JP2827275B2 - Magnetic resistance alloy - Google Patents

Magnetic resistance alloy

Info

Publication number
JP2827275B2
JP2827275B2 JP1111765A JP11176589A JP2827275B2 JP 2827275 B2 JP2827275 B2 JP 2827275B2 JP 1111765 A JP1111765 A JP 1111765A JP 11176589 A JP11176589 A JP 11176589A JP 2827275 B2 JP2827275 B2 JP 2827275B2
Authority
JP
Japan
Prior art keywords
alloy
composition
magnetoresistance effect
magnetic field
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1111765A
Other languages
Japanese (ja)
Other versions
JPH02290937A (en
Inventor
広之 大森
和彦 林
正俊 早川
興一 阿蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1111765A priority Critical patent/JP2827275B2/en
Publication of JPH02290937A publication Critical patent/JPH02290937A/en
Application granted granted Critical
Publication of JP2827275B2 publication Critical patent/JP2827275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気抵抗効果を示す磁気抵抗合金に関する
ものであり、特にFe,Co,Ni,Cuからなる4元系の磁気抵
抗合金に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive alloy exhibiting a magnetoresistive effect, and more particularly to a quaternary magnetoresistive alloy comprising Fe, Co, Ni, and Cu. It is.

〔発明の概要〕[Summary of the Invention]

本発明は、Fe,Co,Ni,Cuを主体とする4元系の磁気抵
抗合金において、平均電子数が27.6〜27.8となるように
組成を調整することで、軟磁気特性並びに磁気抵抗効果
の大幅な改善を図ろうとするものである。
The present invention provides a quaternary magnetoresistive alloy mainly composed of Fe, Co, Ni, and Cu, by adjusting the composition so that the average number of electrons is 27.6 to 27.8, so that the soft magnetic properties and the magnetoresistive effect can be improved. It is intended to make a significant improvement.

〔従来の技術〕[Conventional technology]

磁気抵抗効果を利用した,いわゆる磁気抵抗効果型磁
気ヘッド(以下、MRヘッドと称する。)用の薄膜磁性材
料には、軟磁気特性を有し、かつ磁気抵抗効果が大きい
ことが要求される。
A thin film magnetic material for a so-called magnetoresistive effect type magnetic head (hereinafter, referred to as an MR head) utilizing the magnetoresistive effect is required to have soft magnetic characteristics and a large magnetoresistive effect.

なお、ここで磁気抵抗効果の大きさはΔρ/ρとは、
電流と磁化方向とが平行のときの抵抗値をρ ,電流と
磁化方向とが直交するときの抵抗値をρ,消磁状態の
抵抗値をρとしたときに、次式で定義されるものであ
る。
 Here, the magnitude of the magnetoresistance effect is Δρ / ρ,
The resistance value when the current and the magnetization direction are parallel is ρ , Current and
The resistance value when the magnetization direction is orthogonal to ρ, In the demagnetized state
When the resistance value is ρ, it is defined by the following equation.
You.

これまで、MRヘッド用の薄膜磁性材料としては、Fe−
Ni系合金(いわゆるパーマロイ)薄膜が知られている。
Until now, Fe-
Ni-based alloy (so-called permalloy) thin films are known.

しかしながら、前記Fe−Ni系合金薄膜は、軟磁気特性
の点では良好な特性を示すものの、磁気抵抗効果の大き
さΔρ/ρが2%程度にすぎず、磁気記録の分野におけ
る高密度記録化,狭トラック化を考慮すると、感度の点
で必ずしも十分な特性を有するとは言えない。したがっ
て、磁気抵抗効果の大きな材料の開発が望まれる。
However, although the Fe-Ni-based alloy thin film shows good soft magnetic properties, the magnitude of the magnetoresistance effect Δρ / ρ is only about 2%, and high-density recording in the field of magnetic recording has been realized. Considering the narrow track, it cannot be said that the sensitivity is always sufficient. Therefore, development of a material having a large magnetoresistance effect is desired.

一方、磁気抵抗効果の大きさのみに注目すると、Co−
Ni系合金が特性の組成でΔρ/ρ=6%程度の値を示す
ことが知られている。
On the other hand, focusing only on the magnitude of the magnetoresistance effect, Co-
It is known that a Ni-based alloy exhibits a value of about Δρ / ρ = 6% in the composition of characteristics.

