline batteries are roughly classified into the following two methods.

その第1は、正極ケースに正極合剤を挿入加圧したのち
に水酸化カリウム水溶液からなる電解液の所定量を注入
し、次いでセパレータを正極ケースの中に挿入する。現
在のボタン型アルカリ電池ではこの方法が広く用いられ
ている。
The first method is to insert the positive electrode mixture into the positive electrode case and pressurize it, then inject a predetermined amount of an electrolytic solution consisting of an aqueous potassium hydroxide solution, and then insert the separator into the positive electrode case. This method is widely used in current button-type alkaline batteries.

第2の方法は、水化亜鉛粉末と増粘剤、主にカル−キシ
メチルセルロース粉末とを混合した後、これを負極封口
板内に所望量挿入し、その後含浸材を配置して水酸化カ
リウム水溶液からなる電解液の所定量を負極封口板内に
注入し、その後に含浸材上にセパレータを挿入する。
The second method is to mix zinc hydrate powder and a thickener, mainly carboxymethyl cellulose powder, insert the desired amount into the negative electrode sealing plate, then place the impregnating material and add potassium hydroxide. A predetermined amount of an aqueous electrolytic solution is injected into the negative electrode sealing plate, and then a separator is inserted onto the impregnated material.

現在の段付正極ケース使用のボタン型アルカリ電池の製
造方法は、主に第2の方法が取られているが、この方法
による製造方法には次の様な問題があった。
The current method of manufacturing button-type alkaline batteries using stepped positive electrode cases mainly uses the second method, but this method has the following problems.

すなわち、含浸材の表面にセパレータをのせるだけの為
に、負極封目板の中央にのりに<<、第5図の様に位置
ずれを起こしやすく組立後では第6図の様になりやすく
、製造工程での量産化への障害あるいは品質特性のバラ
ツキになりやすい。
In other words, since the separator is simply placed on the surface of the impregnated material, the paste tends to be misaligned in the center of the negative electrode sealing plate, as shown in Figure 5, which tends to occur after assembly as shown in Figure 6. This can easily become an obstacle to mass production during the manufacturing process or cause variations in quality characteristics.

また第1の方法では段付ケースの為に製造工程において
ケースからセパレータがはずれやすく、製造工程での量
産化が不可能である。
Furthermore, in the first method, because of the stepped case, the separator is likely to come off the case during the manufacturing process, making mass production impossible.

以上のごと〈従来の方法では段付正極ケースへのセパレ
ータ挿入では棟内の問題があった。
As mentioned above, with the conventional method, there was a problem within the ridge when inserting the separator into the stepped positive electrode case.

本発明者らはこれらの課題を解決したセパレータ挿入方
法を提案するものである。
The present inventors propose a separator insertion method that solves these problems.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

封止剤を塗布した絶縁封口リング1を封口板2の周縁に
取り付けた負極端子を兼ねる容器としての組立封目板肉
に泳化亜鉛粉末とカルボキシメチルセルローズ粉末との
混合物3を所望量挿入し、その後含浸材4を、配置して
、水酸化カリウムからなる電解液を所望量注入し、第1
図の状態とする。
An insulating sealing ring 1 coated with a sealant is attached to the periphery of a sealing plate 2, and a desired amount of a mixture 3 of electrolytic zinc powder and carboxymethyl cellulose powder is inserted into the assembled sealing plate, which serves as a container that also serves as a negative electrode terminal. After that, the impregnating material 4 is placed, and a desired amount of electrolytic solution consisting of potassium hydroxide is injected.
As shown in the figure.

次に段付正極ケース6に所定量の正極合剤6を6.  
挿入して加圧したのち、正極表面にアルカリ溶液中に増
粘剤を添加してなる粘性の高い溶液7を滴下してセパレ
ータ8を接着させ、第2図の状態とする。第1図の負極
と第2図の正極とを組合せて第3図のような電池を組立
てる。
Next, add a predetermined amount of positive electrode mixture 6 to the stepped positive electrode case 6.
After the positive electrode is inserted and pressurized, a highly viscous solution 7 made by adding a thickener to an alkaline solution is dropped onto the surface of the positive electrode to adhere the separator 8, resulting in the state shown in FIG. A battery as shown in FIG. 3 is assembled by combining the negative electrode shown in FIG. 1 and the positive electrode shown in FIG. 2.

