JPS6228568B2 - - Google Patents

Info

Publication number
JPS6228568B2
JPS6228568B2 JP52030328A JP3032877A JPS6228568B2 JP S6228568 B2 JPS6228568 B2 JP S6228568B2 JP 52030328 A JP52030328 A JP 52030328A JP 3032877 A JP3032877 A JP 3032877A JP S6228568 B2 JPS6228568 B2 JP S6228568B2
Authority
JP
Japan
Prior art keywords
insb
thin film
polycrystalline thin
magnetoelectric transducer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52030328A
Other languages
Japanese (ja)
Other versions
JPS53116068A (en
Inventor
Junji Shigeta
Kyoshi Ooi
Nobuo Kodera
Muneyasu Nakajima
Nobuo Myamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3032877A priority Critical patent/JPS53116068A/en
Priority to US05/888,465 priority patent/US4177298A/en
Priority to NLAANVRAGE7803102,A priority patent/NL178377C/en
Priority to DE2812656A priority patent/DE2812656C2/en
Publication of JPS53116068A publication Critical patent/JPS53116068A/en
Publication of JPS6228568B2 publication Critical patent/JPS6228568B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電流雑音の極めて少ないInSb薄膜素
子の製造方法に関する。 化合物半導体の一種であるInSbは著しい電流
磁気効果を示すためにホール素子、磁気抵抗効果
素子などの磁電変換素子に多く用いられる。この
ときInSbの厚さは極めて薄いことが要求される
ため、InSb膜の製造には真空蒸着などの物理蒸
着法あるいは周知のCVD法などの化学蒸着法
(以下、これらを単に蒸着法と略称する。)が用い
られる。大略3〜0.1μm程度の薄膜を用いる。
0.1μm以下では雑音そのもののレベルが大きす
ぎ、実用に適さない。しかしこれらの方法で製造
した薄膜は結晶粒径が1〜〜20μmφの多結晶膜
であり、また多くの結晶欠陥を含む。この結晶粒
を粗大化し、結晶欠陥を減少させるためInSb膜
をゾーンメルトする方法が知られている。しかし
この方法によつても粒径は0.5〜2mm程度であ
り、また結晶欠陥も除去しきれない。このような
InSb膜で素子を形成し、電流を流した場合、そ
の出力には雑音が重畳する。その雑音の程度は例
えば以下のようである。膜厚2μm、素子幅200
μmのホール素子に4000A/cm2の電流を流した場
合ホール電圧素子間には2〜10μV(蒸着InSb
膜の場合)、あるいは0.8〜2μV(ゾーンメルト
InSb膜)の雑音が発生する。但しこの値は周波
数帯域100Hz〜10KHzで観測される雑音電圧のr.
m.s値である。またこのような膜のホール係数R
Hは300〜350cm3/C程度の値であり、信号磁界が
10Gの場合、上記素子では出力は2.5〜2.8mV程度
である。従つて従来のゾーンメルトInSb膜で
は、上記素子の場合、信号対雑音比(S/N)は
68〜73dBであり、これ以上良好なS/Nを得る
ことは困難である。しかし本発明者らはある種の
不純物を含み、ゾーンメルトされたInSb多結晶
薄膜はきわめて雑音発生が少なく良好なS/Nを
得られることを見出した。 第1図および第2図は膜厚1.4μmゾーンメル
トInSb膜にNaをドープしたときのS/Nおよび
雑音レベルNの変化を上記素子によつて評価した
ものである。Naaを5×1016〜1×1018cm-3含む
多結晶InSb膜のS/Nは73〜76dBであり、ドー
プを行なわないゾーンメルト膜よりもS/Nがよ
い。またより好ましくは1×1017〜6×1017(cm
-3)程度である。このS/N向上に同様な効果の
ある不純物はNaの他にCu、Au、Ag、Zn、K、
Li、Cd、B、Fe、Ca、Mg、Ba、Al、Pbである
ことが見出された。これらの元素は、Pb、Feを
除き周期律表で、、族の元素に限られてい
た。これらの元素がS/N向上に有効である理由
は不明であるが、InSb膜中に含まれる欠陥に結
びつき、これらの欠陥の雑音発生能力を低減せし
めるのではないかと考えられる。また、膜のホー
ル係数は元素の種類によらず増大傾向にあるが、
この点は単結晶バルクInSbにおいて知られてい
る不純物の挙動と異なり、多結晶InSb膜におけ
る不純物は結晶欠陥と密接な関係があることが示
唆される。S/Nを最良とする不純物量はいずれ
の元素の場合も類似の傾向を示し5×1016〜1×
1018cm-3の範囲内にあつた。また2種以上の元素
を混入した場合は、その合計が上記の値になる量
が最適であつた。第1表にゾーンメルトInSb薄
膜に各種元素をドープして得られた膜のS/Nを
示す。
The present invention relates to a method for manufacturing an InSb thin film device with extremely low current noise. InSb, a type of compound semiconductor, exhibits a remarkable galvanomagnetic effect and is therefore often used in magnetoelectric transducers such as Hall elements and magnetoresistive elements. At this time, the thickness of InSb is required to be extremely thin, so the InSb film can be manufactured using physical vapor deposition methods such as vacuum evaporation, or chemical vapor deposition methods such as the well-known CVD method (hereinafter, these are simply referred to as vapor deposition methods). ) is used. A thin film of approximately 3 to 0.1 μm is used.
