JPS58213485A - Manufacture of magnetoresistance effect element - Google Patents

Manufacture of magnetoresistance effect element

Info

Publication number
JPS58213485A
JPS58213485A JP57094849A JP9484982A JPS58213485A JP S58213485 A JPS58213485 A JP S58213485A JP 57094849 A JP57094849 A JP 57094849A JP 9484982 A JP9484982 A JP 9484982A JP S58213485 A JPS58213485 A JP S58213485A
Authority
JP
Japan
Prior art keywords
ion
magnetoresistive effect
film
magnetoresistance effect
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57094849A
Other languages
Japanese (ja)
Other versions
JPH0462191B2 (en
Inventor
Akira Imura
亮 井村
Yoshitsugu Koiso
小礒 良嗣
Hiroshi Umezaki
梅崎 宏
Makoto Suzuki
良 鈴木
Ken Sugita
杉田 愃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57094849A priority Critical patent/JPS58213485A/en
Publication of JPS58213485A publication Critical patent/JPS58213485A/en
Publication of JPH0462191B2 publication Critical patent/JPH0462191B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment

Abstract

PURPOSE:To enhance the magnetoresistance effect as well as to increase the detection output without changing or deteriorating the coersive force, saturated magnetization, anisotropy and the like by a method wherein an ion is implanted on the magnetic film which constitutes the magnetoresistance effect element. CONSTITUTION:Magnetoresistance effect DELTArho/rho is increased by implanting an ion such as H<+>2 ion, Ne<+> ion and the like, 1X10<16>ion/cm<2> or thereabout for H<+> ion and 2X10<14>/cm<2> or thereabout for Ne<+> ion, on the magnetic film of 3,500Angstrom in thickness consisting of Ni-Fe alloy of composition 81wt% and 19wt% respectively, which constitutes the magnetoresistance effect element. Thus, the ion- implanted magnetoresistance effect element can be used for the detector of magnetic thin film memory, a tip-appearing detector for VTR tape and the like.

Description

【発明の詳細な説明】 本発明は、磁気抵抗素子の製造方法に関する。[Detailed description of the invention] The present invention relates to a method of manufacturing a magnetoresistive element.

周知のように、磁気抵抗効果を利用した磁気抵抗効果素
子には、磁性薄膜メモリの検出器、磁場センサ、磁気ヘ
ッド、磁気バブルの検出器、マグネスケールの検出器、
VTRテープの頭出し検出器等多くの種類のものが提案
されている。
As is well known, magnetoresistive elements that utilize the magnetoresistive effect include magnetic thin film memory detectors, magnetic field sensors, magnetic heads, magnetic bubble detectors, Magnescale detectors,
Many types of VTR tape cue detectors have been proposed.

たとえば、磁気抵抗効果によるバブル磁区の検出は、電
流と同一の方向に設定された磁化の容易軸が、バブル磁
区からの浮遊磁界により電流と直角の方向に回転したと
きに生ずる抵抗値変化を利用したものである。
For example, detection of bubble magnetic domains using the magnetoresistive effect uses the change in resistance value that occurs when the axis of easy magnetization, which is set in the same direction as the current, is rotated in a direction perpendicular to the current due to the stray magnetic field from the bubble magnetic domain. This is what I did.

一般に磁気抵抗効果を利用した上記各種素子では、端子
に検出電圧v8として−R−I(ΔR=抵抗値変化、■
=電流)が発生するわけで、素子の長さ9幅、厚さをそ
れぞれt、w、tとすると端子電圧v8は −Vs=Δρ拳□・r=(Δρ/ρ)・IIIW となる。ここにΔρは抵抗率変化である。
In general, in the above-mentioned various elements that utilize the magnetoresistive effect, the detection voltage v8 is applied to the terminal as -R-I (ΔR=resistance value change,
= current) is generated, and if the length, width, and thickness of the element are t, w, and t, respectively, the terminal voltage v8 becomes -Vs=Δρ fist□·r=(Δρ/ρ)·IIIW. Here, Δρ is the resistivity change.

大きな検出電圧を得るには素子許容電流を一定とした場
合、抵抗率変化の大きな材料を用い、素子長tを大きく
、素子幅W1素子膜厚tを小さくするとよいことがわか
る。
It can be seen that in order to obtain a large detection voltage, when the element permissible current is kept constant, it is better to use a material with a large change in resistivity, increase the element length t, and decrease the element width W1 and the element film thickness t.