ただし、このCo−Ni系合金では十分な軟磁気特性が得
られず、MRヘッドへの応用は困難である。
However, sufficient soft magnetic properties cannot be obtained with this Co-Ni-based alloy, and application to an MR head is difficult.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

このように、従来より知られる合金材料では、軟磁気
特性と磁気抵抗効果を両立することは難しいのが実情で
ある。
As described above, it is difficult to achieve both the soft magnetic characteristics and the magnetoresistance effect with the conventionally known alloy materials.

そこで本発明は、かかる従来の実情に鑑みて提案され
たものであって、軟磁気特性に優れ、しかも磁気抵抗効
果の大きい磁気抵抗合金を提供することを目的とする。
Accordingly, the present invention has been proposed in view of such conventional circumstances, and has as its object to provide a magnetoresistive alloy having excellent soft magnetic properties and a large magnetoresistance effect.

〔課題を解決するための手段〕 本発明者等は、Fe−Ni系合金にCoを添加することで磁
気抵抗効果を大きくでき、またCoの添加で劣化した軟磁
気特性をCuの添加で補うことができるとの見解に基づい
て、Fe,Ni,Co,Cuからなる4元系合金について検討を重
ねた。この4元系合金の最適組成の選定には非常に困難
を伴ったが、鋭意研究を重ねた結果、合金の平均電子数
に着目することで優れた特性を発揮する組成範囲を特定
できるとの結論を得るに至った。
[Means for Solving the Problems] The present inventors can increase the magnetoresistance effect by adding Co to an Fe-Ni-based alloy, and supplement the soft magnetic properties deteriorated by the addition of Co with the addition of Cu. Based on the view that the alloy can be used, the study was repeated on a quaternary alloy composed of Fe, Ni, Co, and Cu. Although it was very difficult to select the optimum composition of this quaternary alloy, as a result of intensive research, it was possible to identify a composition range that exhibited excellent properties by focusing on the average number of electrons in the alloy. I came to a conclusion.

すなわち、本発明の磁気抵抗合金は、Fe,Co,Ni,Cuか
らなり、その組成が平均電子数27.6〜27.8となる範囲に
選定されたことを特徴とし、磁気抵抗効果を示すことを
特徴とするものである。
That is, the magnetoresistive alloy of the present invention is made of Fe, Co, Ni, Cu, and is characterized in that its composition is selected in the range of an average number of electrons of 27.6 to 27.8, and exhibits a magnetoresistance effect. Is what you do.

ここで、平均電子数とは、合金を構成する各原子の電
子数を組成の重みづけして平均した値である。すなわ
ち、磁気抵抗合金の組成を FewCoxNiyCuz (ただし、w,x,y,zは各原子の比率を原子%で表すもの
である。) としたときに、平均電子数は、 なる(1)式より求められる。
Here, the average number of electrons is a value obtained by averaging the number of electrons of each atom constituting the alloy by weighting the composition. That is, when the composition of the magnetoresistive alloy is Fe w Co x Ni y C z (where w, x, y, and z represent the ratio of each atom in atomic%), the average number of electrons is , It is obtained from the following equation (1).

本発明者等の実験によれば、この平均電子数を27.6
〜27.8となるように各原子の組成を設定すれば、異方性
磁界が小さく(すなわち軟磁気特性に優れ)、磁気抵抗
効果の大きさΔρ/ρも3〜4%と大きな値となること
が判明した。
According to experiments performed by the present inventors, this average number of electrons was set to 27.6
If the composition of each atom is set so as to be 27.8, the anisotropic magnetic field is small (that is, excellent in soft magnetic properties), and the magnitude Δρ / ρ of the magnetoresistance effect is a large value of 3 to 4%. There was found.

