JPS5925169A - Manufacture of negative pole for alkaline primary battery - Google Patents

Manufacture of negative pole for alkaline primary battery

Info

Publication number
JPS5925169A
JPS5925169A JP57135889A JP13588982A JPS5925169A JP S5925169 A JPS5925169 A JP S5925169A JP 57135889 A JP57135889 A JP 57135889A JP 13588982 A JP13588982 A JP 13588982A JP S5925169 A JPS5925169 A JP S5925169A
Authority
JP
Japan
Prior art keywords
powder
negative pole
negative electrode
electrolyte
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57135889A
Other languages
Japanese (ja)
Inventor
Kanji Takada
寛治 高田
Tsukasa Ohira
大平 司
Akira Miura
三浦 晃
Yasuyuki Kumano
熊野 泰之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57135889A priority Critical patent/JPS5925169A/en
Publication of JPS5925169A publication Critical patent/JPS5925169A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve storage reliability of alkaline primary battery through uniform mixture of gelation agent powder and hardening zinc powder and formation of stable gelated negative pole without separation of electrolyte by using an alakali metal chloride of polyaclyric acid of specific grain size as the gelation agent. CONSTITUTION:A uniformly mixed negative pole black mix can be obtained by sufficiently mixing the powder, which has been obtained after it has been smashed or by adjusting the polymerization condition so that the grain size of polyaclyric potassium in the neutral degree of 90% or more is ranged from 100- 300, with the hardening zinc powder as the geletion agent. The stable gelerated negative pole can be obtained by injecting potassium hydroxide electrolyte to such black mix. Accordingly, an alkaline primary battery having outstanding storage reliability, namely, assuring excellency in open voltage, discharging capacity and liquid lead resistivity can be obtained even after the use of a long period of time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質が水化亜鉛粉末であり、電解液が
水酸化アルカリ水溶液であるアルカl)−次電池の負極
の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a negative electrode for an alkaline secondary battery in which the negative electrode active material is zinc hydrate powder and the electrolyte is an aqueous alkali hydroxide solution. be.

従来例の構成とその問題点 水化亜鉛粉末を負極活物質として使用するアルカリ−次
電池には、二酸化マンガンを正極とするアルカリマンガ
ン電池、酸化第二水銀を正極とする水仙電池、−価ある
いは二価の酸化銀を使用する酸化銀電池等がある。これ
らのアルカリ−次電池は、カメラ、電卓、電子式腕時計
、補聴器などの民生用機器の電源として製造されている
が、近年これら民生用機器の急速な多様化と生産増加に
ともなって、著しくニーズが増大し、各種サイズのもの
が生産されている。これら電池は、通常、上記電源とし
て機器に装填後使用する期間ば14−。
Structures of conventional examples and their problems Alkaline secondary batteries that use zinc hydrate powder as the negative electrode active material include alkaline manganese batteries that use manganese dioxide as the positive electrode, daffodil batteries that use mercuric oxide as the positive electrode, There are silver oxide batteries that use divalent silver oxide. These alkaline rechargeable batteries are manufactured as power sources for consumer devices such as cameras, calculators, electronic watches, and hearing aids, but with the rapid diversification and increase in production of these consumer devices in recent years, the need for these batteries has significantly increased. is increasing and various sizes are being produced. These batteries usually last for 14-14 hours after being loaded into the equipment and used as the power source.

以上であり、さらに2年近くの長期間にわたり使用され
る場合もあるので、保存信頼性が優れていること、すな
わち電池の本来具備する電L+−,、放電容量などの静
・動特性が長期保存後も安定しており、使用中あるいは
保存中に電wr液が副液しないことが重要である。特に
耐@液性については完壁に優れている必要がある。つま
り万一使用中に電解液が漏液すると、高濃度のアルカリ
水浴液であるだめに、使用機器を腐蝕損傷させるので、
最悪の場合機器全体が使用不能となる場合も起こるから
である。
In addition to the above, since the battery may be used for a long period of time, such as nearly two years, it must have excellent storage reliability, that is, the static and dynamic characteristics such as the battery's inherent electric power L+-, discharge capacity, etc. can be maintained for a long time. It is important that the solution is stable even after storage and that the electrolyte solution does not become a secondary solution during use or storage. In particular, it must be completely excellent in liquid resistance. In other words, if the electrolyte leaks during use, it will corrode and damage the equipment as it is a highly concentrated alkaline water bath solution.
This is because, in the worst case, the entire device may become unusable.