可能で、対漏液性能の向上と共に電池性能上の短絡電流
の安定化を図れる事が判った。
It was found that it is possible to improve the leakage resistance and stabilize the short circuit current in terms of battery performance.

次に具体的な実施例について述べる。Next, a specific example will be described.

JIS規格(7)MB2型(H−D)、直径16.。JIS standard (7) MB2 type (HD), diameter 16. .

騙高さ6.2閣の水銀電池について本発明を適用した場
合を説明する。
A case will be described in which the present invention is applied to a mercury battery with a height of 6.2 cm.

第2図に示す段付正極ケース6に第4図で示す様にカル
ボキシメチルセルローズ粉末を1.5重量係添加混合し
た水酸化カリウム水溶液7を101’1jpIF極表面
に滴下する。次いで耐アルカリ性のセパレータ8番挿入
する。
As shown in FIG. 4, an aqueous potassium hydroxide solution 7 containing 1.5 weight percent of carboxymethyl cellulose powder is dropped onto the surface of the 101'1jp IF electrode in the stepped positive electrode case 6 shown in FIG. Next, insert alkali-resistant separator No. 8.

正極には段付ケース6に酸化水銀と黒鉛粉末とを混合し
た正極合剤6を所望量秤量し加圧成形したものを使用す
る。
For the positive electrode, a desired amount of positive electrode mixture 6, which is a mixture of mercury oxide and graphite powder, is weighed and press-molded in a stepped case 6 is used.

負極側は第1図に示す様に負極封口板2はステンレス鋼
板を主体に形成されその内面側には銅、外面側にはニッ
ケルを配したクラツド板を使用する。
On the negative electrode side, as shown in FIG. 1, the negative electrode sealing plate 2 is mainly formed of a stainless steel plate, and a clad plate with copper on the inner surface and nickel on the outer surface is used.

絶縁リング1にはボリア1ミド(6,6ナイロン)から
形成されたものを用いた。またこの封口リングと封口板
とが接する面には封止剤を予め塗布した。
The insulating ring 1 was made of boria 1-mid (6,6 nylon). Further, a sealant was applied in advance to the surface where the sealing ring and the sealing plate were in contact.

封口板1内には氷化亜鉛粉末(氷化率11%)に増粘剤
としてカルボキシメチルセルローズ粉末を総重量の2重
量係添加混合した負極合剤3の440gfと水酸化カリ
ウムからなる電解液の所望量を注入しゲル状とした。こ
の負極合剤3上に耐アルカリ性繊維からなる電解液保持
材4を配置す・る。
Inside the sealing plate 1 is an electrolytic solution consisting of 440gf of negative electrode mixture 3, which is a mixture of frozen zinc powder (freezing rate: 11%) and carboxymethyl cellulose powder as a thickener in proportion to 2 of the total weight, and potassium hydroxide. The desired amount was injected to form a gel. An electrolyte holding material 4 made of alkali-resistant fiber is placed on this negative electrode mixture 3.

上記に説明した第1図の負極構成と、第2図の正極構成
とを組合せて電1池を作る。
A battery is made by combining the negative electrode configuration shown in FIG. 1 and the positive electrode configuration shown in FIG. 2 explained above.

この様に試作して得られた電池を20Cの温度下で60
個の短絡電流値を測定した結果、平均値は0.517A
でバラツキ値は0.086であり、これまでの電池の平
均値0.452A、バラツキ値0.115  −に比べ
著しい効果が得られた。また不良率につい苧 ても数量1000個で60ツトの量産試作結果、従来の
不良率1〜2%が本発明では0.o1〜o、ooa係と
減少している事が判る。
The battery obtained by trial production in this way was heated to 60℃ at a temperature of 20C.
As a result of measuring short circuit current values, the average value was 0.517A.
The variation value was 0.086, which was a remarkable effect compared to the average value of 0.452A and the variation value of 0.115- for the previous batteries. Regarding the defective rate, as a result of mass production trial production of 1000 pieces and 60 pieces, the conventional defective rate was 1 to 2%, but with the present invention it is 0. It can be seen that the number has decreased from o1 to o and ooa.

次に本発明における各々の特徴について述べる。Next, each feature of the present invention will be described.