If it is less than 0.1 μm, the level of noise itself is too high and is not suitable for practical use. However, the thin films produced by these methods are polycrystalline films with a crystal grain size of 1 to 20 μmφ and contain many crystal defects. In order to coarsen the crystal grains and reduce crystal defects, a method of zone melting the InSb film is known. However, even with this method, the grain size is about 0.5 to 2 mm, and crystal defects cannot be completely removed. like this
When an element is formed using an InSb film and a current is passed through it, noise is superimposed on the output. For example, the level of the noise is as follows. Film thickness 2μm, element width 200
When a current of 4000 A/cm 2 is passed through a μm Hall element, the Hall voltage between the elements is 2 to 10 μV (deposited InSb
membrane) or 0.8 to 2μV (zone melt
InSb film) noise is generated. However, this value is r. of the noise voltage observed in the frequency band 100Hz to 10KHz.
ms value. Also, the Hall coefficient R of such a film is
H has a value of about 300 to 350 cm 3 /C, and the signal magnetic field
In the case of 10G, the output of the above element is about 2.5 to 2.8mV. Therefore, in the case of the conventional zone melt InSb film, the signal-to-noise ratio (S/N) for the above device is
It is 68 to 73 dB, and it is difficult to obtain a better S/N than this. However, the present inventors have discovered that a zone-melted InSb polycrystalline thin film containing certain impurities generates very little noise and can obtain a good S/N ratio. FIGS. 1 and 2 show evaluations of changes in S/N and noise level N when Na is doped into a 1.4 μm thick zone-melt InSb film using the above device. The S/N of a polycrystalline InSb film containing 5×10 16 to 1×10 18 cm -3 of Naa is 73 to 76 dB, which is better than that of a zone melt film that is not doped. More preferably 1×10 17 to 6×10 17 (cm
-3 ). In addition to Na, impurities that have a similar effect on S/N improvement include Cu, Au, Ag, Zn, K,
It was found that they are Li, Cd, B, Fe, Ca, Mg, Ba, Al, and Pb. These elements, with the exception of Pb and Fe, were limited to elements in group 2 of the periodic table. The reason why these elements are effective in improving the S/N is unknown, but it is thought that they are connected to the defects contained in the InSb film and reduce the noise generation ability of these defects. In addition, the Hall coefficient of the film tends to increase regardless of the type of element, but
This point differs from the known behavior of impurities in single-crystal bulk InSb, and suggests that impurities in polycrystalline InSb films are closely related to crystal defects. The amount of impurity that gives the best S/N shows a similar tendency for all elements, ranging from 5×10 16 to 1×
It was within the range of 10 18 cm -3 . In addition, when two or more types of elements were mixed, the optimum amount was such that the total amount was the above value. Table 1 shows the S/N of films obtained by doping zone-melt InSb thin films with various elements.

