JPS58197675A - Alkaline cell - Google Patents

Alkaline cell

Info

Publication number
JPS58197675A
JPS58197675A JP8041382A JP8041382A JPS58197675A JP S58197675 A JPS58197675 A JP S58197675A JP 8041382 A JP8041382 A JP 8041382A JP 8041382 A JP8041382 A JP 8041382A JP S58197675 A JPS58197675 A JP S58197675A
Authority
JP
Japan
Prior art keywords
electrolyte
negative electrode
powder
battery
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8041382A
Other languages
Japanese (ja)
Inventor
Kanji Takada
寛治 高田
Tsukasa Ohira
大平 司
Akira Miura
三浦 晃
Yasuyuki Kumano
熊野 泰之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8041382A priority Critical patent/JPS58197675A/en
Publication of JPS58197675A publication Critical patent/JPS58197675A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain an alkaline cell having excellent discharge performance of strong consumption current, by employing copolymer of acryl acid soda and itaconic acid soda as the gelation agent for alkali electrolytic. CONSTITUTION:Predetermined amount of uniform mixture of hardened zinc powder having grain size of 80-150 mesh and powder of copolymer of acryl acid soda and itaconic acid soda having average polimerization of 10,000+ or -1,000 and grain size of 100-300 mesh is filled in a metal seal board 1, then alkali electrolyte containing 40wt% of potassium hydroxide and 5wt% of zinc oxide is injected to produce a negative electrode. In such negative electrode, negative electrode mixture powder can be filled in said seal board 1 while being mixed uniformly, while the electrolyte will permeat the alkali electrolyte to the negative electrode powder immediately after injection, to swell gelation and if the addition rate of the gelation agent against the electrolyte is higher than 4.0%, no isolated electrolyte will be left to cause no obstacle against the cell composition.

Description

【発明の詳細な説明】 本発明は、負極活物質が氷化亜鉛粉末であり、水酸化カ
リウム、水酸化す) IJウム等のアルカリ水溶液を電
解液とするアルカリマンガン電池、水銀電池、酸化銀電
池などのアルカリ電池の負極に係り、特に強消費電流に
おいて優れた放電特性を有するアルカリ電池を提供する
ものである。
Detailed Description of the Invention The present invention provides an alkaline manganese battery, a mercury battery, and a silver oxide battery, in which the negative electrode active material is frozen zinc powder, and the electrolyte is an alkaline aqueous solution such as potassium hydroxide, IJium hydroxide, etc. The present invention relates to a negative electrode of an alkaline battery such as a battery, and provides an alkaline battery having excellent discharge characteristics particularly at high current consumption.

従来、アルカリ電池はカメラ、電卓、電子式腕時計、補
聴器などの民生用機器の電源として製造されているが、
近年これら民生用機器の急速な多様化と生産増加にとも
なって著しくニーズが増大し、使用する用途によって、
これら電池の種類やサイズを使いわけている。これら電
源としての電池に要求される特性には、開路電圧、内部
抵抗などの電池が本来具備する静特性と、使用時におけ
る閉路電圧、放電容量などの動特性と、さらに耐漏液性
などの長期保存における信頼性があるが、上記のような
電池用途の拡大により強消費電流においても安定した放
電特性を提供でき、同時に弱消費電流においても優れた
放電容量を有する電池が必要となってきた。
Traditionally, alkaline batteries have been manufactured to power consumer devices such as cameras, calculators, electronic watches, and hearing aids.
In recent years, with the rapid diversification and increase in production of these consumer devices, the needs have increased significantly, and depending on the purpose of use,
Different types and sizes of these batteries are used. These characteristics required of batteries as power sources include static characteristics that batteries inherently have such as open circuit voltage and internal resistance, dynamic characteristics such as closed circuit voltage and discharge capacity during use, and long-term characteristics such as leakage resistance. Although they are reliable during storage, with the expansion of battery applications as described above, there is a need for batteries that can provide stable discharge characteristics even at high current consumption, and at the same time have excellent discharge capacity even at low current consumption.

強消費電流用途には電池の内部抵抗が小で大電流のとり
出せる電池構造とし弱消費電流用途には、電池の内部抵
抗が若干高く、強消費電流の放電特性は劣るが弱消費電
流の放電容量の大きい電池構造とし、それぞれの用途に
より使いわけていた。
For applications with high current consumption, the battery has a low internal resistance and a battery structure that can draw large currents.For applications with low current consumption, the internal resistance of the battery is slightly high and the discharge characteristics for high current consumption are inferior, but the discharge characteristics for low current consumption are used. They had a battery structure with a large capacity, and were used for different purposes.