前述の磁気抵抗合金は、通常はスアッタリング等の気
相メッキの技術によって成膜され、薄膜状態でMRヘッド
の磁気材料として使用されることが多い。この場合、予
め各原子の組成が平均電子数から割り出される値とな
るように調整された合金を蒸発源(ターゲット)として
用いてもよいし、各原子のターゲットを個別に用意しそ
の面積や印加出力等を調節して組成をコントロールする
ようにしてもよい。さらには、予め平均電子数が27.6
〜27.8となるように設定された2元合金のターゲットを
組み合わせ、これらの面積や印加出力等を調節して組成
をコントロールするようにしてもよい。例えば、Fe0.15
Ni0.85なる合金ターゲットとCo0.3Ni0.7なる合金ターゲ
ット、Co0.65Cu0.35なる合金ターゲット(いずれも各合
金の平均電子数は27.7)を組み合わせれば、常に全体の
平均電子数が27.7の4元合金膜を得ることができる。
The above-described magnetoresistive alloy is usually formed by a vapor phase plating technique such as sputtering, and is often used as a magnetic material for an MR head in a thin film state. In this case, an alloy in which the composition of each atom is adjusted in advance to a value determined from the average number of electrons may be used as the evaporation source (target), or the target of each atom may be prepared individually and its area and The composition may be controlled by adjusting the applied output and the like. Furthermore, the average number of electrons is 27.6 in advance.
The composition may be controlled by combining the targets of the binary alloy set to be 27.8 and adjusting the area, applied output, and the like. For example, Fe 0.15
By combining an alloy target of Ni 0.85, an alloy target of Co 0.3 Ni 0.7, and an alloy target of Co 0.65 Cu 0.35 (the average number of electrons in each alloy is 27.7), a quaternary alloy with an overall average electron number of 27.7 is always obtained. A membrane can be obtained.

〔作用〕[Action]

Fe−Ni系合金にCoを添加することで磁気抵抗効果が増
大し、さらにCuを添加することでCo添加により劣化した
軟磁気特性が改善される。
The addition of Co to the Fe-Ni alloy increases the magnetoresistance effect, and the addition of Cu improves the soft magnetic properties deteriorated by the addition of Co.

特に、これら4元系合金の組成を平均電子数が27.6
〜27.8となるように設定すれば、Fe−Ni系合金と同程度
の軟磁気特性が確保され、磁気抵抗効果の大きさΔρ/
ρも3〜4%と大きな値となる。
In particular, the composition of these quaternary alloys has an average electron number of 27.6.
If it is set to be about 27.8, the same soft magnetic property as that of the Fe—Ni alloy is secured, and the magnitude of the magnetoresistance effect Δρ /
ρ also has a large value of 3 to 4%.

〔実施例〕〔Example〕

以下、本発明を具体的な実験結果に基づいて説明す
る。
Hereinafter, the present invention will be described based on specific experimental results.

実施例1 本実験例では、Ni,CuとFe−Coの疑似3元系で薄膜磁
性材料を成膜し、その軟磁気特性,磁気抵抗効果の最適
範囲を検討した。
Example 1 In this experimental example, a thin film magnetic material was formed in a pseudo ternary system of Ni, Cu and Fe-Co, and its soft magnetic characteristics and the optimum range of the magnetoresistance effect were examined.

成膜に際してのスパッタリング条件は下記の通りであ
る。
The sputtering conditions at the time of film formation are as follows.

スパッタリング条件 RFマグネトロンスパッタリング 到達真空度 2.0×10-6 Torr 投入電力 300W ガス圧 1.2mTorr(純Ar) 前記条件で、ガラス基板上に幅2mm,長さ40mmのストラ
イプ状に成膜し、これを試料とした。膜厚は1500±100
Åである。
Sputtering conditions RF magnetron sputtering Ultimate vacuum 2.0 × 10 -6 Torr Input power 300W Gas pressure 1.2mTorr (pure Ar) Under the above conditions, a film was formed on a glass substrate in a stripe shape with a width of 2mm and a length of 40mm. And The film thickness is 1500 ± 100
Å.

軟磁気特性は、異方性磁界を測定することで評価し
た。異方性磁界Hkは、B−HループトレーサによりB−
Hループを測定し、これより求めた(単位:Oe)。一
方、磁気抵抗効果の大きさΔρ/ρは、試料の長さ方向
に電流を流し、その電流に対して試料膜面内で垂直及び
平行にそれぞれ20(Oe),30(Oe)の磁場を加えてその
抵抗変化を測定し、Δρ/ρ(単位:Oe)を求めた。
The soft magnetic properties were evaluated by measuring an anisotropic magnetic field. The anisotropic magnetic field Hk is determined by the BH loop tracer to
The H loop was measured and determined (unit: Oe). On the other hand, the magnitude of the magnetoresistance effect Δρ / ρ is such that a current flows in the length direction of the sample, and a magnetic field of 20 (Oe) and 30 (Oe) is applied to the current vertically and parallel to the sample film surface. In addition, the resistance change was measured, and Δρ / ρ (unit: Oe) was obtained.