正極表面に添加する増粘剤そあるが、前記実施例ではカ
ルボキシメチルセルローズの添加量1.6重量係で粘度
800 cpsの溶液を用いたが、本発明の最適範囲と
しては1100cpから1o万cpsの範囲が適当であ
った。
There are thickeners that can be added to the surface of the positive electrode, but in the above example, a solution with a viscosity of 800 cps was used with an amount of carboxymethyl cellulose added of 1.6% by weight, but the optimum range for the present invention is from 1100 cps to 10,000 cps. The range was appropriate.

100 cps以下では、正極表面のセパレータ接着力
が弱く製造工程での量産化が不可能である。
If it is less than 100 cps, the adhesive force of the separator on the surface of the positive electrode is weak and mass production in the manufacturing process is impossible.

また正極表面の乾燥により短絡電流値において期待水準
を維持する事が困難である事が判、る。
It was also found that it was difficult to maintain the expected level of short circuit current due to drying of the positive electrode surface.

また10j5cpa以上では正極表面に滴下する事が困
難で、作業性が著しく低下する事を確認した。
Furthermore, it was confirmed that if the pressure exceeds 10j5 cpa, it is difficult to drip onto the surface of the positive electrode, resulting in a significant decrease in workability.

次に粘性溶液の添加量であるが、本発明の実施例では正
極表面積に対して15μl/cdの量を添加したが添加
量と漏液との関係を実施例1と同様にMRQ型電池で検
討した。
Next, regarding the amount of viscous solution added, in the example of the present invention, an amount of 15 μl/cd was added to the surface area of the positive electrode. investigated.

その結果添加量が増加すると耐漏液特性が著しく劣化し
、好ましくない事がわかった。なお漏液特性の評価は温
度45C1相対温度90%の雰囲気中に電池を2000
時間放置し、その後顕微鏡にて観察し斑点状の結晶、あ
るいは白色の結晶が析出している物を漏液として評価し
た。
As a result, it was found that as the amount added increases, the leakage resistance deteriorates significantly, which is not desirable. The leakage characteristics were evaluated by placing the battery in an atmosphere with a temperature of 45C1 and a relative temperature of 90%.
The solution was left to stand for a while and then observed under a microscope, and spots or white crystals precipitated were evaluated as leakage.

その結果を第7図に示した。The results are shown in FIG.

この結果から正極表面の添加量は6〜50μl/cdl
以下が最適であった。なおμQ鼠以下では粘着効果があ
られれず、製造工程での量産化が困難であり、短絡電流
の期待水準を維持する事は出来ない。
From this result, the amount added to the positive electrode surface is 6 to 50 μl/cdl.
The following was optimal. Note that if the value is less than μQ, the adhesion effect cannot be achieved, making it difficult to mass produce the manufacturing process, and making it impossible to maintain the expected level of short-circuit current.

なおアルカリ溶液中に添加する増粘剤であるが、アルカ
リ溶液中で増粘効果をもたらす物であれば使用可能であ
り、前記実施例ではカルボキシメチルセルローズを使用
したが、他にポリアクリル酸ソーダ、アルギン酸ソーダ
、メチルセルロース。
Regarding the thickener to be added to the alkaline solution, any substance that produces a thickening effect in the alkaline solution can be used; carboxymethyl cellulose was used in the above example, but sodium polyacrylate may also be used. , sodium alginate, methylcellulose.