磁気バブル2検出の場合、有効な素子長tはははバブル
径dであるが、バブルストレッチという巧妙な方法によ
り、この制約を打破することが可能となった。しかし、
素子幅Wについては、反磁界の影響などを考慮する必要
があるために小さくするにも制約があシ実際の検出にあ
たって素子は、非飽和領域で動作したいる。
In the case of magnetic bubble 2 detection, the effective element length t is the bubble diameter d, but it has become possible to overcome this restriction by using a clever method called bubble stretching. but,
Regarding the element width W, there are restrictions on reducing it because it is necessary to take into account the effects of demagnetizing fields, etc. In actual detection, the element operates in a non-saturation region.

具体的な磁気抵抗効果検出素子として、すでに発表され
たものを大別すると、素子の膜厚では薄膜型と厚膜型が
あり、検出方法でストレッチを利用するものとしないも
のがおる。
Specific magnetoresistive detection elements that have already been announced can be roughly divided into thin film types and thick film types in terms of film thickness, and those that use stretch as a detection method and those that do not.

薄膜型というのは検出素子のみのために厚さ200〜5
00人の磁性膜を使用するものであり、一方厚膜型と称
するものは、転送素子の一部を検出に併用するものであ
るため、膜厚は1000〜5000人である。同一条件
における両者の検出電圧を比較すると、上記式から明ら
かなように薄膜型がすぐれている。しかし薄膜型では、
膜の厚さ方向の大きさが限られていることから、伝導電
子の表面散乱効果が大きくなって抵抗率ρが増大するた
めに、7磁気抵抗効果Δρ/ρが小さくなり、実際には
大きな検出電圧が得られていない。
The thin film type has a thickness of 200 to 50 mm for the detection element only.
On the other hand, in the thick film type, a part of the transfer element is also used for detection, so the film thickness is 1000 to 5000. Comparing the detection voltages of both under the same conditions, it is clear from the above equation that the thin film type is superior. However, in the thin film type,
Since the size of the film in the thickness direction is limited, the surface scattering effect of conduction electrons becomes large and the resistivity ρ increases, so the 7 magnetoresistive effect Δρ/ρ becomes small, and in reality it becomes large. Detection voltage is not obtained.

従来から知られている薄膜型、厚膜型磁気抵抗効果素子
で、大きな磁気抵抗効果Δρ/ρを得る従来の方法には
、次のものがある。
Conventional methods for obtaining a large magnetoresistive effect Δρ/ρ using conventionally known thin-film and thick-film magnetoresistive elements include the following.

中 磁性膜を合金化あるいは化合物化して磁気抵抗効果
Δρ/ρを入門“くする。
Medium The magnetoresistive effect Δρ/ρ can be reduced by alloying or compounding the magnetic film.

(11)  熱処理を用いて抵抗率ρを小さくして磁気
抵抗効果Δρ/ρを大きくする。
(11) Heat treatment is used to reduce the resistivity ρ and increase the magnetoresistive effect Δρ/ρ.

しかし、これら従来の方法では、以下に記す火中の方法
では、Δρ/ρは材料特性および素子寸法設計で決まり
、公知の蒸着・スパッタリング等の方法で磁性膜を形成
すると、磁気抵抗効果Δρ/ρが飽和する傾向にある。
However, in these conventional methods, in the fire method described below, Δρ/ρ is determined by material properties and element dimensional design, and when a magnetic film is formed by a known method such as vapor deposition or sputtering, the magnetoresistive effect Δρ/ρ ρ tends to be saturated.

(11)の方法では、磁気抵抗効果Δρ/ρV外の性質
(たとえば保磁力、飽和磁化、異方性など)が変化ある
いは劣化するために実用上制約がある。また上記方法以
外の方法によって大きな検出電圧を得るためには、前述
の式から検出電流It−大きくすればよいことになるが
、これは素子の発熱及び寿命の低下などの致命的な欠点
を生ずることになり、実用は困難である。
The method (11) has practical limitations because properties outside the magnetoresistive effect Δρ/ρV (for example, coercive force, saturation magnetization, anisotropy, etc.) change or deteriorate. In addition, in order to obtain a large detection voltage by a method other than the above-mentioned method, it is necessary to increase the detection current It from the above equation, but this causes fatal drawbacks such as heat generation of the element and shortening of the life span. Therefore, it is difficult to put it into practical use.