【表】 上記不純物をInSb薄膜中に混入する方法とし
ては、原理的に大別してInSbの融点以下で不純
物を拡散させる固相拡散法と、融点以上の温度で
拡散させる液相拡散法がある。いずれの拡散法を
取つても、あるいは両者を併用することによつて
も実現できる。 第1の方法はゾーンメルトを施したInSb多結
晶薄膜の表面に前述の如き所定の元素の少なくと
も一者を含む物質(勿論、上記元素の単体をも含
むものである。)を接触させて拡散源とし、InSb
の融点以下の温度で加熱処理を施こす方法であ
る。ここで所定元素を含む物質は、InSbの加熱
中に前記元素を分解放出しInSb膜中に拡散させ
うる物質であれば良い。この目的のためには、各
元素単体をはじめ、それらの水酸化物、酸化物あ
るいは上記元素を含有する熱硬化ガラスなどが適
当である。Cuの場合を例示するとCu単体、Cu
(OH)2、CuOなどがあり、Bの場合を例示すると
B入りスピオンガラス(エマルジトン社製熱硬化
ガラス)などが好例である。なお、単体を接触さ
せる方法としては蒸着法、イオンインプランテー
シヨンなどによることができる。 また、InSb多結晶薄膜の裏面に拡散源を設け
る場合、これらの不純物元素を含有する基板材料
を用いるなどして拡散源としも良い。 第2の方法は所望の基板に前述の如き所定の不
純物元素などの層を形成しておき(このとき、た
とえばAg、Cuなどの導電性の元素については、
電気的導通が生じる程厚く形成してはならな
い。)この層の上にInSb薄膜を蒸着法で形成し、
ゾーンメルト処理を施こす方法である。これは
InSb多結晶薄膜の裏面に拡散源の層を設けた例
である。 第3の方法は所望の基板上にInSb薄膜を蒸着
法で形成し、このInSb薄膜の表面に上記元素を
含む物質を接着させ、しかる後、ゾーンメルト処
理を施こす方法である。このとき、ゾーンメルト
処理を施こす方法である。このとき、所定元素を
拡散する方法として、第1の方法で述べたよう
に、所定元素を含む物質を接触させる方法、ある
いは、溶融InSbの表面張力による丸まりを防ぐ
ための保護膜(通常、In2O3膜が用いられる。)に
所定元素を含有させる方法でも良い。 以下実施例によつて具体的にそれらの方法につ
いて述べる。 実施例 1 よく洗浄されたダウ・コーニング社の#7059ガ
ラス基板上にInSbを三温度蒸着法によつて蒸着
し、表面にIn2O3の保護膜を形成した後ゾーンメ
ルト処理を行なつた。しかるのちIn2O3をバフ研
磨によつて除去し、InSb表面を平坦に仕上げ
た。このときInSb膜の厚みは0.5〜3.0μmとし
た。しかるのちInSb表面をKOHあるいは王水の
希釈液によつてエツチングし、表面の汚染を除去
した。このInSb表面に所望の不純物元素を接触
させた。その方法も多種考えられるが、例えば以
下の方法である。化合物を塗布する方法としては
Cu(OH)2、NaOH、KOH、LiOH、Ca(OH)2
Mg(OH)2、Ba(OH)2、Al(OH)3、Zn
(OH)2、Fe(OH)3などの水酸化物の水溶液ある
いは各種有機溶媒たとえばアルコールやエーテル
溶液中InSb膜を浸漬した。また化合物の入手し
にくい元素たとえばAu、Ag、Cd、Pbにおいて
は蒸着法によつて直接InSb表面に数10〜数100Å
被着した。さらにBなどの元素ではスピンオン・
ガラスとして市販されている、不純物を含む熱硬
化ガラスを塗布する方法をとつた。元素の種類に
よつては2種以上の方法で塗布が可能であるが、
塗布方法による差は認められなかつた。以上のよ
うな方法によつて不純物を塗布したInSbを
10-1Torrの真空炉中、InSbの融点以下の温度で
加熱処理を行なつた。最適拡散量を知るために、
種々時間と温度を変えて熱処理を行なつた。しか
る後フオトエツチング法によつて幅200μmのホ
ール素子を形成し、4000Å/cm2の電流および10G
の磁界を印加して、ホール端子にあらわれる出力
Sおよび雑音N(周波数帯域100〜10KHz)を評
価した。その結果いずれの元素においても250〜
450℃、1分以上の熱処理で効果があり、300〜
400℃、1時間程度の熱処理でS/Nの向上が最
もいちじるしかつた。前述の第1表はこのように
して膜厚2μmの素子について得られたものであ
る。上記実施例は10-1Torrの真空中で加熱を行
なつたが、これは加熱中にInSbが酸化されるの
を防ぐためであつて、不活性ガス中、あるいは適
当な保護膜を被覆すれば大気中で行なつてもよ
い。また実施例においてはInSb膜の表面に不純
物を接触させて固相拡散を行なつたが、不純物を
含む基板材料を用いるか、あらかじめ不純物元素
を蒸着などした基板(このとき、Ag、Cuなどの
導電性の元素については電気的導通が生じる程厚
く蒸着してはならない)の上にInSb膜を形成
し、しかる後熱処理を施してもよい。 また、2種以上の元素をドープしてもその含有
量が上記の範囲にあれば同等の効果を得ることが
できる。 実施例 2 実施例1においてはゾーンメルトしたInSb膜
の表面または裏面に不純物元素を接触させ、適当
な熱処理によつてInSb膜中に固相拡散させる方
法を述べた。この方法は拡散量を温度および時間
で制御できる利点がある。しかし固相拡散法の他
に液体状のInSbに不純物をドープする液相拡散
法がある。以下この例について述べる。ダウ・コ
ーニング社#7059ガラス基板上に三温度蒸着法に
よつてInSbを2μmの厚さに蒸着した。しかる
後LiOHの10%アルコール溶液に浸漬したのち乾
燥した。しかるのちIn3O3の保護膜を形成してゾ
ーンメルト処理を行なつた。ゾーンメルトにおい
てはInSb膜は一旦溶けるため、表面に付着した
LiOHは分解し、Liは一旦すべてInSb中にとりこ
まれるためその濃度は1020cm-3以上となる。しか
しゾーンメルトは不純物の偏析効果があるためゾ
ーンメルトをくり返すことにより5×1016〜1×
1018cm-3の適当な濃度までInSbを浄化できる。こ
のようにして得られたInSb膜のS/Nを実施例
1と同様な方法で評価したものを第2表に示すが
やはりS/N向上の効果は著しい。
[Table] Methods for mixing the impurities into the InSb thin film can be broadly divided into solid phase diffusion methods, in which the impurities are diffused at temperatures below the melting point of InSb, and liquid phase diffusion methods, in which the impurities are diffused at temperatures above the melting point. This can be achieved by using either diffusion method or by using both of them together. The first method is to contact the surface of an InSb polycrystalline thin film subjected to zone melting with a substance containing at least one of the above-mentioned predetermined elements (of course, it also includes a simple substance of the above-mentioned elements) to serve as a diffusion source. ,InSb