このような使用用途により同一サイズの電池を使いわけ
るだめに機器に組み込んでいる場合は問題はないが、補
充用電源とする場合は外観上同一であるため、誤用され
るトラブルが時折発生していた、このようなトラブルを
防止するためには、同一サイズの電池では、電池構造は
同一とし強・弱いずれの消費電流においても優れた放電
特性をもつ電池を提供することが必要であった。
There is no problem if batteries of the same size are built into a device for different uses, but when used as a supplementary power source, the appearance is the same, so troubles may occasionally occur where batteries are misused. In addition, in order to prevent such troubles, it was necessary to provide batteries of the same size that have the same battery structure and have excellent discharge characteristics under both strong and weak current consumption.

このため、弱消費電流での犬なる放電容量を得るだめの
、電池設計上の基本的な要件、すなわち正・負極活物質
の充填量、特に負極の充填量を増加させた構造を基本と
して、さらに、大消費電流の放電特性を向上させるだめ
の方策が種々試みられた。例えば、正・負極間に配する
セパレータおよび電解液含浸材について、その厚みを薄
くして、電気抵抗全低下させることにより、電池の内部
抵抗を低下させていた。しかしながら、この方法による
と、電池を構成する組立工程で破損しやすく、生産性に
ついて難点があり、また長期保存における信頼性に一部
問題があった。また、負極電解液のゲル化剤として耐ア
ルカリ性の強いポリアクリル酸ソーダのアルカリ金属塩
の粉末を使用し、これを氷化亜鉛粉末と均一に混合した
ものにアルカリ電解液を注入して負極活物質としている
がこのポリアクリル酸ソーダの電解液重量に対する比率
により、電池の内部抵抗および大消費電流の放電性能は
大きく影響されることに着目し、ポリアクリル酸ソーダ
の電解液に対する比率を低下させて、電池の内部抵抗を
低下させる方法も試みられたが、この方法においても電
解液のゲル化に必要なポリアクリル酸ソーダの比率に満
たなければ、電解液を注入し負極活物質とするときに、
電解液一部がゲル化せず、この遊離の電解液が電池の級
泣工程で漏液し、電池を製造する上で障害となっていた
For this reason, based on the basic requirements in battery design to obtain a high discharge capacity at low current consumption, that is, a structure in which the filling amount of positive and negative electrode active materials, especially the filling amount of the negative electrode, is increased, Furthermore, various attempts have been made to improve the discharge characteristics of large current consumption. For example, the internal resistance of the battery has been reduced by reducing the thickness of the separator and electrolyte-impregnated material disposed between the positive and negative electrodes to reduce the total electrical resistance. However, according to this method, the battery is easily damaged during the assembly process, there are problems with productivity, and there are some problems with reliability during long-term storage. In addition, we used alkali metal salt powder of sodium polyacrylate, which has strong alkali resistance, as a gelling agent for the negative electrode electrolyte, and mixed this uniformly with frozen zinc powder, and injected the alkaline electrolyte to activate the negative electrode. Focusing on the fact that the internal resistance of the battery and the discharge performance of large current consumption are greatly affected by the ratio of sodium polyacrylate to the weight of the electrolyte, we reduced the ratio of sodium polyacrylate to the electrolyte. Therefore, a method of lowering the internal resistance of the battery has been attempted, but even with this method, if the ratio of sodium polyacrylate required for gelling the electrolyte solution is not reached, it is necessary to inject the electrolyte solution and use it as a negative electrode active material. To,
A portion of the electrolyte did not gel, and this free electrolyte leaked during the battery tearing process, creating an obstacle in battery production.

本発明は前述の欠点を改良したもので、アルカリ電解液
のゲル化剤としてアクリル酸ソーダとイタコン酸ソーダ
の共重合物を使用することにより強消費電流の放電性能
の優れたアルカリ−次電池を提供するものである。
The present invention improves the above-mentioned drawbacks, and uses a copolymer of sodium acrylate and sodium itaconate as a gelling agent for the alkaline electrolyte to produce an alkaline secondary battery with excellent discharge performance at high current consumption. This is what we provide.

すなわち、前述したように、大消費電流での放電性能を
向上させるためには電池の内部抵抗を低下させることが
必要であり、その方法としてゲル化剤の電解液に対する
比率を低下させる方法があるが、第1表に示した40重
量パーセントの水酸化カリウム電解液をゲル化するだめ
に必要な、平均重合度が1ooOo±1000に入るよ
うに合成したアクリル酸ソーダとイタコン酸ソーダの共
重合アクリル酸ソーダに対するイタコン吟ρ比率が大な
る程その比率は低く少量で電解液をゲル化することがで
きることがわかる。
That is, as mentioned above, in order to improve discharge performance at large current consumption, it is necessary to reduce the internal resistance of the battery, and one way to do this is to reduce the ratio of gelling agent to electrolyte solution. However, the acrylic copolymer of sodium acrylate and sodium itaconate synthesized so that the average degree of polymerization is within 1ooOo±1000 is necessary for gelling the 40% by weight potassium hydroxide electrolyte shown in Table 1. It can be seen that the larger the ratio of itacon to sodium acid, the lower the ratio, and it is possible to gel the electrolyte with a small amount.

より電池製造工程でなんら問題を起さず、電解液に対す
るゲル化剤の比率を低下せしめ電池の内部抵抗が低く、
強消費電流での放電性能の優れたアは水溶液重合法によ
って得られたもので、粒度が100〜300 me s
hのものを適用した。
It does not cause any problems in the battery manufacturing process, and the ratio of gelling agent to electrolyte is lowered, resulting in lower internal resistance of the battery.
A, which has excellent discharge performance at high current consumption, is obtained by an aqueous solution polymerization method, and has a particle size of 100 to 300 mes.
h was applied.

以下本発明の一実施例を説明する。図面はボタン型アル
カリマンガン電池を示す。1は負極端子を兼ねた金属封
目板である。2は正・負極を絶縁するとともに開口部を
封口する封口ガスケットである。3は有底筒状の金属ケ
ースであり、その内底部にはあらかじめ二酸化マンガン
と黒鉛の混合粉末をタブレット状に成形合剤7が正極リ
ング8とともに加圧圧着されている。6はセパレータ、
5は電解液含滑材である。4は負極であり、氷化亜鉛粉
末と、アルカリ電解液のゲル化剤としてアクリル酸ソー
ダとイタコン酸ソーダの共重合体の粉末とを混合したも
のにアルカリ電解液を含ませたものである。さらに詳し
く説明すると粒度が80〜150メツシユの水化亜鉛粉
末に平均重合度が10000±1000であるアクリル
酸ソーダとイタコン酸ソーダの共重合体の粒度が100
〜300メソシユの粉末をミルで均一に混合したものの
一定量を金属封口板1に充填し、これに水酸化カリウム
40重量パーセント、酸化亜鉛6重量パーセントのアル
カリ電解液を注入し負極としたものである。このように
して構成した負極は、金属封口板1に負極混合粉末が均
一混合された状態のま\充填でき、さらにアルカリ電解
液を注入後すみやかに電解液が負極粉末に浸透し、膨潤
ゲル化し、またゲル化剤の電解液に対する添加比率が第
1表の最小必要比率以上であれば遊離の電解液が残らな
いので、電池構成に何ら障害とならない。
An embodiment of the present invention will be described below. The drawing shows a button-type alkaline manganese battery. 1 is a metal sealing plate that also serves as a negative electrode terminal. 2 is a sealing gasket that insulates the positive and negative electrodes and seals the opening. Reference numeral 3 denotes a cylindrical metal case with a bottom, on the inner bottom of which a tablet-shaped mixture 7 of a mixed powder of manganese dioxide and graphite is pressurized and bonded together with a positive electrode ring 8 . 6 is a separator,
5 is an electrolyte-containing lubricant. Reference numeral 4 denotes a negative electrode, which is made of a mixture of frozen zinc powder and powder of a copolymer of sodium acrylate and sodium itaconate as a gelling agent for the alkaline electrolyte, which is impregnated with an alkaline electrolyte. To explain in more detail, the particle size of a copolymer of sodium acrylate and itaconate with an average degree of polymerization of 10000±1000 is added to zinc hydrate powder with a particle size of 80 to 150 mesh.
A metal sealing plate 1 was filled with a certain amount of ~300 mSO powder mixed uniformly in a mill, and an alkaline electrolyte containing 40% by weight of potassium hydroxide and 6% by weight of zinc oxide was injected into this to form a negative electrode. be. The negative electrode constructed in this way can be filled with the negative electrode mixed powder in the metal sealing plate 1 in a uniformly mixed state.Furthermore, after the alkaline electrolyte is injected, the electrolyte immediately penetrates into the negative electrode powder, causing it to swell and gel. Furthermore, if the ratio of the gelling agent added to the electrolytic solution is equal to or higher than the minimum required ratio shown in Table 1, no free electrolytic solution will remain, and this will not cause any trouble to the battery structure.

第   1   表 本発明は上記負極のゲル化剤に従来アクリル酸ソーダの
単一重合体を使用していたものをアクリル酸ソーダとイ
タコン酸ソーダの共重合体を使用したもので第1表に示
した電解液がゲル化するだめの、ゲル化剤の最小必要量
が小なることを利用し電池構成に何ら障害を起さないで
ゲル化剤の添加量を低く抑えたことを特徴としたもので
ある。
Table 1 The present invention uses a copolymer of sodium acrylate and sodium itaconate as the gelling agent for the negative electrode, instead of the conventional single polymer of sodium acrylate, as shown in Table 1. It is characterized by the fact that the minimum required amount of gelling agent is small for the electrolyte to gel, and the amount of gelling agent added can be kept low without causing any damage to the battery structure. be.

上記のようにして、第2表に示す適用した各種ゲル化剤
とその電解液重量に対する添加比率にてボタン型アルカ
リマンガン電池TIS品番LR44を構成した。アクリ
ル酸ソーダとイタコン酸ソーダの共重合体のイタコン酸
ソーダのアクリル酸ソーダに対する重量比率が5〜60
パーセントであるがこれは比率が5チ未満では第1表に
示す効果がみられなくなり、また、60パーセントを越
えると共重合体を氷化亜鉛粉末と混合するとき、あるい
は混合負極を封目板に充填するときに、混合容器あるい
は負極充填装置に共重合体粉末が付着しやすいためであ
る。しかし10〜40チの範囲が最適である。1 以   下   余   白 第   2   表 構成したこれらの電池について、3oΩ(7) 定抵抗
放電をし、周囲温度が20’Cでは1.0ボルト、0℃
および一20℃では0.8ベルトに達するまでの放電時
間を測定した結果を第3表に示したがアクリル酸ソーダ
とイタコン酸ソーダの共重合体を用いたものは従来のア
クリル酸ソーダの単一重合体を用いたものよりも、電解
液に対する同一重量比率の場合でも放電性能が向上し、
壕だイタコン酸ソーダのアクリル酸ソーダに対する重量
比率が上がれば放電性能が向上し、さらにイタコン酸ソ
ーダのアクリル酸ソーダに対する重量比率が高くその共
重合体の電解液重量に対する添加比率を下げたものは著
しい向上を示している。また、これらの電池について周
囲温度が45℃で相対湿度が90パーセントの環境下に
放置して電解液の漏液。
As described above, a button-type alkaline manganese battery TIS product number LR44 was constructed using the various gelling agents applied and their addition ratios to the weight of the electrolyte shown in Table 2. The weight ratio of sodium itaconate to sodium acrylate in the copolymer of sodium acrylate and sodium itaconate is 5 to 60.
However, if the ratio is less than 5%, the effects shown in Table 1 will not be seen, and if it exceeds 60%, the copolymer may be mixed with frozen zinc powder, or the mixed negative electrode may be placed on a sealing plate. This is because the copolymer powder tends to adhere to the mixing container or the negative electrode filling device when filling the container. However, a range of 10 to 40 inches is optimal. 1 Below Margin Table 2 For these batteries, when discharged at a constant resistance of 3oΩ (7), the ambient temperature is 1.0 volts at 20'C, and the voltage at 0°C is
Table 3 shows the results of measuring the discharge time required to reach 0.8 belt at -20°C. Compared to those using a monopolymer, the discharge performance is improved even at the same weight ratio to the electrolyte.
If the weight ratio of sodium itaconate to sodium acrylate increases, the discharge performance will improve, and if the weight ratio of sodium itaconate to sodium acrylate is high and the addition ratio of the copolymer to the weight of the electrolyte solution is lowered, This shows a significant improvement. Additionally, these batteries were left in an environment with an ambient temperature of 45°C and a relative humidity of 90% to prevent electrolyte leakage.

すなわち耐漏液性を調べたが、保存70日後で、いずれ
も全く問題はなかった。
That is, the liquid leakage resistance was examined, and there were no problems at all after 70 days of storage.

なお実施例では水酸化カリウムを使用した電解液で説明
したが、水酸化ナトリウム等の他のアルカリ電解液であ
ってもほぼ同様の効果があり、さらにアルカリマンガン
電池以外の酸化銀電池、水銀電池等の他のアルカリ電池
でも同様の効果がある。
In the example, an electrolyte using potassium hydroxide was explained, but other alkaline electrolytes such as sodium hydroxide have almost the same effect, and silver oxide batteries and mercury batteries other than alkaline manganese batteries Similar effects can be achieved with other alkaline batteries such as

以上のように本発明によれば大巾に強消費電流における
放電性能の向上かりかれる。
As described above, according to the present invention, the discharge performance at high current consumption can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例のボタン型アルカリマンガン電
池の要部側断面図である。 1・・・・・・金属封口板、2・・・・・・封口ガスケ
ット、3・・・・・・金属ケニス、4・・・・・・負極
、5・・・・・・含浸材、6・・・・・・セパレータ1
.7・・・・・・正極、8・・・・・・正極リング。
The drawing is a sectional side view of a main part of a button-type alkaline manganese battery according to an embodiment of the present invention. 1... Metal sealing plate, 2... Sealing gasket, 3... Metal canis, 4... Negative electrode, 5... Impregnated material, 6...Separator 1
.. 7... Positive electrode, 8... Positive electrode ring.

Claims (2)

【特許請求の範囲】[Claims] (1)氷化亜鉛粉末を、アクリル酸ソーダとイタコン酸
ソーダの共重合物の粉末と混合して成る混合負極にアル
カリ電解液を注入したアルカリ電池。
(1) An alkaline battery in which an alkaline electrolyte is injected into a mixed negative electrode made by mixing frozen zinc powder with powder of a copolymer of sodium acrylate and sodium itaconate.
(2)前記アクリル酸ソーダとイタコン酸ソーダの共重
合物はイタコン酸ソーダがアクリル酸ソーダに対して6
〜5oパーセントの重量比率である特許請求の範囲第1
項記載のアルカリ電池。
(2) In the copolymer of sodium acrylate and sodium itaconate, sodium itaconate is 6% of sodium acrylate.
Claim 1 which is a weight proportion of ~5o percent
Alkaline batteries as described in section.
JP8041382A 1982-05-12 1982-05-12 Alkaline cell Pending JPS58197675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8041382A JPS58197675A (en) 1982-05-12 1982-05-12 Alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8041382A JPS58197675A (en) 1982-05-12 1982-05-12 Alkaline cell

Publications (1)

Publication Number Publication Date
JPS58197675A true JPS58197675A (en) 1983-11-17

Family

ID=13717603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8041382A Pending JPS58197675A (en) 1982-05-12 1982-05-12 Alkaline cell

Country Status (1)

Country Link
JP (1) JPS58197675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010943A1 (en) * 1997-08-22 1999-03-04 Eveready Battery Company, Inc. Alkaline cells resistant to voltage pulse drops
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010943A1 (en) * 1997-08-22 1999-03-04 Eveready Battery Company, Inc. Alkaline cells resistant to voltage pulse drops
US6602629B1 (en) 2000-05-24 2003-08-05 Eveready Battery Company, Inc. Zero mercury air cell

Similar Documents

Publication Publication Date Title
JP3866884B2 (en) Alkaline battery
US4048405A (en) High drain rate, primary alkaline cell having a divalent silver oxide/monovalent silver oxide depolarizer blend coated with a layer of silver
CA2126071A1 (en) Low mercury or mercury free alkaline manganese dioxide-zinc cell
KR900702588A (en) Rechargeable alkaline manganese dioxide-zinc cell with improved measuring capacity
JP3022758B2 (en) Alkaline manganese battery
JPH07122276A (en) Cylindrical alkaline battery
WO2003009406A1 (en) Alkaline dry battery
JPS58197675A (en) Alkaline cell
US4250234A (en) Divalent silver oxide cell
JPH06338327A (en) Negative electrode collector and button-shaped alkaline battery using same
JP2001332250A (en) Alkaline dry cell
JP2003151539A (en) Alkaline dry cell
JP2000048827A (en) Alkaline battery
JPS58140968A (en) Manufacture of negative electrode for alkaline primary battery
JPS57170459A (en) Button type alkaline battery
JPS5925169A (en) Manufacture of negative pole for alkaline primary battery
JPS61273862A (en) Button type alkaline battery
JPS585965A (en) Alkaline battery
JP3315530B2 (en) Alkaline battery
JPS61133560A (en) Zinc alkaline battery
KR800001519B1 (en) Polar plate of alkaline storage cell
KR810000418Y1 (en) High drain rate, primary alkaline cell having a divalent silver oxide/monovalent silver oxide depolarizer blend coated with a layer of silver
JPS58145065A (en) Alkaline primary cell
JPS5978452A (en) Alkaline battery
JPS61176060A (en) Button-shaped alkaline cell