このため、耐漏液性を安定化させるために、過去から種
々の方策が考えられた。例えば、これら電池は、正・負
極活物質などの発電要素全内填したケースの開口部を、
封ロガスケソト9封目板。
For this reason, various measures have been considered in the past in order to stabilize the leakage resistance. For example, in these batteries, the opening of the case containing all the power generating elements such as positive and negative electrode active materials is
Seallogasukesoto 9th seal board.

アルイハこれらを一体化したいわゆるモールド封[]板
で閉塞し、ケースの開口先端部を内側方向にカールして
封口しているが、この封目板、封ロガスケソト、ケース
の電池を封口するために直接関与している構成利料の個
々の材質の選定1寸法精度の向上を図る方法と7)>、
前記構成材料間の寸法バランスの適正化の方法とか、封
ロガスヶソトの一部あるいは全面に低分子量のポリアミ
ド樹脂。
These are sealed with a so-called molded sealing plate that integrates these, and the opening end of the case is curled inward to seal it. Selection of individual materials for directly involved components 1. Methods for improving dimensional accuracy and 7)
A method for optimizing the dimensional balance between the constituent materials, and a low molecular weight polyamide resin for part or all of the gas sealing material.

アスファルトピッチ、クロロスルホン化ポリエチレン、
ポリブテン等を有機溶剤に溶解させて粘調な溶液とした
ものを塗布して、封口部に介在させる方法、さらにケー
スのカール条件の適正な条件設定の方法などである。
asphalt pitch, chlorosulfonated polyethylene,
These methods include a method of dissolving polybutene or the like in an organic solvent to form a viscous solution and applying it to the sealing portion, and a method of setting appropriate curling conditions for the case.

これらの電池の封口に直接関与する構成条件の改善の方
策は、それぞれ耐漏液性の安定化の/辷めに有効ではあ
るが、加えて、これら電池の発電要素である正・負極活
物質、電解液およびセパレータ、含液材の内填方法、特
に負極活物質である永化炬鉛と負極電解液からなる負極
の封口板への内填条件が適切でなければ直接的封口条件
がいくら良くても、耐漏液性は安定しパ、い。
Measures to improve the structural conditions directly related to the sealing of these batteries are effective in stabilizing/degrading leakage resistance, but in addition, the positive and negative electrode active materials, which are the power generation elements of these batteries, If the method of filling the electrolyte, separator, and liquid-containing material, especially the conditions for filling the negative electrode into the sealing plate consisting of the negative electrode active material Yonghwa lead and the negative electrode electrolyte, are not suitable, the direct sealing conditions may not be suitable. However, the leakage resistance is stable and good.

従来より、この種電池の負極は、水化亜鉛粉末にアルカ
リ電解液全ゲル化するゲル化剤粉末を混合し、混合負極
としたものを、負極を充填する封口板に一定量入れ、こ
れにアルカリ電解液を注入し、負極としていた。このゲ
ル化剤としてはアルギン酸ソーダ、デンプンあるいはア
クリロニドニルグラフトデンプンなどのデンプン誘導体
、又はカルボキシメチルセルロースのナトリウム塩など
の単−物又は混合物を用いていた。しかし、これらゲル
化剤はいずれも天然高分子又はその誘導体であるため、
アルカリ電解液をゲル化するが、長期間の保存中にアル
カリ電解液によって分解し、粘度低下を起こし、電解g
’lゲル状に保つことが困難であるため、長期保存後の
電池特性、中でも開路電圧および放電容量の低下が犬で
あった。
Traditionally, the negative electrode of this type of battery has been made by mixing zinc hydrate powder with gelling agent powder that completely gels an alkaline electrolyte, and placing a certain amount of the mixed negative electrode into a sealing plate filled with the negative electrode. An alkaline electrolyte was injected to serve as a negative electrode. As the gelling agent, single substances or mixtures of sodium alginate, starch or starch derivatives such as acrylonidonyl grafted starch, or sodium salt of carboxymethyl cellulose have been used. However, since all of these gelling agents are natural polymers or derivatives thereof,
The alkaline electrolyte gels, but during long-term storage, the alkaline electrolyte decomposes and causes a decrease in viscosity, causing electrolytic g
Because it is difficult to maintain a gel-like state, the battery characteristics after long-term storage, especially the open circuit voltage and discharge capacity, deteriorated.