第1図はFe0.3Co0.7とNi,Cuの疑似3元系における異
方性磁界の分布を示す疑似3元組成図であり、第2図は
磁気抵抗効果の大きさΔρ/ρの分布を示す疑似3元組
成図である。
FIG. 1 is a pseudo-ternary composition diagram showing the distribution of anisotropic magnetic field in a pseudo-ternary system of Fe 0.3 Co 0.7 and Ni, Cu, and FIG. 2 shows the distribution of the magnitude Δρ / ρ of the magnetoresistance effect. It is a pseudo ternary composition diagram shown.

また第3図はFe0.5Co0.5とNi,Cuの疑似3元系におけ
る異方性磁界の分布を示す疑似3元組成図であり、第4
図は磁気抵抗効果の大きさΔρ/ρの分布を示す疑似3
元組成図である。
FIG. 3 is a pseudo-ternary composition diagram showing the distribution of anisotropic magnetic field in a pseudo-ternary system of Fe 0.5 Co 0.5 and Ni, Cu.
The figure shows a pseudo 3 showing the distribution of the magnitude of the magnetoresistance effect Δρ / ρ.
It is an original composition figure.

さらに、第5図はFe0.7Ni0.3とNi,Cuの疑似3元系に
おける異方性磁界の分布を示す疑似3元組成図であり、
第6図は磁気抵抗効果の大きさΔρ/ρの分布を示す疑
似3元組成図である。
FIG. 5 is a quasi-ternary composition diagram showing the distribution of anisotropic magnetic field in the quaternary system of Fe 0.7 Ni 0.3 and Ni, Cu.
FIG. 6 is a pseudo-ternary composition diagram showing the distribution of the magnitude Δρ / ρ of the magnetoresistance effect.

いずれの図面においても、直線aは平均電子化数が
27.6となる組成を、直線bは平均電子数が27.7となる
組成を、直線cは平均電子数が27.8となる組成を表
す。
In each drawing, the straight line a indicates that
A straight line b represents a composition having an average electron number of 27.7, and a straight line c represents a composition having an average electron number of 27.8.

これら図面を見ると、いずれの場合にも直線aと直線
cで挾まれた領域、すなわち平均電子数が27.6〜27.8
となる組成で異方性磁界が小さく良好な軟磁気特性を示
すことがわかる。
Referring to these drawings, in each case, the area between the straight line a and the straight line c, that is, the average number of electrons is 27.6 to 27.8.
It can be seen that anisotropic magnetic field is small and good soft magnetic characteristics are exhibited at the composition as follows.

実施例2 本実験では、平均電子数を27.7に固定し、さらにそ
の最適範囲を検討するとともに、熱処理による影響を調
べた。各サンプルを成膜するに際してのスパッタリング
条件は、先の実験例1に準ずる。
Example 2 In this experiment, the average number of electrons was fixed at 27.7, the optimum range was further examined, and the influence of the heat treatment was examined. The sputtering conditions for forming each sample are the same as those in Experimental Example 1.

ターゲットには、Fe0.15Ni0.85なる合金ターゲット
と、Co0.3Ni0.7なる合金ターゲット、Co0.65Cu0.35なる
合金ターゲット(いずれも各合金の平均電子数は27.7)
を用い、これらを組み合わせることで疑似3元系として
3元組成図を描き、その特性を調べた。なお、この3元
組成図で表される領域では、先の合金ターゲットが組み
合わされた組成を有し、したがっていずれも平均電子数
が27.7となる。また、サンプルの膜厚は、いずれも0.
14〜0.16μmである。
The targets are an alloy target of Fe 0.15 Ni 0.85, an alloy target of Co 0.3 Ni 0.7, and an alloy target of Co 0.65 Cu 0.35 (the average number of electrons in each alloy is 27.7)
By combining these, a ternary composition diagram was drawn as a pseudo-ternary system, and its characteristics were examined. Note that the region represented by this ternary composition diagram has a composition in which the above alloy targets are combined, and therefore, the average number of electrons is 27.7 in each case. The thickness of each sample was 0.
14 to 0.16 μm.