本発明の目的は上記従来の問題を解決し、検出電圧の大
きな磁気抵抗効果素子を容易に製造することのできる、
磁気抵抗効果素子の製造方法を提) 供することである。
An object of the present invention is to solve the above-mentioned conventional problems and to easily manufacture a magnetoresistive element with a large detection voltage.
An object of the present invention is to provide a method for manufacturing a magnetoresistive element.

上記目的を達成するため、木兄明社、磁気抵抗効果素子
を構成する磁性膜にイオンを打込むことによって磁気抵
抗効果Δρ/ρを増大し、それにより、検出電圧を大き
くするものである。
In order to achieve the above object, Kineimeisha increases the magnetoresistive effect Δρ/ρ by implanting ions into the magnetic film constituting the magnetoresistive element, thereby increasing the detection voltage.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は、従来の磁気抵抗効果素子の検出出力(−MR
(Δρ/ρ))の磁界依存性を示したものである。第1
図において曲Ham b+ cは素子長/素子幅が一定
の素子の素子幅を順次小さくして磁気抵抗効果ケ測定し
た結果を示し、素子幅の減少とともに磁気抵抗変化を飽
和させるためには、より大きな磁界が必要になることが
わかる。たとえば磁気バブル素子におけるノ(プル磁区
からの有効か浮遊磁界株数100Gであるから、実際の
検出にあたって素子は非飽和領域で動作していると考え
られる。
Figure 1 shows the detection output (-MR
This figure shows the magnetic field dependence of (Δρ/ρ)). 1st
In the figure, the curve Ham b+c shows the result of measuring the magnetoresistive effect by successively decreasing the element width of an element with constant element length/element width. It can be seen that a large magnetic field is required. For example, since the effective stray magnetic field from the pull magnetic domain in a magnetic bubble element is 100 G, the element is considered to be operating in a non-saturation region during actual detection.

第2図H1Ni−Fe合金における磁気抵抗効果Δρ/
ρのNi含有量依存性−を示したものである。磁気抵抗
変化を飽和させた磁界59000eの検出出力(Δρ/
ρ)は、曲#i11から明らかなように、Ni=86w
t%で約4.5%に達する。
Fig. 2 Magnetoresistive effect Δρ/ in H1Ni-Fe alloy
This figure shows the dependence of ρ on Ni content. Detection output (Δρ/
As is clear from song #i11, ρ) is Ni=86w
t% reaches approximately 4.5%.

一方、実際の検出にあたって使用される非飽和領域では
、曲線2から明らかなように、磁界650eの検出出力
(Δρ/ρ)は最大3.5%程度で’Me第1第1第、
第2られかるように、実際の検出にあたってほとんどの
素子は、一般に非飽和領域で使用されるため、許容検出
電流下における従来の磁気抵抗効果素子のΔρ/ρは3
,5%程度である。
On the other hand, in the non-saturation region used for actual detection, as is clear from curve 2, the detection output (Δρ/ρ) of the magnetic field 650e is about 3.5% at maximum;
As shown in the second section, in actual detection, most elements are generally used in the non-saturation region, so Δρ/ρ of the conventional magnetoresistive element under the permissible detection current is 3.
, about 5%.

第3図は、Ni−Co合金における磁気抵抗効果Δρ/
ρの磁界依存性を示したものである。
Figure 3 shows the magnetoresistive effect Δρ/ in Ni-Co alloy.
This shows the magnetic field dependence of ρ.

Ni−Co合金では、Ni−Fe合金とは異なり、磁気
抵抗効果は6%程度にまで大きくなる。しかし、飽和動
作をさせるに必要な最小磁場が、N1−pe金合金場合
の倍以上の強度を要するため、素子としては応用性が狭
くなってしまうといり欠点がある。
In Ni-Co alloy, unlike Ni-Fe alloy, the magnetoresistive effect is as large as about 6%. However, since the minimum magnetic field required for saturation operation is more than twice as strong as that of the N1-pe gold alloy, it has the disadvantage that its applicability as an element is limited.

第4図は、Ni−Fe合金にCOを合金化して、磁気抵
抗効果Δρ/ρを増大した一例を示す。第4図に示した
ように、CO含有量aowt%で、磁気抵抗効果Δρ/
ρは最大値を示し、CO未添加のものと比較して約2倍
になる。しかし、この合金化による従来の方法でも、磁
気抵抗効果Δρ/ρは飽和する傾向がある。
FIG. 4 shows an example in which the magnetoresistive effect Δρ/ρ is increased by alloying Ni-Fe alloy with CO. As shown in Figure 4, at CO content aowt%, magnetoresistive effect Δρ/
ρ shows the maximum value and is approximately twice as high as that without CO addition. However, even with this conventional method using alloying, the magnetoresistive effect Δρ/ρ tends to be saturated.