このため、アルカリ電解液に安定なゲル化剤として、合
成水溶性高分子のポリアクリル酸カリウム又はポリアク
リル酸ソーダの粉末を使用することが試みられた。ポリ
アクリル酸のアルカリ金属塩は、通常アクリル酸の千ツ
マ−を水酸化ナトリウム等の水酸化アルカリで中和し、
この中和塩を水溶液中で重合する水溶液重合法あるいは
メチルアルコールなどの有機溶媒中に分散させて重合す
る沈澱重合法のいずれがで製造され、1:)られたポリ
アクリル酸のアルカリ金属塩は、水溶液重合法では塊状
、沈澱重合法では微粉末の形態をしている。したがって
、前述の負極製造法、すなわち永化止鉛粉末とゲル化剤
全混合し、これにアルカリ114.解液を注入して負極
とする方法において、アルカリ−次電池で通常使用して
いる80〜200メツ八】の水化亜鉛粉末に一前?i−
ポリアクリル酸ノーダケ均一に混合することは困難であ
った。すなわち前1.[2ポリアクリル酸カリウムなど
のゲル化剤を使用する「j的、つまりアルカリ71J、
解液全ゲル化する目的より、通常水化亜鉛に対して3〜
10%の重1.1比率に混合し、混合負極としているが
、水溶液重合法で111られたポリアクリル酸のアルカ
リ金属塩は塊状であるため、混合そのものが困難であシ
、また沈澱重合法で得られたポリアクリル酸のアルカリ
金属塩は、氷化亜鉛粉末に対して3%未満までは均一に
混合できるが、それを越える七一部のポリアクリル酸の
アルカリ金属塩が氷化側鉛粉末と全く分離し混合不能で
あった。そU7て水化亜鉛粉末に対し3%未満の混合比
率のポリアクリル酸のアルカリ金属塩混合負極は、封[
」(ルへ充填後電解液を注入してもゲル化をしない遊淑
1の電解液が残存し、電池の製造工程上でも不都合であ
った。
For this reason, attempts have been made to use powders of synthetic water-soluble polymers such as potassium polyacrylate or sodium polyacrylate as gelling agents that are stable in alkaline electrolytes. Alkali metal salts of polyacrylic acid are usually prepared by neutralizing acrylic acid with an alkali hydroxide such as sodium hydroxide.
The alkali metal salt of polyacrylic acid produced by either an aqueous solution polymerization method in which this neutralized salt is polymerized in an aqueous solution or a precipitation polymerization method in which it is dispersed and polymerized in an organic solvent such as methyl alcohol, is In the aqueous solution polymerization method, it is in the form of a lump, and in the precipitation polymerization method, it is in the form of a fine powder. Therefore, the above-mentioned negative electrode manufacturing method is used, that is, the permanent lead powder and the gelling agent are completely mixed, and then the alkali 114. In the method of injecting a solution and making it into a negative electrode, is it better than the 80-200% zinc hydrate powder normally used in alkaline rechargeable batteries? i-
It was difficult to mix polyacrylic acid uniformly. In other words, previous 1. [2] Using a gelling agent such as potassium polyacrylate, that is, alkaline 71J,
For the purpose of completely gelatinizing the solution, the amount of zinc hydrate is usually 3~
The alkali metal salt of polyacrylic acid produced by the aqueous solution polymerization method is in the form of lumps, so mixing itself is difficult, and the precipitation polymerization method is difficult. The alkali metal salt of polyacrylic acid obtained can be uniformly mixed with the glazing zinc powder up to less than 3%, but beyond that, some of the alkali metal salt of polyacrylic acid may be mixed into the glazing zinc powder. It was completely separated from the powder and could not be mixed. U7 The negative electrode mixed with an alkali metal salt of polyacrylic acid at a mixing ratio of less than 3% with respect to the zinc hydrate powder is sealed [
(Even if the electrolyte was injected into the cell after filling, the electrolyte of 1st grade, which did not gel, remained, which was inconvenient in the battery manufacturing process.