第7図はスパッタリングしたままの状態での異方性磁
気の様子を示し、第8図はそのときの磁気抵抗効果の大
きさΔρ/ρの様子を示すものである。同様に、第9図
及び第10図は300℃でアニールした後の異方性磁界,Δ
ρ/ρを、第11図及び第12図は400℃でアニールした後
の異方性磁界,Δρ/ρを、第13図及び第14図は500℃
でアニールした後の異方性磁界,Δρ/ρをそれぞれ示
す。
FIG. 7 shows a state of anisotropic magnetism in a state where sputtering is performed, and FIG. 8 shows a state of the magnitude Δρ / ρ of the magnetoresistance effect at that time. Similarly, FIGS. 9 and 10 show the anisotropic magnetic field after annealing at 300.degree.
11 and 12 show the anisotropic magnetic field after annealing at 400 ° C., and Δρ / ρ, and FIGS. 13 and 14 show 500 ° C.
Respectively show the anisotropic magnetic field and Δρ / ρ after annealing.

これらの図面から明らかなように、図中左側の領域で
非常に良好な軟磁気特性を示す。一方、磁気抵抗効果の
大きさΔρ/ρは、図中右下領域で非常に大きな値を示
す。
As is clear from these drawings, the region on the left side of the drawing shows very good soft magnetic characteristics. On the other hand, the magnitude Δρ / ρ of the magnetoresistance effect shows a very large value in the lower right region in the figure.

したがって、用途に応じ軟磁気特性、磁気抵抗効果の
いずれかを重視して組成を選定すれば、これまでにない
良好な特性を得ることができ、さらにこれらの中間領域
ではFe−Ni合金に匹敵する軟磁気特性とco−Ni合金に匹
敵する磁気抵抗効果が得られることになる。
Therefore, if the composition is selected with emphasis on either the soft magnetic characteristics or the magnetoresistive effect according to the application, it is possible to obtain unprecedented good characteristics, and in the intermediate region between these, it is comparable to Fe-Ni alloy. Soft magnetic characteristics and a magnetoresistive effect comparable to a co-Ni alloy.

また、前記傾向は熱処理を加えても変わらない。特に
400℃程度までのアニールでは軟磁気特性の劣化も見ら
れず、磁気抵抗効果の大きさΔρ/ρは改善される方向
にある。
The above tendency does not change even when heat treatment is applied. Especially
Annealing up to about 400 ° C. shows no deterioration in soft magnetic properties, and the magnitude of the magnetoresistance effect Δρ / ρ is in the direction of improvement.

実施例3 本実験例では、本発明を適用した代表的なサンプルの
特性(異方性磁界,磁気抵抗効果)をFe−Ni合金やCo−
Ni合金と比較して示す。スパッタリング条件や膜厚等は
実験例1と同様である。なお、表中に記載される熱処理
とは、ここでは300℃,1時間のアニール処理である。
Example 3 In this experimental example, the characteristics (anisotropic magnetic field, magnetoresistive effect) of a representative sample to which the present invention was applied were measured using Fe-Ni alloy or Co-
Shown in comparison with Ni alloy. The sputtering conditions, film thickness, and the like are the same as in Experimental Example 1. Here, the heat treatment described in the table is an annealing treatment at 300 ° C. for 1 hour.

この表からも明らかな通り、本発明を適用した各サン
プルは、異方性磁界がFe−Ni合金よりも小さく(当然Co
−Ni合金よりもはるかに小さい。)、磁気抵抗効果の大
きさはCo−Ni合金と遜色ない値が得られている。
As is clear from this table, each sample to which the present invention is applied has a smaller anisotropic magnetic field than the Fe-Ni alloy (of course,
-Much smaller than Ni alloy. ), The value of the magnetoresistance effect is comparable to that of the Co-Ni alloy.