第5図は、熱処理によって厚さ500人のNi−p e
合金膜の磁気抵抗効果Δρ/ρ”を大きくした一例を示
す。磁気抵抗効果Δρ/ρは結晶粒成長が始まる300
〜400Cで抵抗率ρが減少°するために、急激に増大
する。第6図は、このNi−Fe合金の保磁力Haの熱
処理温度依存性を示したものであり、保磁力Hcも結晶
粒の成長が始まる300〜400Cで急激に大きくなる
。このように従来の熱処理法による磁気抵抗効果Δρ/
ρの増大では、他の性質を変化あるいは劣化してしまう
という欠点がある。
Figure 5 shows that the Ni-P e
An example of increasing the magnetoresistive effect Δρ/ρ of the alloy film is shown below.
Since the resistivity ρ decreases at ~400C, it increases rapidly. FIG. 6 shows the dependence of the coercive force Ha of this Ni-Fe alloy on the heat treatment temperature, and the coercive force Hc also increases rapidly at 300 to 400 C, at which point the growth of crystal grains begins. In this way, the magnetoresistive effect Δρ/
Increasing ρ has the disadvantage that other properties change or deteriorate.

第7図および第8図は、本発明の実施例を示し、厚さ3
500人、組成81wt%−19wt%のN1−Fe合
金の磁気抵抗効果Δρ/ρをイオン打込みによって増大
させた例を示す。第7図において、曲線3.4扛H22
およびN e+をそれぞれ75KeVおよび130Ke
V で打込んだ場合を示し、第8図曲線5.6は、Hl
。およびN e+をそれぞれI X 10”および2 
X 10” ’/ tザ打込んだ場合を示している。第
8図曲線5から明らかなように、上記N i −p e
合金膜の磁気抵抗効果Δρ/ρは、水素イオンの打込み
量の増加につれて増大し、打込み量〜I X 10” 
i 0n /crn”で最大値4.6%を示し、イオン
打込み前と比較して約30%増大した。イオン打込み深
さに関しては、厚さ3500Aの場合、磁気抵抗効果Δ
ρ/ρは、軽い水素イオン打込みでは、第8図曲線5に
示したように、加速電圧75KeVで最大値4.6%を
示し、また重いN e4にイオン打込みでも、第8図曲
線6から明らかなように、加速電圧130KeV以上で
増大する傾向が見られた。第9図は、上記N i −F
 e合金にイオン打込みを行なった場合の保磁力Heの
打込み電圧依存性を示し、曲線7゜8はそれぞれHoを
I X 10” A−およびNe+を2 X 10” 
/e−打込んだ場合の結果を示す。第9図から明らかな
よりに、イオン打込み後の保磁力Heはイオン打込み前
とほぼ同様な値を示している。このように、本発明によ
゛れば周知の熱処理法による磁気抵抗効果Δρ/ρの増
大とは異なり、他の性質を変化させること表くΔρ/ρ
を増大できる。このような本発明による磁気抵抗効果Δ
ρ/ρの増大は、Ni−Fe合金の組成などに依存せず
、たとえばNiの含有量が66wt%の場合はΔρ/ρ
を4.5%から6%に、またNi含有量が70〜90%
のNi−Co合金の場合は6%から7.8%まで増大で
Iる。
7 and 8 show an embodiment of the invention, with a thickness of 3
An example is shown in which the magnetoresistive effect Δρ/ρ of a N1-Fe alloy with a composition of 81 wt% to 19 wt% is increased by ion implantation. In Figure 7, the curve 3.4 H22
and N e+ at 75 KeV and 130 Ke, respectively.
Curve 5.6 in Figure 8 shows the case of implantation with Hl
. and N e+ as I x 10” and 2, respectively.
This shows the case where the N i -p e
The magnetoresistive effect Δρ/ρ of the alloy film increases as the amount of hydrogen ions implanted increases, and the magnetoresistive effect Δρ/ρ of the alloy film increases as the implanted amount of hydrogen ions increases, and the
i 0n /crn'', which showed a maximum value of 4.6%, which was approximately 30% increased compared to before ion implantation. Regarding the ion implantation depth, in the case of a thickness of 3500A, the magnetoresistive effect Δ
In light hydrogen ion implantation, ρ/ρ shows a maximum value of 4.6% at an accelerating voltage of 75 KeV, as shown in curve 5 in Figure 8, and even in heavy Ne4 ion implantation, it shows a maximum value of 4.6%, as shown in curve 6 in Figure 8. As is clear, there was a tendency to increase at accelerating voltages of 130 KeV or higher. FIG. 9 shows the above N i −F
The dependence of the coercive force He on the implantation voltage when ion implantation is performed on e-alloy is shown, and the curve 7゜8 shows the dependence of the coercive force He on the implantation voltage, respectively.
The results are shown when /e- is inserted. As is clear from FIG. 9, the coercive force He after ion implantation shows almost the same value as before ion implantation. As described above, according to the present invention, unlike increasing the magnetoresistive effect Δρ/ρ by the well-known heat treatment method, it is possible to increase the magnetoresistive effect Δρ/ρ by changing other properties.
can be increased. Such magnetoresistive effect Δ according to the present invention
The increase in ρ/ρ does not depend on the composition of the Ni-Fe alloy. For example, when the Ni content is 66 wt%, the increase in Δρ/ρ
from 4.5% to 6%, and Ni content from 70 to 90%.
In the case of Ni-Co alloys, I increases from 6% to 7.8%.

第10図は、N1−Fe合金にイオン打込みを行なった
際における磁気抵抗効果Δρ/ρの上昇膜厚依存性を示
す。第1θ図において、曲[9゜9′、9“は未処理の
N1−pe蒸着膜の特性、曲@10,10’ 、10”
はこの膜KHt ”を75KeVでI X 10’ ”
 /ctrt” を打込んだときに得られる特性を示す
。曲@9“、10“かも明らかなように、抵抗率変化Δ
ρはイオンを打込んでも変化はなく、また、磁気抵抗効
果Δρ/ρはイオン打込みによる抵抗率ρの減少のため
、曲#J9゜10に示したように増大する。磁気抵抗効
果Δρ/ρの増加率h1膜厚によらずtt’tz一定で
あり、厚さ500人の薄膜パーマクイにおいて゛もイオ
ン打込みによ!112.1%から2.8%まで約30%
増大する。また、pJi−Fe合金のバルクの抵抗率が
約14μΩ−鋸であることから、厚さ3000Å以上の
膜厚では、抵抗率ρがイオン?J込みによりバルクに近
い値となることが認められた。
FIG. 10 shows the dependence of the magnetoresistive effect Δρ/ρ on the film thickness when ions are implanted into the N1-Fe alloy. In Fig. 1θ, the curves [9°9', 9'' are the characteristics of the untreated N1-pe deposited film, and the curves @10, 10', 10''
is this film KHt" at 75KeV I x 10'"
/ctrt". As is clear from songs @9" and 10", the resistivity change Δ
ρ does not change even after ion implantation, and the magnetoresistive effect Δρ/ρ increases as shown in track #J9-10 due to the decrease in resistivity ρ due to ion implantation. The rate of increase of the magnetoresistive effect Δρ/ρ is constant regardless of the film thickness h1, and in a thin film permutation film with a thickness of 500 people, even by ion implantation! Approximately 30% from 112.1% to 2.8%
increase Also, since the bulk resistivity of the pJi-Fe alloy is about 14 μΩ-saw, for a film thickness of 3000 Å or more, the resistivity ρ is ion? It was observed that the value close to the bulk value was obtained by including J.

第11図は、熱処理を施した厚さ3500人のN i 
−Fe合金蒸着膜へイオン打込みしたときに得られる効
果を示した一例である。第11図において、記号11.
11’は未処理の蒸着膜、記号12.1..2’ aH
,” 125KeVで0.7X10”および80KeV
で0.7 X 10” 7cm”打込んだ後に得られた
特性を示す。熱処理を行なうと、直線11から明らかな
ように、磁気抵抗効果Δρ/ρti、400Cで4.2
%まで増大する。しかしイオン打込みを行なった膜の磁
気抵抗効果Δρ/ρは、直1R12から明らかなように
、熱処理温度に関係なく4.6%まで増大した。また保
磁力Heは曲線11′に示したように、400Cの熱処
理によって0.50eから1808まで大きくなるが、
本発明によってイオン打込みを行なうと、曲1Iia1
2’に示したように、その増加は0.70 eにすぎな
かった。すなわち、薄膜型MRヘッドなどにおいて、熱
処理法により一旦磁気抵抗効果Δρ/ρおよび保磁力H
aを増大した後、イオン打込みを行なって保磁力Heだ
けを回復させることも可能である。
Figure 11 shows a heat-treated Ni
This is an example showing the effect obtained when ions are implanted into a -Fe alloy deposited film. In FIG. 11, symbol 11.
11' is an untreated deposited film, symbol 12.1. .. 2' aH
,” 0.7X10” at 125KeV and 80KeV
The characteristics obtained after a 0.7 x 10" 7 cm" implant are shown. After heat treatment, as is clear from the straight line 11, the magnetoresistive effect Δρ/ρti is 4.2 at 400C.
%. However, the magnetoresistive effect Δρ/ρ of the ion-implanted film increased to 4.6% regardless of the heat treatment temperature, as is clear from the direct 1R12. Furthermore, as shown in curve 11', the coercive force He increases from 0.50e to 1808 by heat treatment at 400C;
When ion implantation is performed according to the present invention, song 1Iia1
2', the increase was only 0.70 e. In other words, in thin-film MR heads, etc., the magnetoresistive effect Δρ/ρ and the coercive force H are temporarily reduced by heat treatment.
After increasing a, it is also possible to perform ion implantation to restore only the coercive force He.

−力筒11図点a、b、cおよびdにおいて結晶粒の大
きさを観察すると、それぞれ〜150人。
- Observing the size of crystal grains at points a, b, c, and d of the power cylinder 11, each of ~150 people.

200人、700人および700人であった。すなわち
、(匈点から(C7点への熱処理によって、150人→
700人の結晶粒成長が起り、それによって抵抗率ρが
減少して磁気抵抗効果Δρ/ρは増大するが、(a)点
と(b)点では、結晶粒の差異は生じないにもかかわら
ず磁気抵抗効果Δρ/ρは増大した。このことから、従
来の熱処理法と本発明におけるイオン打込みによる磁気
抵抗効果の増大とは、その機構が全く異質なものである
ことは明らかである。
They were 200, 700 and 700 people. That is, by heat treatment from (Xiang point to (C7 point), 150 people →
700 grain growth occurs, which decreases the resistivity ρ and increases the magnetoresistive effect Δρ/ρ, but at points (a) and (b), although there is no difference in the grains. The magnetoresistive effect Δρ/ρ increased. From this, it is clear that the mechanisms of the conventional heat treatment method and the increase in the magnetoresistive effect due to ion implantation according to the present invention are completely different.

第12図は、N1−pe合金膜にイオン打込みを行なっ
て磁気抵抗効果Δρ/ρを増大した場合の磁気抵抗効果
および保磁力の熱処理温度依存性を示した一例である。
FIG. 12 is an example showing the dependence of the magnetoresistive effect and coercive force on the heat treatment temperature when the magnetoresistive effect Δρ/ρ is increased by ion implantation into the N1-pe alloy film.

第12図において、曲線13.13’U、N1−p’e
合金膜単独、直線14.14’はこの膜上に膜を被着し
て、それぞれHllを75KeV’でI X 1016
/lyn”打込んだ結果を示す。軽い水素イオンを打込
んだ場合には、200C以上の温度で水素が外部に放出
されるために、磁気抵抗効果Δρ/ρは曲線13に示す
ように減少する。一方、積層膜を形成した後に熱処理を
施した膜では、直線14に示すように、Ni−p e合
金の場合結晶粒の成長が始まる温度以下で、そのイオン
打込み効果を維持することができる。
In Figure 12, curves 13.13'U, N1-p'e
The alloy film alone, the straight line 14.14' is coated with a film on this film, and the Hll is I x 1016 at 75 KeV'.
/lyn” implantation results. When light hydrogen ions are implanted, the magnetoresistive effect Δρ/ρ decreases as shown in curve 13 because hydrogen is released to the outside at a temperature of 200C or higher. On the other hand, in a film that is heat-treated after forming a laminated film, the ion implantation effect can be maintained below the temperature at which crystal grain growth begins in the case of Ni-pe alloy, as shown by the straight line 14. can.

以上のように、本発明によれば、従来は、一般に非飽和
領域で使用されていた厚膜型磁気抵抗効果素子のΔρ/
ρを許容検出電流下で約4.6%まで、また薄膜型MR
ヘッドなどにおいてもΔρ/ρを従来よりt’i?1!
′30%大きくすることができる。
As described above, according to the present invention, Δρ/
ρ to about 4.6% under the allowable detection current, and thin film MR
Even in heads, etc., Δρ/ρ is t'i? 1!
'Can be increased by 30%.

また本発明によればイオン種に限定されることなく、水
素もしくはネオン以外にもたとえば、ヘリラム、リチウ
ムなど、周期律表の原子ioま   ′でのイオンを磁
性膜中に分布させれば磁気抵抗効果Δρ/ρを増大する
ことができる。このイオンの分布は、均一である程、磁
気抵抗効果Δρ/ρの増大を再現性よく笑現することが
でき、そのためには、たとえば、第11図に示したよう
に、多重イオン打込みを行なうことなども有効である。
Furthermore, according to the present invention, without being limited to ion species, if ions other than hydrogen or neon, such as helium and lithium, are distributed in the magnetic film up to atoms io' in the periodic table, magnetoresistance can be improved. The effect Δρ/ρ can be increased. The more uniform this ion distribution is, the more reproducibly the increase in the magnetoresistive effect Δρ/ρ can be achieved. To achieve this, for example, multiple ion implantation is performed as shown in FIG. This is also valid.

また、磁気抵抗効果素子の信頼度を向上するために社、
イオン打込み後、一旦加熱処理を施して安定化する手段
が有効であるが、この際には、熱拡散による打込みイオ
ンの放出を見積って、あらかじめΔρ/ρが最大値を示
すドース量よりも多量にイオンを打込んでおき、その後
熱処理を行なって最大のΔρ/ρを得る方法も有効であ
る。
In addition, in order to improve the reliability of magnetoresistive elements,
After ion implantation, it is effective to perform heat treatment to stabilize the implanted ions, but in this case, estimate the release of implanted ions due to thermal diffusion and use a dose larger than the maximum value of Δρ/ρ. It is also effective to implant ions in advance and then perform heat treatment to obtain the maximum Δρ/ρ.

本発明によれば磁気抵抗素子の検出出力を従来よりも大
幅に増大することができ、発熱および寿命の点からも、
極めて信頼度の高い素子を形成することができる。
According to the present invention, the detection output of the magnetoresistive element can be significantly increased compared to the conventional one, and in terms of heat generation and lifespan,
An extremely reliable element can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の磁気抵抗効果素子における磁気抵抗効
果Δρ/ρの外部印加磁界依存性を示す曲線図、第2図
はN i −p e合金における磁気抵抗効果Δρ/ρ
のNi組成依存性を示す曲線図、第3図はNi−Co合
金における磁気抵抗効果Δρ/ρの外部印加磁界依存性
を示す曲線図、第4図はCO添加によるN i −p 
e −Co合金における磁気抵抗効果Δρ/ρのCO組
成依存性を示す曲線図、第5図および第6図は熱処理法
によるN1−p’e合金の磁気抵抗効果Δρ/ρおよび
保磁力Heの加熱温度依存性を示す曲線図、第7図乃至
第12図は、それぞれ本発明の異なる実施例を説明する
ための曲線図である。 代理人 弁理士 薄田利幸 χ 1 図 第 2 図 ηl+A/λt(wt7p) 第 3 図 石ンに刃pa  (れσe) fJ 4 図 Ca    (wt クリ 第 5 目 黴!墾捏温度(7〕 ′f76図 熱kIL玉/L(′C) fJ 7 図 )41’  (X /I /#N /l−リフy、f(
y<ta” ier/1wIす′v18 図 J■ih力O速41B−(ktv) フ(、ycン] t)    、5a     tlll    151
1   2eaJ13zさみm4’lJ−cxev> ょ    第 l= 図 ’     tya    2zae   ’3tta
a    4yσM莫4    rjン 算 11  図 上*1ン&乃((゛り 第 12  図 中へ慶1t 3&度 r at )
Fig. 1 is a curve diagram showing the dependence of the magnetoresistive effect Δρ/ρ on an externally applied magnetic field in a conventional magnetoresistive element, and Fig. 2 is a curve diagram showing the dependence of the magnetoresistive effect Δρ/ρ in a Ni-pe alloy.
Figure 3 is a curve diagram showing the dependence of the magnetoresistive effect Δρ/ρ on the externally applied magnetic field in a Ni-Co alloy. Figure 4 is a curve diagram showing the dependence of the magnetoresistive effect Δρ/ρ on the externally applied magnetic field in a Ni-Co alloy.
Figures 5 and 6 are curve diagrams showing the CO composition dependence of the magnetoresistive effect Δρ/ρ in the e-Co alloy. Curve diagrams showing heating temperature dependence, FIGS. 7 to 12 are curve diagrams for explaining different embodiments of the present invention, respectively. Agent Patent attorney Toshiyuki Usuda χ 1 Fig. 2 Fig. ηl+A/λt (wt7p) Fig. 3 Stone blade pa (reσe) fJ 4 Fig. Ca (wt Chestnut 5th mold! Cultivation temperature (7) ’f76 Figure heat kIL ball/L('C) fJ 7 Figure) 41' (X /I /#N /l-rify, f(
y<ta"ier/1wIsu'v18 Figure J■ih force O speed 41B-(ktv) fu(,ycn]t),5a tllll 151
1 2eaJ13zsami m4'lJ-cxev>
a 4yσMmo4 rjn calculation 11 on the diagram

Claims (1)

【特許請求の範囲】[Claims] 1、磁性膜にイオンを打込んで、上記磁性膜の磁気抵抗
効果を増大させる工程を含むことを特徴とする磁気抵抗
効果素子の製造方法。
1. A method for manufacturing a magnetoresistive element, comprising the step of implanting ions into a magnetic film to increase the magnetoresistive effect of the magnetic film.
JP57094849A 1982-06-04 1982-06-04 Manufacture of magnetoresistance effect element Granted JPS58213485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57094849A JPS58213485A (en) 1982-06-04 1982-06-04 Manufacture of magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57094849A JPS58213485A (en) 1982-06-04 1982-06-04 Manufacture of magnetoresistance effect element

Publications (2)

Publication Number Publication Date
JPS58213485A true JPS58213485A (en) 1983-12-12
JPH0462191B2 JPH0462191B2 (en) 1992-10-05

Family

ID=14121473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57094849A Granted JPS58213485A (en) 1982-06-04 1982-06-04 Manufacture of magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JPS58213485A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114095A (en) * 1977-03-16 1978-10-05 Agency Of Ind Science & Technol Cylindrical magnetic section detector
JPS53116068A (en) * 1977-03-22 1978-10-11 Hitachi Ltd Insb polycrystal thin film of low noise

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53114095A (en) * 1977-03-16 1978-10-05 Agency Of Ind Science & Technol Cylindrical magnetic section detector
JPS53116068A (en) * 1977-03-22 1978-10-11 Hitachi Ltd Insb polycrystal thin film of low noise

Also Published As

Publication number Publication date
JPH0462191B2 (en) 1992-10-05

Similar Documents

Publication Publication Date Title
JP2962415B2 (en) Exchange coupling membrane
US7005014B2 (en) Method of producing exchange coupling film and method of producing magnetoresistive sensor by using exchange coupling film
US6055135A (en) Exchange coupling thin film and magnetoresistive element comprising the same
US20010047930A1 (en) Method of producing exchange coupling film and method of producing magnetoresistive sensor by using the exchange coupling film
JP3497573B2 (en) Exchange coupling film and magnetoresistive element
JPS58213485A (en) Manufacture of magnetoresistance effect element
JP2763165B2 (en) Manufacturing method of magnetic recording medium
JP3556782B2 (en) Magnetoresistive film with high electrical resistance
JP3426894B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP2701557B2 (en) Magnetoresistive element and method of manufacturing the same
JP2010067769A (en) Magnetic resistance film, and magnetic recording magnetic head, magnetic sensor and magnetic memory using the same
JP3226254B2 (en) Exchange coupling film, magnetoresistive element and magnetoresistive head
JP3337732B2 (en) Magnetoresistance effect element
JP3071781B2 (en) Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin-film magnetic head using the magnetoresistive element
JP2610376B2 (en) Magnetoresistance effect element
JP2680586B2 (en) Magneto-optical storage medium
JP3167808B2 (en) Soft magnetic thin film
Jones et al. Magnetic properties of RF sputtered Fe (N)/NiFeCo (N) films
Mao et al. GMR in DC magnetron sputtered Ni/sub 81/Fe/sub 19//Cu multilayers
JPH05334670A (en) Magnetic recording medium and its production
JP2827275B2 (en) Magnetic resistance alloy
Maass et al. Soft Magnetic Properties of Laminated (Fe97Al3) 1-x-Nx/Ni81Fe19 Films for Advanced Thin Film Heads
JP3255901B2 (en) Method for producing exchange coupling membrane
JP2692468B2 (en) Magnetoresistive head
JP2884599B2 (en) Soft magnetic amorphous film