発明の目的 本発明は、以上のような不都合ケ解消するイ)ので、ゲ
ル化剤全改良することによって、り″ル化剤粉末と水化
亜鉛粉末との混合を均一にするとともに、遊離の電解液
のない安定なゲル状負極とし、アルカリ−次電池の保存
信頼性を向−ヒすること金目的とする。
Purpose of the Invention The present invention solves the above-mentioned disadvantages (a). Therefore, by completely improving the gelling agent, the mixing of the gelling agent powder and the zinc hydride powder is made uniform, and free The objective is to create a stable gel-like negative electrode without electrolyte and to improve the storage reliability of alkaline rechargeable batteries.

発明の構成 本発明は、中和度が9o%以上で、粒度が100〜30
0ツノツユの範囲にあるポリアクリルi’tJ7リウム
の粉末と氷化亜鉛粉末とを混合した負極合剤に、水酸化
カリウム水溶液からなる電解液を注入してゲル状負極を
得ることを特徴とする。
Structure of the invention The present invention has a neutralization degree of 90% or more and a particle size of 100 to 30%.
A gel-like negative electrode is obtained by injecting an electrolytic solution consisting of an aqueous potassium hydroxide solution into a negative electrode mixture of a powder of polyacrylic i'tJ7lium having a particle size of 0 and a frozen zinc powder. .

本発明者らは、ゲル化剤として使用するポリアクリル酸
のアルカリ金属塩粉末の粒度について各種検討した結果
、アルカリ−次電池の負極活物質として使用される80
〜200メノシコの氷化fIF鉛粉末と混合するとき、
ゲル化剤粉末の粒度がioo〜300メツ/−の範囲内
において、水化亜鉛粉末に対して10重量%程度捷で均
一に混合できることを見出した。
As a result of various studies on the particle size of alkali metal salt powder of polyacrylic acid used as a gelling agent, the present inventors found that
When mixed with ~200 Menoshiko's frozen fIF lead powder,
It has been found that when the particle size of the gelling agent powder is within the range of ioo to 300 meters/-, it can be uniformly mixed with the zinc hydride powder by shaking at about 10% by weight.

一方、ポリアクリル酸のアルカリ金属塩の比較では、前
述のような製法において、中和剤として使用する水酸化
アルカリが水酸化カリウムで、その中和度が9oパ一セ
ント以上のポリアクリル酸カリウムは、水酸化カリウム
を電解液として使用するアルカリ−次電池のゲル化剤と
して使用した場合に、他のポリアクリル酸のアルカリ金
属塩、例えばポリアクリル酸ソーダ、ポリアクリル酸リ
チウムなどをゲル化剤として使用する場合、また中和度
が90パ一セント未満のポリアクリル酸カリウムを使用
する場合に比して、電池の開路電圧が高く、保存後も安
定していることを見出した。
On the other hand, in a comparison of alkali metal salts of polyacrylic acid, potassium hydroxide is used as a neutralizing agent in the above-mentioned production method, and potassium polyacrylate has a degree of neutralization of 90% or more. When used as a gelling agent in alkaline rechargeable batteries that use potassium hydroxide as an electrolyte, other alkali metal salts of polyacrylic acid, such as sodium polyacrylate and lithium polyacrylate, can be used as a gelling agent. It has been found that the open circuit voltage of the battery is higher and the battery is stable even after storage than when using potassium polyacrylate with a degree of neutralization of less than 90 percent.