This is a method in which heat treatment is performed at a temperature below the melting point of. Here, the substance containing the predetermined element may be any substance that can decompose and release the element during heating of InSb and diffuse into the InSb film. For this purpose, each element alone, their hydroxides, oxides, or thermoset glasses containing the above elements are suitable. In the case of Cu, Cu alone, Cu
Examples include (OH) 2 , CuO, etc., and a good example of B is spion glass containing B (thermosetting glass manufactured by Emulsiton Co., Ltd.). Note that as a method for bringing the single substances into contact, a vapor deposition method, ion implantation, or the like can be used. Furthermore, when providing a diffusion source on the back surface of the InSb polycrystalline thin film, the diffusion source may be formed by using a substrate material containing these impurity elements. The second method is to form a layer containing a predetermined impurity element as described above on the desired substrate (for example, for conductive elements such as Ag and Cu,
It must not be formed so thick that electrical continuity occurs. ) An InSb thin film is formed on this layer by vapor deposition,
This is a method of performing zone melt processing. this is
This is an example in which a diffusion source layer is provided on the back side of an InSb polycrystalline thin film. The third method is to form an InSb thin film on a desired substrate by vapor deposition, adhere a substance containing the above-mentioned elements to the surface of the InSb thin film, and then perform zone melting. At this time, the method involves performing zone melt treatment. At this time, as a method of diffusing the predetermined element, as described in the first method, there is a method of contacting a substance containing the predetermined element, or a protective film (usually InSb) to prevent the molten InSb from curling due to surface tension. 2 O 3 film is used) may also contain a predetermined element. These methods will be specifically described below with reference to Examples. Example 1 InSb was deposited on a well-cleaned Dow Corning #7059 glass substrate by a three-temperature evaporation method, and a protective film of In 2 O 3 was formed on the surface, followed by zone melting. . Thereafter, In 2 O 3 was removed by buffing, and the InSb surface was finished flat. At this time, the thickness of the InSb film was set to 0.5 to 3.0 μm. Thereafter, the InSb surface was etched with a dilute solution of KOH or aqua regia to remove surface contamination. A desired impurity element was brought into contact with this InSb surface. Various methods can be considered, but examples include the following method. The method of applying the compound is
Cu(OH) 2 , NaOH, KOH, LiOH, Ca(OH) 2 ,
Mg(OH) 2 , Ba(OH) 2 , Al(OH) 3 , Zn
The InSb film was immersed in an aqueous solution of hydroxides such as (OH) 2 and Fe(OH) 3 or in various organic solvents such as alcohol and ether. In addition, for elements that are difficult to obtain in compounds, such as Au, Ag, Cd, and Pb, it is possible to directly coat the InSb surface with a thickness of several tens to several hundred Å by vapor deposition.
It was covered. Furthermore, in elements such as B, spin-on
We used a method of applying thermosetting glass containing impurities, which is commercially available as glass. Depending on the type of element, it is possible to apply it using two or more methods.
No difference was observed depending on the application method. InSb coated with impurities using the method described above
Heat treatment was performed in a vacuum furnace at 10 -1 Torr at a temperature below the melting point of InSb. To find out the optimal diffusion amount,
Heat treatments were carried out at various times and temperatures. Thereafter, a Hall element with a width of 200 μm was formed by photo-etching, and a current of 4000 Å/cm 2 and 10 G was applied.
A magnetic field was applied to evaluate the output S and noise N (frequency band 100 to 10 KHz) appearing at the Hall terminal. As a result, 250~
Heat treatment at 450℃ for 1 minute or more is effective;
The most significant improvement in S/N was achieved by heat treatment at 400°C for about 1 hour. The above-mentioned Table 1 was obtained in this way for an element having a film thickness of 2 μm. In the above example, heating was carried out in a vacuum of 10 -1 Torr, but this was done to prevent InSb from being oxidized during heating; It may also be carried out in the atmosphere. In addition, in the examples, solid-phase diffusion was performed by bringing impurities into contact with the surface of the InSb film. An InSb film may be formed on the conductive element (which must not be deposited so thickly as to cause electrical conduction), and then subjected to heat treatment. Further, even if two or more types of elements are doped, the same effect can be obtained as long as the content is within the above range. Example 2 In Example 1, a method was described in which an impurity element was brought into contact with the front or back surface of a zone-melted InSb film and solid-phase diffused into the InSb film through appropriate heat treatment. This method has the advantage that the amount of diffusion can be controlled by temperature and time. However, in addition to the solid phase diffusion method, there is a liquid phase diffusion method in which liquid InSb is doped with impurities. This example will be described below. InSb was deposited to a thickness of 2 μm on a Dow Corning #7059 glass substrate by a three-temperature deposition method. After that, it was immersed in a 10% LiOH alcohol solution and then dried. Thereafter, a protective film of In 3 O 3 was formed and zone melting was performed. In zone melting, the InSb film is melted once, so the InSb film attached to the surface is
LiOH decomposes and all Li is once incorporated into InSb, resulting in a concentration of 10 20 cm -3 or more. However, zone melting has the effect of segregation of impurities, so by repeating zone melting, 5×10 16 to 1×
InSb can be purified to an appropriate concentration of 10 18 cm -3 . The S/N of the InSb film thus obtained was evaluated in the same manner as in Example 1 and is shown in Table 2, and the effect of improving the S/N is remarkable.

【表】 上記の方法はゾーンメルトのくり返しによつて
不純物濃度を制御する方法をのべたが、Au、
Ag、Cuなどのような元素の場合はInSb表面に蒸
着する量を制御することにより、1回のゾーンメ
ルトで所望の不純物濃度を得ることができる。ま
た、InSb表面に接触する不純物量を制御する方
法としてはイオン・インプランテーシヨン法を用
いることもできる。 以上述べたごとく本発明者らはCu、Au、Ag、
Zn、Na、K、Cd、B、Li、Ca、Mg、Ba、Al、
Pb、Feを5×1016〜1018cm-3含むゾーンメルト多
結晶InSb膜はS/Nが極めて良いことを見出し
た。本実施例において、S/N評価をホール素子
を用いて行なつたが、本発明はホール素子のみな
らず、磁気抵抗素子、赤外検知器など、低雑音を
要求されるすべての多結晶InSb薄膜に応用が可
能で、工業上の利益は大きい。
[Table] The above method describes how to control the impurity concentration by repeating zone melting.
In the case of elements such as Ag and Cu, by controlling the amount deposited on the InSb surface, a desired impurity concentration can be obtained in one zone melt. Further, as a method of controlling the amount of impurities that come into contact with the InSb surface, an ion implantation method can also be used. As stated above, the present inventors have discovered that Cu, Au, Ag,
Zn, Na, K, Cd, B, Li, Ca, Mg, Ba, Al,
It has been found that a zone melt polycrystalline InSb film containing Pb and Fe in an amount of 5×10 16 to 10 18 cm −3 has an extremely good S/N ratio. In this example, the S/N evaluation was performed using a Hall element, but the present invention is applicable not only to Hall elements, but also to all polycrystalline InSb devices that require low noise, such as magnetoresistive elements and infrared detectors. It can be applied to thin films and has great industrial benefits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はInSb中のNaの不純物濃
度によるS/NおよびNの変化をそれぞれ示した
図である。
FIGS. 1 and 2 are diagrams showing changes in S/N and N depending on the impurity concentration of Na in InSb, respectively.

Claims (1)

【特許請求の範囲】 1 膜厚が0.1〜3μmとなるようにInSb多結晶
薄膜を所定基板上に蒸着法により形成し、該
InSb多結晶薄膜をゾーンメルトした後、該InSb
薄膜をCu、Au、Ag、Zn、Na、K、Cd、B、
Li、Ca、Fe、Mg、Ba、Al、Pbの群から選ばれ
た少なくとも一者の元素を含む拡散原物質に接触
させてInSbの融点以下の温度で加熱処理を施
し、前記少なくとも一者の元素を合計の濃度が5
×1016〜1×1018cm-3の範囲内となるように含有
させたことを特徴とする磁電変換素子用InSb多
結晶薄膜の製造方法。 2 特許請求の範囲第1項記載の磁電変換素子用
InSb多結晶薄膜の製造方法において、前記加熱
処理を250〜450℃で1分間以上行なうことを特徴
とする磁電変換素子用InSb多結晶薄膜の製造方
法。 3 特許請求の範囲第1項または第2項記載の磁
電変換素子用InSb多結晶薄膜の製造方法におい
て、前記Cu、Na、K、Li、Ca、Fe、Mg、Ba、
Alの拡散源として、これら元素の水酸化物を用
いることを特徴とする磁電変換素子用InSb多結
晶薄膜の製造方法。 4 特許請求の範囲第1項または第2項記載の磁
電変換素子用InSb多結晶薄膜の製造方法におい
て、前記Cu、Au、Ag、Zn、Cd、Fe、Mg、Al、
Pbの拡散源として、これら元素の単体を用いる
ことを特徴とする磁電変換素子用InSb多結晶薄
膜の製造方法。 5 特許請求の範囲第1項または第2項記載の磁
電変換素子用InSb多結晶薄膜の製造方法におい
て、前記Bの拡散源として、Bを含む熱硬化ガラ
スを用いることを特徴とする磁電変換素子用
InSb多結晶薄膜の製造方法。 6 膜厚が0.1〜3μmとなるようにInSb多結晶
薄膜を所定基板上に形成し、該InSb多結晶薄膜
をCu、Au、Ag、Zn、Na、K、Cd、B、Li、
Ca、Fe、Mg、Ba、Al、Pbの群から選ばれた少
なくとも一者の元素を含む拡散源物質に接触させ
てゾーンメルトし、前記少なくとも一者の元素を
合計の濃度が5×1016〜1×1018cm-3の範囲内と
なるように含有させたことを特徴とする磁電変換
素子用InSb多結晶薄膜の製造方法。 7 特許請求の範囲第6項記載の磁電変換素子用
InSb多結晶薄膜の製造方法において、前記Cu、
Na、K、Li、Ca、Fe、Mg、Ba、Alの拡散源と
して、これら元素の水酸化物を用いることを特徴
とする磁電変換素子用InSb多結晶薄膜の製造方
法。 8 特許請求の範囲第6項記載の磁電変換素子用
InSb多結晶薄膜の製造方法において、前記Cu、
Au、Ag、Zn、Cd、Fe、Mg、Al、Pbの拡散源と
して、これら元素の単体を用いることを特徴とす
る磁電変換素子用InSb多結晶薄膜の製造方法。 9 特許請求の範囲第6項記載の磁電変換素子用
InSb多結晶薄膜の製造方法において、前記Bの
拡散源として、Bを含む熱硬化ガラスを用いるこ
とを特徴とする磁電変換素子用InSb多結晶薄膜
の製造方法。
[Claims] 1. An InSb polycrystalline thin film is formed on a predetermined substrate by a vapor deposition method so that the film thickness is 0.1 to 3 μm, and
After zone melting the InSb polycrystalline thin film, the InSb
The thin film is Cu, Au, Ag, Zn, Na, K, Cd, B,
A diffusion source material containing at least one element selected from the group of Li, Ca, Fe, Mg, Ba, Al, and Pb is brought into contact with the diffusion source material, and heat treatment is performed at a temperature below the melting point of InSb. The total concentration of elements is 5
A method for manufacturing an InSb polycrystalline thin film for a magnetoelectric transducer, characterized in that the InSb polycrystalline thin film is contained in a range of ×10 16 to 1 × 10 18 cm -3 . 2 For use in the magnetoelectric transducer described in claim 1
A method for producing an InSb polycrystalline thin film for a magnetoelectric transducer, characterized in that the heat treatment is performed at 250 to 450°C for 1 minute or more. 3. In the method for manufacturing an InSb polycrystalline thin film for a magnetoelectric transducer according to claim 1 or 2, the Cu, Na, K, Li, Ca, Fe, Mg, Ba,
A method for manufacturing an InSb polycrystalline thin film for a magnetoelectric conversion element, characterized in that hydroxides of these elements are used as a diffusion source of Al. 4. In the method for manufacturing an InSb polycrystalline thin film for a magnetoelectric transducer according to claim 1 or 2, the Cu, Au, Ag, Zn, Cd, Fe, Mg, Al,
A method for producing an InSb polycrystalline thin film for a magnetoelectric transducer, characterized in that a single element of these elements is used as a Pb diffusion source. 5. A method for producing an InSb polycrystalline thin film for a magnetoelectric transducer according to claim 1 or 2, characterized in that a thermosetting glass containing B is used as the B diffusion source. for
Method for manufacturing InSb polycrystalline thin film. 6. Form an InSb polycrystalline thin film on a predetermined substrate so that the film thickness is 0.1 to 3 μm, and add the InSb polycrystalline thin film to Cu, Au, Ag, Zn, Na, K, Cd, B, Li,
Zone melting is performed by contacting with a diffusion source material containing at least one element selected from the group of Ca, Fe, Mg, Ba, Al, and Pb, and the total concentration of the at least one element is 5×10 16 1. A method for producing an InSb polycrystalline thin film for a magnetoelectric transducer, characterized in that the InSb polycrystalline thin film is contained within a range of 1×10 18 cm −3 . 7 For magnetoelectric transducer according to claim 6
In the method for manufacturing an InSb polycrystalline thin film, the Cu,
A method for producing an InSb polycrystalline thin film for a magnetoelectric transducer, characterized in that hydroxides of Na, K, Li, Ca, Fe, Mg, Ba, and Al are used as diffusion sources for these elements. 8 For use in the magnetoelectric transducer described in claim 6
In the method for manufacturing an InSb polycrystalline thin film, the Cu,
A method for manufacturing an InSb polycrystalline thin film for a magnetoelectric transducer, characterized in that Au, Ag, Zn, Cd, Fe, Mg, Al, and Pb are used alone as diffusion sources. 9 For magnetoelectric transducer according to claim 6
A method for producing an InSb polycrystalline thin film for a magnetoelectric transducer, characterized in that a thermosetting glass containing B is used as the B diffusion source.
JP3032877A 1977-03-22 1977-03-22 Insb polycrystal thin film of low noise Granted JPS53116068A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3032877A JPS53116068A (en) 1977-03-22 1977-03-22 Insb polycrystal thin film of low noise
US05/888,465 US4177298A (en) 1977-03-22 1978-03-20 Method for producing an InSb thin film element
NLAANVRAGE7803102,A NL178377C (en) 1977-03-22 1978-03-22 METHOD FOR MANUFACTURING A THIN INDIUM ANTIMONIDE FILM ELEMENT
DE2812656A DE2812656C2 (en) 1977-03-22 1978-03-22 Process for the production of an InSb thin-film component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3032877A JPS53116068A (en) 1977-03-22 1977-03-22 Insb polycrystal thin film of low noise

Publications (2)

Publication Number Publication Date
JPS53116068A JPS53116068A (en) 1978-10-11
JPS6228568B2 true JPS6228568B2 (en) 1987-06-22

Family

ID=12300731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3032877A Granted JPS53116068A (en) 1977-03-22 1977-03-22 Insb polycrystal thin film of low noise

Country Status (1)

Country Link
JP (1) JPS53116068A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58213485A (en) * 1982-06-04 1983-12-12 Hitachi Ltd Manufacture of magnetoresistance effect element
JPH0666486B2 (en) * 1988-10-14 1994-08-24 工業技術院長 Recrystallized film for Hall effect element and method of manufacturing the same

Also Published As

Publication number Publication date
JPS53116068A (en) 1978-10-11

Similar Documents

Publication Publication Date Title
Canali et al. On the formation of Ni and Pt silicide first phase: the dominant role of reaction kinetics
Capers et al. The electrical properties of vacuum deposited tellurium films
US4177298A (en) Method for producing an InSb thin film element
US5187560A (en) Ohmic electrode for n-type cubic boron nitride and the process for manufacturing the same
JPS6228568B2 (en)
EP0424857B1 (en) Process for producing ohmic electrode for p-type cubic system boron nitride
Nishiura et al. The strain effect on the electrical conduction in discontinuous gold films
US5240877A (en) Process for manufacturing an ohmic electrode for n-type cubic boron nitride
JPH0797567B2 (en) Method of forming thin film
Miranda et al. Thermally induced oxidation of GaAs (110) by a Rb oxide overlayer
JPS5821817B2 (en) Manufacturing method of InSb polycrystalline thin film
Tanabe et al. Effects of vacuum pressure on coercivity and magnetoresistivity of thin permalloy films during deposition
JPS56144530A (en) Manufacture of semiconductor device
Emmanuel et al. Barrier formation in lead-based tunnel junctions studied by surface techniques
JP3332417B2 (en) Hall element and method of manufacturing the same
JP2969273B2 (en) Surface stabilization method for oxide superconducting bulk
JPS61137317A (en) Electrode material for semiconductor device
Williams et al. An x‐ray photoelectron spectroscopy study of the interaction and chemical passivation of chemically etched (100) oriented Hg1− x Cd x Te (x= 0.226) utilizing chromium and aluminum
JPS5812441Y2 (en) Semiconductor device electrode structure
JPH0140512B2 (en)
JP2915935B2 (en) Semiconductor thin film material
JPS558036A (en) Electrode formation
JPS60734A (en) Semiconductor device and manufacture thereof
JPS54128678A (en) Forming method of insulation film
JPS55107257A (en) Ohmic electrode