〔発明の効果〕〔The invention's effect〕

以上の説明からも明らかなように、本発明においては
Fe,Co,Ni,Cuからなる4元合金の組成範囲を平均電子数
が27.6〜27.8となる範囲に設定しているので、Fe−Ni
合金と同程度,あるいはそれ以上の軟磁気特性を得るこ
とができ、同時に3〜4%と大きな磁気抵抗効果を得る
ことができる。
As is clear from the above description, in the present invention
Since the composition range of the quaternary alloy composed of Fe, Co, Ni, and Cu is set to a range in which the average number of electrons is 27.6 to 27.8, Fe-Ni
Soft magnetic properties comparable to or better than that of the alloy can be obtained, and at the same time, a large magnetoresistance effect of 3 to 4% can be obtained.

したがって、本発明の磁気抵抗合金をMRヘッドに用い
れば、大幅な感度の向上が期待でき、高密度記録化,狭
トラック化に対応可能となる。
Therefore, when the magnetoresistive alloy of the present invention is used for an MR head, a drastic improvement in sensitivity can be expected, and it is possible to cope with high density recording and narrow track.

【図面の簡単な説明】[Brief description of the drawings]

第1図はFe0.3Co0.7とNi,Cuの疑似3元系における異方
性磁界の分布を示す疑似3元組成図であり、第2図は磁
気抵抗効果の大きさΔρ/ρの分布を示す疑似3元組成
図である。 第3図はFe0.5Co0.5とNi,Cuの疑似3元系における異方
性磁界の分布を示す疑似3元組成図であり、第4図は磁
気抵抗効果の大きさΔρ/ρの分布を示す疑似3元組成
図である。 第5図はFe0.7Co0.3とNi,Cuの疑似3元系における異方
性磁界の分布を示す疑似3元組成図であり、第6図は磁
気抵抗効果の大きさΔρ/ρの分布を示す疑似3元組成
図である。 第7図はFe0.15Ni0.85,Co0.3Ni0.7及びCo0.65Cu0.35
らなる疑似3元系においてズパッタリングしたままの状
態での異方性磁界の様子を示す特性図であり、第8図は
そのときの磁気抵抗効果の大きさΔρ/ρの様子を示す
特性図第9図は300℃でアニールした後の異方性磁界の
様子を示す特性図、第10図は300℃でアニールした後の
Δρ/ρの様子を示す特性図、第11図は400℃でアニー
ルした後の異方性磁界の様子を示す特性図、第12図は40
0℃でアニールした後のΔρ/ρの様子を示す特性図、
第13図は500℃でアニールした後の異方性磁界の様子を
示す特性図、第14図は500℃でアニールした後のΔρ/
ρの様子を示す特性図である。
FIG. 1 is a pseudo-ternary composition diagram showing the distribution of anisotropic magnetic field in a pseudo-ternary system of Fe 0.3 Co 0.7 and Ni, Cu, and FIG. 2 shows the distribution of the magnitude Δρ / ρ of the magnetoresistance effect. It is a pseudo ternary composition diagram shown. FIG. 3 is a pseudo-ternary composition diagram showing a distribution of anisotropic magnetic field in a pseudo-ternary system of Fe 0.5 Co 0.5 and Ni, Cu, and FIG. 4 shows a distribution of the magnitude Δρ / ρ of the magnetoresistance effect. It is a pseudo ternary composition diagram shown. FIG. 5 is a pseudo-ternary composition diagram showing the distribution of anisotropic magnetic field in the pseudo-ternary system of Fe 0.7 Co 0.3 and Ni, Cu. FIG. 6 shows the distribution of the magnitude Δρ / ρ of the magnetoresistance effect. It is a pseudo ternary composition diagram shown. FIG. 7 is a characteristic diagram showing a state of an anisotropic magnetic field in a quasi-ternary system composed of Fe 0.15 Ni 0.85 , Co 0.3 Ni 0.7 and Co 0.65 Cu 0.35 while being sputtered, and FIG. FIG. 9 is a characteristic diagram illustrating a state of an anisotropic magnetic field after annealing at 300 ° C., and FIG. 10 is a characteristic diagram illustrating a state of an anisotropic magnetic field after annealing at 300 ° C. FIG. 11 is a characteristic diagram showing a state of Δρ / ρ, FIG. 11 is a characteristic diagram showing a state of an anisotropic magnetic field after annealing at 400 ° C., and FIG.
A characteristic diagram showing a state of Δρ / ρ after annealing at 0 ° C.
FIG. 13 is a characteristic diagram showing a state of an anisotropic magnetic field after annealing at 500 ° C., and FIG. 14 is a graph showing Δρ /
FIG. 4 is a characteristic diagram showing a state of ρ.