かくして、中和度90%以上のポリアクリル酸カリウム
の粒度が100〜300の範囲に入るように粉砕あるい
は重合条件を調節して得られた粉末をゲル化剤として氷
化亜鉛粉末と混合することにより、両者が十分均一に混
合された負極合剤が得られ、これに水酸化カリウム電解
液を注入することによって、安定なゲル状負極となり、
保存信頼性、すなわち長期保存においても開路電圧、放
電容量、耐漏液性にすぐれたアルカリ−次’iti:池
を得ることができる。
In this way, the powder obtained by adjusting the pulverization or polymerization conditions so that the particle size of potassium polyacrylate having a degree of neutralization of 90% or more falls within the range of 100 to 300 is mixed with the frozen zinc powder as a gelling agent. As a result, a negative electrode mixture in which the two are sufficiently evenly mixed is obtained, and by injecting potassium hydroxide electrolyte into this, a stable gel-like negative electrode is obtained.
It is possible to obtain an alkaline cell with excellent storage reliability, that is, excellent open circuit voltage, discharge capacity, and leakage resistance even during long-term storage.

水溶液重合法で得られる塊状のポリアクリル酸カリウム
は機械的に粉砕し、ふるい分けることにても、重合条件
を調節ずれば、微粉が二次粒子化した、いわゆる果粒状
の粉末となり、これケふるい分ければ所定の粒度のもの
を得ることができる。
Even if the lumpy potassium polyacrylate obtained by the aqueous solution polymerization method is mechanically crushed and sieved, if the polymerization conditions are adjusted, the fine powder becomes secondary particles, so-called granule-like powder. By sieving, particles of a predetermined size can be obtained.

このようにして得られた100〜300メソシユのポリ
アクリル酸カリウム粉末は、重合法が異なっても80〜
200ツノツユの氷化亜鉛粉末に対して3〜10%の重
量比内であれば均一に混合できる。寸だ封目板に均一混
合状態で充填できる。
The potassium polyacrylate powder of 100 to 300 mesosi obtained in this way has a molecular weight of 80 to
It can be mixed uniformly within a weight ratio of 3 to 10% with respect to 200 horns of frozen zinc powder. It can be filled in a uniformly mixed state on the size sealing plate.

しかし、ポリアクリル酸カリウム粉末の粒度がiooメ
ソンコ未満であると、水化亜鉛粉末と混合したとき大粒
子のポリアクリル酸カリウムが分離し、さらに300メ
ツ/ユを越えるポリアクリル酸カリウム粉末の場合は、
封口板に充填するときにポリアクリル酸カリウムの微粉
末が分離する。
However, if the particle size of potassium polyacrylate powder is less than 10 mesonko, large particles of potassium polyacrylate will separate when mixed with zinc hydride powder. teeth,
Fine powder of potassium polyacrylate separates when filling the sealing plate.

このようにして得られたポリアクリル酸カリウムの粉末
と汞化亜鉛粉末の混合負極を使用した電池は、長期保存
後も、ケル化剤すなわちポリアクリル酸カリウムがアル
カリ電解液に影響されず分解等を起こさずゲル状を保ち
、安定した負極とすることができ、寸だ、初度および保
存後の電池の開路電圧が高く安定したものとすることが
可能で、これによって、優れた保存信頼性を有するもの
とすることができる。
In a battery using the mixed negative electrode of potassium polyacrylate powder and zinc chloride powder obtained in this way, even after long-term storage, the kelizing agent, that is, potassium polyacrylate, is not affected by the alkaline electrolyte and does not decompose. It is possible to maintain a gel-like state without causing any oxidation, making it a stable negative electrode, and it is possible to make the open circuit voltage of the battery high and stable at the initial stage and after storage, thereby achieving excellent storage reliability. It is possible to have one.

実施例の説明 以下、本発明の詳細な説明する。Description of examples The present invention will be explained in detail below.

図面はボタン形アルカリマンガン電池を示す。The drawing shows a button-type alkaline manganese battery.

1は負極端子を兼ねた金属封目板で、銅とステンレス鋼
とニッケルを合板にしたクラット拐からなり、銅を内側
にしている。2は正・負極全絶縁するとともに開口部を
封口する封ロガスケソトで、ポリアミド樹脂などより構
成されている。3は有底筒状の金属ケースで一全面にニ
ノケルメノギを施した鉄より構成され、その内底部には
あらかじめ二酸化マンガンと黒鉛の混合粉末全タブレッ
ト状に成形した合剤4が正極リング6とともに加圧圧着
されている。6は多孔性合成樹脂フィルム、例えば、ボ
リグロピレン多孔膜、またはセロファン膜などより構成
されているセパレータ テアル。
1 is a metal sealing plate that also serves as a negative electrode terminal, and is made of a crat plate made of copper, stainless steel, and nickel plywood, and has copper on the inside. 2 is a sealing gasket for completely insulating the positive and negative electrodes and sealing the opening, and is made of polyamide resin or the like. Reference numeral 3 is a cylindrical metal case with a bottom, which is made of iron coated with Ninokerumenogi on its entire surface, and at its inner bottom, a mixture 4 of mixed powder of manganese dioxide and graphite previously formed into a tablet shape is added together with a positive electrode ring 6. It is crimped. 6 is a separator film made of a porous synthetic resin film, such as a porous polyglopylene film or a cellophane film.

7はコノトン、ビスコースレーヨン、 ホIJ フロピ
レン樹脂、ポリアミド樹脂等の織布、あるいは不織布よ
シ構成される電解液含浸材である。
7 is an electrolyte-impregnated material composed of a woven fabric or a non-woven fabric such as Konoton, viscose rayon, fluoropylene resin, or polyamide resin.

8は負極であり、水化亜鉛粉末と、アクリル酸カリウム
の粉末とを混合した合剤に電解液を含ませたものである
。さらに詳しく説明すると、粒度が80〜200メツツ
ユの水化亜鉛粉末に、水溶液正合法あるいは沈澱重合法
で得られ、粒度を100〜300ノノンユに調節したポ
リアクリル酸カリウムの粉末fミルで均一に混合したも
のの一定量を封目板に充填し、これに水酸化カリウム電
解液全注入して負極としたものである。
8 is a negative electrode, which is made of a mixture of zinc hydrate powder and potassium acrylate powder, which is impregnated with an electrolytic solution. To explain in more detail, zinc hydrate powder with a particle size of 80 to 200 mm is uniformly mixed in a powder mill of potassium polyacrylate obtained by an aqueous solution method or precipitation polymerization method and adjusted to a particle size of 100 to 300 mm. A certain amount of the electrolyte was filled into a sealing plate, and the entire potassium hydroxide electrolyte was poured into this to form a negative electrode.

本発明は、上記負極のゲル化剤とし7て一従来一天然水
溶性高分イの粉末を使用していたものを、粒度を調節し
た中和度90%以」−のポリアクリル酸カリウムの粉末
全使用したもので、氷化亜鉛粉末と分離することなく、
アルカリ電解液のゲル化に必甥す水化側鎖に対する混合
型i11比率のポリアクリル酸カリウムを均一に混合す
ることができ、また、注入したアルカリ電解液はすみや
かにゲル化をする。ただし、水化亜鉛重量に対するポリ
アクリル酸ソーダの比率が3〜10%の範囲で、アルカ
リ電解Klf:注入した後、電解液ケずみやかにゲル化
させるためには、ポリアクリル酸カリウムの重合度は8
000以上が適当である。
The present invention uses potassium polyacrylate with a degree of neutralization of 90% or more with adjusted particle size, instead of the powder of a natural water-soluble polymer used as the gelling agent for the negative electrode. All the powder is used, and it does not separate from the frozen zinc powder.
Potassium polyacrylate having a mixed i11 ratio of hydration side chains to hydration side chains, which is necessary for gelation of an alkaline electrolyte, can be uniformly mixed, and the injected alkaline electrolyte quickly gels. However, if the ratio of sodium polyacrylate to the weight of zinc hydride is in the range of 3 to 10%, alkaline electrolytic Klf: In order to quickly gel the electrolyte after injection, it is necessary to polymerize potassium polyacrylate. degree is 8
000 or more is appropriate.

上記のようにして、JIS品番LR44の電池を構成し
た。ここで、電解液は水酸化カリウム濃度が40重量%
、酸化亜鉛濃度が6重量%ものものを使用し、またゲル
化剤には水溶液重合法による中和度95%−平均重合度
2〜3万のポリアクリル酸カリウムを使用した。
A battery of JIS product number LR44 was constructed as described above. Here, the electrolyte has a potassium hydroxide concentration of 40% by weight.
, a zinc oxide concentration of 6% by weight was used, and as a gelling agent, potassium polyacrylate with a degree of neutralization of 95% by an aqueous solution polymerization method and an average degree of polymerization of 20,000 to 30,000 was used.

この電池iAとし、ゲル化剤にアルギン酸ソーダ、カル
ボキンメチルセルロースのナトリウム塩及び中和度95
%、平均重合度2〜3万のポリアクリル酸ナトリウムを
用いた電池全それぞれBC及びDとする。なお、氷化亜
鉛とゲル化剤との混合割合はいずれも重量96:4であ
る。
This battery is called iA, and the gelling agent is sodium alginate, sodium salt of carboquine methylcellulose, and the degree of neutralization is 95.
%, and all batteries using sodium polyacrylate with an average degree of polymerization of 20,000 to 30,000 are designated as BC and D, respectively. In addition, the mixing ratio of frozen zinc and gelling agent was 96:4 by weight.

これらの電池について、初度、常温で6力月及び1年保
存後、そして60″Cで1力月保存後の開路電圧の比較
を第1表に−また20℃において16にΩの抵抗を負荷
として放電したときの1.OVに達するまでの放電持続
時間の比較を第2表に示す。なお、開路電圧は60個、
放電試験は5個の平均値で表した。
Table 1 compares the open circuit voltages of these batteries initially, after storage for 6 months and 1 year at room temperature, and after storage for 1 month at 60"C - and when loaded with a 16Ω resistor at 20°C. Table 2 shows a comparison of the discharge duration until reaching 1.OV when discharged as follows.The open circuit voltage is 60,
The discharge test was expressed as the average value of 5 samples.

また、温度45℃、相対湿度90%の環境に放置したと
きの試料6o個中の漏液電池数の比較を第3表に示す。
Further, Table 3 shows a comparison of the number of leaking batteries in 60 samples when left in an environment with a temperature of 45° C. and a relative humidity of 90%.

第1表 第2表 第3表 第1〜3表から明らかなように、ゲル化剤として、ポリ
アクリル酸カリウムを用いたものは、従来使用していた
アルギン酸ソーダまたはカルボキシメチルセルロースの
ナトリウム塩を用いたものに比較して、保存後の開路電
圧および放電時間が安定しており、ポリアクリル酸ソー
ダのものより開路電圧が高く、さらに特に耐漏液性は著
しく安定していることがわかる。
As is clear from Table 1, Table 2, Table 3, and Tables 1 to 3, the gelling agent using potassium polyacrylate replaces the conventionally used sodium salt of sodium alginate or carboxymethylcellulose. It can be seen that the open circuit voltage and discharge time after storage are stable compared to those made of sodium polyacrylate, and the open circuit voltage is higher than that of sodium polyacrylate, and the leakage resistance is particularly stable.

なお、実施例ではアルカリマンガン電池で説明したが、
酸化銀電池、水銀電池等の他のアルカリ−次電池でも同
様の効果がある。
In addition, although the example was explained using an alkaline manganese battery,
Other alkaline batteries such as silver oxide batteries and mercury batteries have similar effects.

寸だ沈澱重合法のポリアクリル酸カリウムでも効果は変
わらない。
Even potassium polyacrylate produced by precipitation polymerization has the same effect.

発明の効果 本発明によれば、保存信頼性のすぐれたアルカリ−次電
池が得られる。
Effects of the Invention According to the present invention, an alkaline secondary battery with excellent storage reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例のボタン形アルカリマンガン電
池の要部を断面にした側面図である。 4・・・・・・正極、6・・・・・セパレータ、Y・・
・・含液材、8・・・・・負極。
The drawing is a cross-sectional side view of a main part of a button-type alkaline manganese battery according to an embodiment of the present invention. 4...Positive electrode, 6...Separator, Y...
...Liquid-containing material, 8...Negative electrode.

Claims (1)

【特許請求の範囲】[Claims] 粒度が100〜300メツツユの範囲にある中和度90
%以上のポリアクリル酸カリウムの粉末と>l<化推鉛
粉末を混合した負極合剤に水酸化カリウム電解液を注入
してゲル状負極とすることf%徴とするアルカリ−次電
池用負極の製造法。
Neutralization degree 90 with particle size in the range of 100 to 300 grains
A negative electrode for an alkaline secondary battery, which is made by injecting a potassium hydroxide electrolyte into a negative electrode mixture prepared by mixing potassium polyacrylate powder of % or more and lead oxide powder to form a gel-like negative electrode. manufacturing method.
JP57135889A 1982-08-04 1982-08-04 Manufacture of negative pole for alkaline primary battery Pending JPS5925169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57135889A JPS5925169A (en) 1982-08-04 1982-08-04 Manufacture of negative pole for alkaline primary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57135889A JPS5925169A (en) 1982-08-04 1982-08-04 Manufacture of negative pole for alkaline primary battery

Publications (1)

Publication Number Publication Date
JPS5925169A true JPS5925169A (en) 1984-02-09

Family

ID=15162159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57135889A Pending JPS5925169A (en) 1982-08-04 1982-08-04 Manufacture of negative pole for alkaline primary battery

Country Status (1)

Country Link
JP (1) JPS5925169A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182657A (en) * 1984-02-29 1985-09-18 Matsushita Electric Ind Co Ltd Manufacture of silver oxide battery
JPH02267863A (en) * 1989-04-07 1990-11-01 Matsushita Electric Ind Co Ltd Zinc alkaline battery
JPH0389458A (en) * 1989-09-01 1991-04-15 Matsushita Electric Ind Co Ltd Alkaline battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182657A (en) * 1984-02-29 1985-09-18 Matsushita Electric Ind Co Ltd Manufacture of silver oxide battery
JPH02267863A (en) * 1989-04-07 1990-11-01 Matsushita Electric Ind Co Ltd Zinc alkaline battery
JPH0389458A (en) * 1989-09-01 1991-04-15 Matsushita Electric Ind Co Ltd Alkaline battery

Similar Documents

Publication Publication Date Title
US6916577B2 (en) Alkaline cell with polymer electrolyte
JPS6113561A (en) Method of geling cathode of alkaline battery and cathode blend
JPS5925169A (en) Manufacture of negative pole for alkaline primary battery
JP3022758B2 (en) Alkaline manganese battery
JPS58206048A (en) Alkaline battery
JPS58197675A (en) Alkaline cell
JPS6091562A (en) Cylindrical alkali battery
JPS61133560A (en) Zinc alkaline battery
JP2568590B2 (en) Alkaline battery
JPS58140968A (en) Manufacture of negative electrode for alkaline primary battery
JPH0410708B2 (en)
JPS60182657A (en) Manufacture of silver oxide battery
JP2000251924A (en) Sealed alkaline zinc storage battery
JPS58117637A (en) Button-type alkaline battery
JPS5978452A (en) Alkaline battery
JPS58145065A (en) Alkaline primary cell
JPH02216760A (en) Zinc alkaline battery
JPS6113580A (en) Air cell
JPS636985B2 (en)
JPS62136770A (en) Alkaline battery
JPH09129238A (en) Battery
JPS59146158A (en) Silver(ii) oxide cell
JPH0452596B2 (en)
JPS61273862A (en) Button type alkaline battery
JPH0119740B2 (en)