ポリビニルアルコール、ポリエチレンオキサイド等の増
粘剤が使用出来る。
Thickeners such as polyvinyl alcohol and polyethylene oxide can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例におけるボタン型アルカリ電池
の負極部の断面図、第2図は同正極部の断面図、第3図
は完成電池の断面図、第4図は粘性溶液を正極部に滴下
する断面図、第5図は従来のボタン型アルカリ電池の負
極部構成を示す断面図、第6図は同負極部を用いて組立
てた従来のボタン型アルカリ電池の断面図、第7図は粘
性溶液の添加量と漏液発生率との関係を示す図である。 1・・・・・・絶縁封口リング、2・・・・・・封口板
、3・・・・・・負極合剤、5・・・・・・段付正極ケ
ース、6・・・・・・正極合剤、7・・・・・・粘性溶
液、8・・・・・・セパレータ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第2図 第3図 第4図 第5図 第6図
Figure 1 is a cross-sectional view of the negative electrode part of a button-type alkaline battery according to an embodiment of the present invention, Figure 2 is a cross-sectional view of the positive electrode part, Figure 3 is a cross-sectional view of the completed battery, and Figure 4 shows a viscous solution being used as the positive electrode. Figure 5 is a cross-sectional view showing the configuration of the negative electrode part of a conventional button-type alkaline battery, Figure 6 is a cross-sectional view of a conventional button-type alkaline battery assembled using the same negative electrode part, and Figure 7 The figure is a diagram showing the relationship between the amount of viscous solution added and the leakage rate. 1... Insulating sealing ring, 2... Sealing plate, 3... Negative electrode mixture, 5... Stepped positive electrode case, 6... - Positive electrode mixture, 7... viscous solution, 8... separator. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)側面に段付構造を有する正極ケース内に正極合剤
を加圧充填し、正極合剤の表面にアルカリ溶液中に増粘
剤を添加してなる粘性溶液を滴下してセパレータを付着
させたのち、電池を組立てる事を特徴とするボタン型ア
ルカリ電池の製造法。
(1) A positive electrode mixture is pressurized into a positive electrode case with a stepped structure on the side, and a viscous solution made by adding a thickener to an alkaline solution is dropped onto the surface of the positive electrode mixture to attach a separator. A method for manufacturing a button-type alkaline battery, which is characterized by assembling the battery.
(2)増粘剤を加えた前記アルカリ溶液の粘度が100
cps以上10万cps以下である特許請求の範囲第1
項記載のボタン型アルカリ電池の製造法。
(2) The viscosity of the alkaline solution added with the thickener is 100
cps or more and 100,000 cps or less
2. Method for manufacturing button-type alkaline batteries as described in Section 1.
(3)正極合剤の表面に添加する粘性溶液の添加量が、
正極合剤表面積に対して6〜60μl/cdの範囲にあ
る特許請求の範囲第1項または第2項記載のボタン型ア
ルカリ電池の製造法。
(3) The amount of viscous solution added to the surface of the positive electrode mixture is
The method for producing a button-type alkaline battery according to claim 1 or 2, wherein the amount is in the range of 6 to 60 μl/cd relative to the surface area of the positive electrode mixture.
JP18205481A 1981-11-12 1981-11-12 Production method of button type alkaline battery Pending JPS5882476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18205481A JPS5882476A (en) 1981-11-12 1981-11-12 Production method of button type alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18205481A JPS5882476A (en) 1981-11-12 1981-11-12 Production method of button type alkaline battery

Publications (1)

Publication Number Publication Date
JPS5882476A true JPS5882476A (en) 1983-05-18

Family

ID=16111529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18205481A Pending JPS5882476A (en) 1981-11-12 1981-11-12 Production method of button type alkaline battery

Country Status (1)

Country Link
JP (1) JPS5882476A (en)

Similar Documents

Publication Publication Date Title
US4091178A (en) Rechargeable alkaline MnO2 -zinc cell
US5281497A (en) Low mercury or mercury free alkaline manganese dioxide-zinc cell
JP2002541636A (en) High temperature Ni-MH battery and manufacturing method thereof
EP2101367A1 (en) Method for producing alkaline battery, and alkaline battery
JP2002237295A (en) Lithium secondary battery and its manufacturing method
JP3522303B2 (en) Button type alkaline battery
JPH10241697A (en) Alkaline storage battery electrode and manufacture thereof
JPS5882476A (en) Production method of button type alkaline battery
JP4318000B2 (en) Button type battery
CN2502410Y (en) Fastening lithium ionic cell
JPS62126544A (en) Manufacture of battery
JPH0517666B2 (en)
JPS5986160A (en) Manufacture of button type alkaline cell
JPS5880264A (en) Button type battery
JPH0613063A (en) Alkaline battery and its manufacture
JP2926233B2 (en) Manufacturing method of alkaline secondary battery
JPS612266A (en) Manufacture of alkaline battery
JPS58150265A (en) Cylindrical alkaline battery
JPS6251157A (en) Manufacture of cathode plate for nickel-cadmium alkaline storage battery
JPS5889779A (en) Small sealed battery
JPH03127462A (en) Flat type organic electrolyte cell
JPH0317964A (en) Manufacture of lithium secondary battery
JPS61263059A (en) Manufacture of silver oxide battery
JPS61218065A (en) Alkaline battery
JPS5830071A (en) Manufacture of small enclosed battery