フロントページの続き (72)発明者 阿蘇 興一 東京都品川区北品川6丁目7番35号 ソ ニー株式会社内 (56)参考文献 特開 昭64−68982(JP,A) 特開 昭49−17325(JP,A) 特公 昭62−54865(JP,B2) 特公 昭44−1070(JP,B1) (58)調査した分野(Int.Cl.6,DB名) C22C 19/00 - 19/07 H01L 43/10 H01F 1/12 - 1/153Continuation of the front page (72) Inventor Koichi Aso 6-7-35 Kita Shinagawa, Shinagawa-ku, Tokyo Inside Sony Corporation (56) References JP-A-64-68982 (JP, A) JP-A-49- 17325 (JP, A) JP-B-62-54865 (JP, B2) JP-B-44-1070 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 19/00-19 / 07 H01L 43/10 H01F 1/12-1/153

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Fe,Co,Ni,Cuからなり、その組成が平均電
子数27.6〜27.8となる範囲に選定されたことを特徴と
し、磁気抵抗効果を示すことを特徴とする磁気抵抗合
金。
1. A magnetoresistive alloy comprising Fe, Co, Ni, and Cu and having a composition selected from the range of an average number of electrons of 27.6 to 27.8, and exhibiting a magnetoresistive effect.
JP1111765A 1989-04-28 1989-04-28 Magnetic resistance alloy Expired - Fee Related JP2827275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1111765A JP2827275B2 (en) 1989-04-28 1989-04-28 Magnetic resistance alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1111765A JP2827275B2 (en) 1989-04-28 1989-04-28 Magnetic resistance alloy

Publications (2)

Publication Number Publication Date
JPH02290937A JPH02290937A (en) 1990-11-30
JP2827275B2 true JP2827275B2 (en) 1998-11-25

Family

ID=14569616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1111765A Expired - Fee Related JP2827275B2 (en) 1989-04-28 1989-04-28 Magnetic resistance alloy

Country Status (1)

Country Link
JP (1) JP2827275B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002093661A1 (en) * 2001-05-15 2004-09-02 松下電器産業株式会社 Magnetoresistive element

Also Published As

Publication number Publication date
JPH02290937A (en) 1990-11-30

Similar Documents

Publication Publication Date Title
US6031692A (en) Magnetoresistive device and magnetoresistive head
US5792564A (en) Perpendicular recording medium and magnetic recording apparatus
JP2690623B2 (en) Magnetoresistance effect element
US5514452A (en) Magnetic multilayer film and magnetoresistance element
US5858125A (en) Magnetoresistive materials
US5585196A (en) Magnetoresistance effect element
Veloso et al. Spin valve sensors with synthetic free and pinned layers
US6828046B2 (en) Soft magnetic film of FeCoMO having a high saturation flux density, a moderate soft magnetism and a uniaxial magnetic anisotropy
JP3497573B2 (en) Exchange coupling film and magnetoresistive element
JP2827275B2 (en) Magnetic resistance alloy
JP2961914B2 (en) Magnetoresistive material and method of manufacturing the same
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JPH06314617A (en) Exchange connection film and magnetoresistance effect element
JPH0553852B2 (en)
JP2830513B2 (en) Magnetoresistive material and method of manufacturing the same
US5591532A (en) Giant magnetoresistance single film alloys
JP3337732B2 (en) Magnetoresistance effect element
JPH0867966A (en) Magnetoresistance effect film
JP3532607B2 (en) Magnetoresistance effect element
JP2853923B2 (en) Soft magnetic alloy film
JP2884599B2 (en) Soft magnetic amorphous film
JP3021785B2 (en) Magnetoresistive material and method of manufacturing the same
JP2834359B2 (en) Soft magnetic alloy film
JPH1174123A (en) Magneto-resistance effect film
JP2737721B2 (en) Magnetoresistance effect element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees