JPH0867966A - Magnetoresistance effect film - Google Patents
Magnetoresistance effect filmInfo
- Publication number
- JPH0867966A JPH0867966A JP6225584A JP22558494A JPH0867966A JP H0867966 A JPH0867966 A JP H0867966A JP 6225584 A JP6225584 A JP 6225584A JP 22558494 A JP22558494 A JP 22558494A JP H0867966 A JPH0867966 A JP H0867966A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic metal
- magnetic
- film
- metal
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000694 effects Effects 0.000 title claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 claims abstract description 92
- 239000002184 metal Substances 0.000 claims abstract description 92
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 13
- 239000000956 alloy Substances 0.000 claims abstract description 13
- 238000004544 sputter deposition Methods 0.000 claims abstract description 11
- 229910052742 iron Inorganic materials 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract 3
- 239000002923 metal particle Substances 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 229910002441 CoNi Inorganic materials 0.000 claims description 7
- 230000005496 eutectics Effects 0.000 claims description 7
- 238000005191 phase separation Methods 0.000 claims description 7
- 229910017392 Au—Co Inorganic materials 0.000 claims description 5
- 229910003321 CoFe Inorganic materials 0.000 claims description 5
- 229910002555 FeNi Inorganic materials 0.000 claims description 5
- 229910017937 Ag-Ni Inorganic materials 0.000 claims description 4
- 229910017984 Ag—Ni Inorganic materials 0.000 claims description 4
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 4
- 238000010549 co-Evaporation Methods 0.000 claims description 4
- 229910017390 Au—Fe Inorganic materials 0.000 claims description 3
- 229910017827 Cu—Fe Inorganic materials 0.000 claims description 2
- 229910002701 Ag-Co Inorganic materials 0.000 claims 1
- 239000010419 fine particle Substances 0.000 abstract description 13
- 239000002245 particle Substances 0.000 abstract description 6
- 238000007740 vapor deposition Methods 0.000 abstract description 5
- 239000011521 glass Substances 0.000 abstract description 4
- 239000011159 matrix material Substances 0.000 abstract description 4
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 239000006023 eutectic alloy Substances 0.000 abstract description 2
- 229910052737 gold Inorganic materials 0.000 abstract description 2
- 229910052709 silver Inorganic materials 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 52
- 239000010953 base metal Substances 0.000 description 9
- 238000000151 deposition Methods 0.000 description 4
- 230000005415 magnetization Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 3
- 239000000696 magnetic material Substances 0.000 description 3
- 239000006249 magnetic particle Substances 0.000 description 3
- 239000013081 microcrystal Substances 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 239000011651 chromium Substances 0.000 description 2
- 239000002772 conduction electron Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- -1 and specifically Substances 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/007—Thin magnetic films, e.g. of one-domain structure ultrathin or granular films
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Physical Vapour Deposition (AREA)
- Magnetic Heads (AREA)
- Hall/Mr Elements (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気抵抗効果膜に関す
るもので、磁気媒体等において磁界強度を信号として読
みとるための磁気抵抗効果素子に用いる磁気抵抗効果膜
に関するものである。特に小さい外部磁場で抵抗変化率
が大きい磁気抵抗効果膜に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive effect film, and more particularly to a magnetoresistive effect film used in a magnetoresistive effect element for reading magnetic field strength as a signal in a magnetic medium or the like. In particular, the present invention relates to a magnetoresistive film having a large resistance change rate with a small external magnetic field.
【0002】[0002]
【従来の技術】近年、磁気センサーの高感度化、及び磁
気記録における高密度化が進められており、これに伴い
磁気抵抗効果形磁気センサー(以下、「MRセンサー」
という)及び磁気抵抗効果形磁気ヘッド(以下、「MR
ヘッド」という)の開発が盛んに進められている。MR
センサーもMRヘッドも、磁性材料からなる読み取りセ
ンサー部の抵抗変化により、外部磁界信号を読みだすも
のであるが、MRセンサー及びMRヘッドは、記録媒体
との相対速度が再生出力に依存しないことから、MRセ
ンサーでは高感度が、MRヘッドでは高密度磁気記録に
おいても高い出力が得られるという特徴がある。2. Description of the Related Art In recent years, the sensitivity of magnetic sensors has been increased and the density of magnetic recording has been increased, and along with this, magnetoresistive effect magnetic sensors (hereinafter referred to as "MR sensors").
And a magnetic resistance effect type magnetic head (hereinafter referred to as “MR
"Head") is being actively developed. MR
Both the sensor and the MR head read the external magnetic field signal by the resistance change of the reading sensor section made of a magnetic material. However, since the MR sensor and the MR head have a relative speed with the recording medium that does not depend on the reproduction output. The MR sensor has high sensitivity, and the MR head has high output even in high-density magnetic recording.
【0003】最近、非磁性金属の母材中に磁性微結晶が
析出した構造を持ち、磁性微結晶が非磁性母材金属を通
じて反強磁性的相互作用しているグラニュラー膜と呼ば
れる、大きな磁気抵抗変化を示す磁気抵抗効果膜が発見
された(フィジカル・レビュー・レターズ第68巻37
45頁および3749頁1992年;Physical
Review Letters Vol. 68,
p3745 & p3749, 1992)。このグラ
ニュラー膜では2相分離型あるいは共晶型合金を熱処理
して作製するため、人工格子MR膜より熱安定性に優
れ、ヒステリシスの小さい磁気抵抗効果膜となる。Recently, a large magnetic resistance, called a granular film, has a structure in which magnetic microcrystals are deposited in a base material of a nonmagnetic metal, and the magnetic microcrystals interact antiferromagnetically through the nonmagnetic base metal. A magnetoresistive film showing changes was discovered (Physical Review Letters Vol. 68, 37).
45 & 3749 1992; Physical
Review Letters Vol. 68,
p3745 & p3749, 1992). Since this granular film is produced by heat-treating a two-phase separation type or eutectic type alloy, it becomes a magnetoresistive effect film with better thermal stability and less hysteresis than the artificial lattice MR film.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記従来技術
の磁気抵抗効果素子においても、十数kOeと大きな磁
界を印加しないと、大きな抵抗変化率が得られないとう
問題があった。本発明の目的は、小さい磁界で大きな抵
抗変化し、熱的安定性に優れ、ヒステリシスの小さい磁
気抵抗効果膜を提供する。However, even in the above-mentioned magnetoresistive element of the prior art, there is a problem that a large resistance change rate cannot be obtained unless a magnetic field as large as ten and several kOe is applied. An object of the present invention is to provide a magnetoresistive effect film having a large resistance change in a small magnetic field, excellent thermal stability, and small hysteresis.
【0005】[0005]
【課題を解決するための手段】本発明は、非磁性金属と
磁性金属が2相分離型あるいは共晶型合金の組み合わせ
であり、基板上に共蒸着あるいは共スパッタリングによ
り、磁性金属が1〜20vol%残りが非磁性金属に成
膜し、その構造が熱処理により磁性金属と非磁性金属が
相分離し、非磁性金属母材中に磁性金属粒子が析出した
もので、磁性金属粒子径が10から500オングストロ
ーム、磁性金属粒子間距離が10から100オングスト
ローム、磁性金属粒子の長径と短径の比が1:1〜5:
1であることを特徴とする磁気抵抗効果膜である。The present invention is a combination of a non-magnetic metal and a magnetic metal of a two-phase separation type or a eutectic type alloy, and the magnetic metal is 1 to 20 vol by co-evaporation or co-sputtering on a substrate. % The rest is a film formed on a non-magnetic metal, and the structure is such that magnetic metal and non-magnetic metal are phase-separated by heat treatment, and magnetic metal particles are precipitated in the non-magnetic metal base material. 500 angstroms, the distance between magnetic metal particles is 10 to 100 angstroms, and the ratio of the major axis to the minor axis of the magnetic metal particles is 1: 1 to 5 :.
1 is a magnetoresistive effect film.
【0006】また、本発明は、非磁性金属と磁性金属の
組み合わせが、Ag−Fe,Ag−Ni,Ag−NiF
e,Ag−CoNi,Ag−CoNiFe,Ag−Mn
のいずれかであることを特徴とする上記の磁気抵抗効果
膜である。また、本発明は、非磁性金属と磁性金属の組
み合わせが、Au−Co,Au−Fe,Au−CoF
e,Au−CoNi,Au−FeNiのいずれかである
ことを特徴とする上記の磁気抵抗効果膜である。また、
本発明は、非磁性金属と磁性金属の組み合わせが、Cu
−Fe,Cu−CoFe,Cu−CoNi,Cu−Fe
Niのいずれかであることを特徴とする上記の磁気抵抗
効果膜である。In the present invention, the combination of a non-magnetic metal and a magnetic metal is Ag-Fe, Ag-Ni, Ag-NiF.
e, Ag-CoNi, Ag-CoNiFe, Ag-Mn
And the magnetoresistive effect film. Further, in the present invention, the combination of the non-magnetic metal and the magnetic metal is Au-Co, Au-Fe, Au-CoF.
The magnetoresistive effect film is characterized in that it is one of e, Au-CoNi, and Au-FeNi. Also,
In the present invention, the combination of non-magnetic metal and magnetic metal is Cu
-Fe, Cu-CoFe, Cu-CoNi, Cu-Fe
The magnetoresistive effect film is characterized in that it is any one of Ni.
【0007】さらに、詳しくは、本発明は、基板上に2
相分離型あるいは共晶型合金の組み合わせである非磁性
母材金属と磁性金属を共スパッタあるいは共蒸着した
後、この膜を熱処理して非磁性母材金属中に磁性微結晶
が析出した構造を持つことを特徴とする磁気抵抗効果膜
である。本発明の磁気抵抗効果膜に用いる磁性金属は1
〜20vol%、残りが非磁性金属である。非磁性金属
は磁性微粒子間の磁気相互作用を制御する役割をはたす
材料であり、具体的にはAg,Au,Cuおよび、その
合金である。磁性体の種類は、これらの非磁性金属と2
相分離型あるいは、共晶型合金の組み合わせになる材料
である。More specifically, the present invention relates to a substrate on which 2
After co-sputtering or co-depositing a non-magnetic base metal and a magnetic metal, which is a combination of phase-separated or eutectic alloys, this film is heat-treated to obtain a structure in which magnetic microcrystals are precipitated in the non-magnetic base metal. It is a magnetoresistive film characterized by having. The magnetic metal used in the magnetoresistive film of the present invention is 1
˜20 vol%, the rest is non-magnetic metal. The non-magnetic metal is a material that plays a role of controlling the magnetic interaction between the magnetic fine particles, and specifically, Ag, Au, Cu and alloys thereof. There are two types of magnetic materials: non-magnetic metals and
It is a material that is a combination of phase separation type or eutectic type alloys.
【0008】磁性体と非磁性金属の2相分離型あるい
は、共晶型合金の組み合わせになる材料としては、具体
的には、Ag−Fe,Ag−Ni,Ag−NiFe,A
g−CoNi,Ag−CoFe,Ag−CoNiFe,
Ag−Mnの組み合わせ、およびこれらの元素を含む合
金である。また、Au−Co,Au−Fe,Au−Co
Fe,Au−CoNi,Au−FeNiの組み合わせ、
およびこれらの元素を含む合金である。また、Cu−F
e,Cu−CoFe,Cu−CoNi,Cu−FeNi
の組み合わせ、およびこれらの元素を含む合金である。Specific examples of the material that forms a combination of a two-phase separation type magnetic material and a non-magnetic metal or a eutectic type alloy are Ag-Fe, Ag-Ni, Ag-NiFe and A.
g-CoNi, Ag-CoFe, Ag-CoNiFe,
It is an Ag-Mn combination and an alloy containing these elements. In addition, Au-Co, Au-Fe, Au-Co
Fe, Au-CoNi, Au-FeNi combination,
And alloys containing these elements. In addition, Cu-F
e, Cu-CoFe, Cu-CoNi, Cu-FeNi
And alloys containing these elements.
【0009】また、本発明において、磁性金属と非磁性
金属の割合を、磁性金属が1〜20vol%残りが非磁
性金属に成膜するのは、磁気抵抗効果膜として、非磁性
母材金属中に磁性金属微粒子が析出し、磁性金属微粒子
が非磁性母材金属を通じて磁気的結合しているものとす
るためである。また、磁性金属粒径が10から500オ
ングストローム、磁性金属粒子間距離が10から100
オングストローム、磁性金属粒の長径と短径の比が1:
1〜5:1とするのは、磁性金属粒径が10オングスト
ローム以下になると磁性金属の磁気特性が劣化し充分な
抵抗変化率が得られなくなるため好ましくない。又50
0オングストローム以上になるとグラニュラー膜厚に対
して磁性金属の割合が多くなり、非磁性母材金属を通じ
ての磁気的結合が働かなくなってしまう。磁性金属微粒
子間距離が10オングストローム以下になると磁性金属
粒子の磁化は互いに強磁性的な磁気的結合をしてしま
い、抵抗変化は起こらない。又100オングストローム
以上では、磁気的結合は極めて小さくなり抵抗変化率
は、ほとんど観測されなくなる。グラニュラー膜での抵
抗変化は、伝導電子が磁性層界面あるいは磁性層内部で
散乱されるからである。従って、磁性金属粒子の表面積
はできるだけ大きいほうが好ましい。粒の長径と短径の
比が5/1以上になってしまうと粒表面積が小さくなり
効果は小さくなってしまうためである。In the present invention, the ratio of the magnetic metal to the non-magnetic metal is 1 to 20 vol% of the magnetic metal, and the rest is formed on the non-magnetic metal as a magnetoresistive effect film in the non-magnetic base metal. This is because the magnetic metal fine particles are deposited on the magnetic particles, and the magnetic metal fine particles are magnetically coupled through the non-magnetic base metal. Further, the magnetic metal particle size is 10 to 500 angstrom, and the magnetic metal particle distance is 10 to 100 angstrom.
Angstrom, the ratio of the major axis and the minor axis of the magnetic metal particles is 1:
The ratio of 1 to 5: 1 is not preferable when the particle diameter of the magnetic metal is 10 angstroms or less because the magnetic characteristics of the magnetic metal deteriorate and a sufficient resistance change rate cannot be obtained. Again 50
When the thickness is 0 angstroms or more, the ratio of the magnetic metal to the granular film thickness increases and the magnetic coupling through the non-magnetic base metal does not work. When the distance between the magnetic metal particles is 10 angstroms or less, the magnetizations of the magnetic metal particles are ferromagnetically magnetically coupled to each other, and no resistance change occurs. At 100 angstroms or more, the magnetic coupling becomes extremely small and the resistance change rate is hardly observed. The change in resistance in the granular film is because conduction electrons are scattered at the interface of the magnetic layer or inside the magnetic layer. Therefore, the surface area of the magnetic metal particles is preferably as large as possible. This is because if the ratio of the major axis to the minor axis of the grains is 5/1 or more, the surface area of the grains becomes small and the effect becomes small.
【0010】さらに、本発明において、このような磁気
抵抗効果膜は、蒸着法、スパッタリング法、分子線エピ
タキシー法(MBE)等の方法で成膜を行う。本発明に
おいて、共蒸着とは、磁性金属と非磁性金属を別々の蒸
発源として基板上に磁性金属と非磁性金属を蒸着するも
のであり、また共スパッタリングとは、磁性金属と非磁
性金属を別々のターゲットとして基板上に磁性金属と非
磁性金属をスパッタリングするものである。また、基板
上に共蒸着あるいは共スパッタリングにより、磁性金属
と非磁性金属の割合は、磁性金属が1〜20vol%残
りが非磁性金属に成膜するためには、例えば、共蒸着に
おいては磁性金属と非磁性金属の別々の蒸発源の温度を
制御し蒸着速度を制御することにより行うもので、また
共スパッタリングにおいては、磁性金属と非磁性金属の
別々のターゲットよりのスパッタリング速度を制御する
ことにより行うものである。分子線エピタキシー法(M
BE)においても同様に行うものである。Further, in the present invention, such a magnetoresistive effect film is formed by a method such as a vapor deposition method, a sputtering method, a molecular beam epitaxy method (MBE) or the like. In the present invention, co-evaporation refers to vapor deposition of magnetic metal and non-magnetic metal on a substrate using magnetic metal and non-magnetic metal as separate evaporation sources, and co-sputtering refers to magnetic metal and non-magnetic metal. The magnetic metal and the non-magnetic metal are sputtered on the substrate as separate targets. The ratio of the magnetic metal and the non-magnetic metal is 1 to 20 vol% of the magnetic metal to form a film on the non-magnetic metal by co-evaporation or co-sputtering on the substrate. This is done by controlling the temperature of the evaporation sources of non-magnetic metal and non-magnetic metal to control the vapor deposition rate.In co-sputtering, by controlling the sputtering rate from separate targets of magnetic metal and non-magnetic metal. It is something to do. Molecular beam epitaxy (M
The same is done in BE).
【0011】また、基板としては、ガラス、Si、Mg
O、GaAs、フェライト、CaTiO等を用いること
ができる。この磁気抵抗効果膜の膜厚の上限は特にない
が、1ミクロメートル以上としても効果は落ちないが、
膜厚の増加に伴い効果が増大することもなく、膜の作製
上無駄が多く、不経済である。一方、この膜の膜厚の厚
みの下限も特にないが、100オングストローム以下で
は膜表面での伝導電子の散乱が多くなり、抵抗変化率も
それほど大きくならないので実用的でなくなる。As the substrate, glass, Si, Mg
O, GaAs, ferrite, CaTiO or the like can be used. There is no particular upper limit to the film thickness of this magnetoresistive film, but the effect does not deteriorate even if it is 1 micrometer or more
The effect does not increase as the film thickness increases, and there is much waste in the production of the film, which is uneconomical. On the other hand, there is no particular lower limit of the thickness of this film, but if it is 100 angstroms or less, the scattering of conduction electrons on the film surface increases, and the rate of change in resistance does not increase so much, which is not practical.
【0012】また、磁性金属と非磁性金属が相分離し
て、磁性金属が凝集し、非磁性母材金属中に磁性金属粒
が析出したものとする熱処理は、たとえば基板上に共蒸
着あるいは共スパッタによりけいせいされた磁性金属と
非磁性金属の膜を長い時間加熱するか、あるいは加熱と
徐冷を行い、磁性金属を凝集させるものである。このよ
うに成膜後、磁性微粒子を非磁性母材金属中に析出させ
るために熱処理を行うが、この熱処理温度、時間は、こ
の磁気抵抗効果膜の抵抗変化率が最も大きくなるよう
に、外部磁界に対する感度が良くなるように適当に選択
して処理を行うことが好ましい。磁性又は非磁性薄膜の
膜厚は、透過型電子顕微鏡、走査型電子顕微鏡、オージ
ェ電子分光分析等により測定することができる。また、
薄膜の結晶構造は、X線回折や高速電子線回折等により
確認することができる。なお、最上層の磁性薄膜の表面
には、窒化珪素や酸化珪素等の酸化防止膜が設けられて
もよく、電極引出しのための金属導電層が設けられても
よい。Further, the heat treatment in which the magnetic metal and the non-magnetic metal are phase-separated, the magnetic metal is aggregated, and the magnetic metal particles are precipitated in the non-magnetic base metal, for example, co-deposition or co-deposition on the substrate. The magnetic metal and non-magnetic metal film sputtered by sputtering are heated for a long time, or heated and gradually cooled to aggregate the magnetic metal. After the film formation as described above, heat treatment is performed to precipitate the magnetic fine particles in the non-magnetic matrix metal. The heat treatment temperature and time are set so as to maximize the resistance change rate of the magnetoresistive film. It is preferable to appropriately select and perform the treatment so that the sensitivity to the magnetic field is improved. The film thickness of the magnetic or non-magnetic thin film can be measured by a transmission electron microscope, a scanning electron microscope, Auger electron spectroscopy, or the like. Also,
The crystal structure of the thin film can be confirmed by X-ray diffraction or high-speed electron beam diffraction. An anti-oxidation film such as silicon nitride or silicon oxide may be provided on the surface of the uppermost magnetic thin film, or a metal conductive layer for leading out electrodes may be provided.
【0013】[0013]
【作用】本発明の磁気抵抗効果膜では、非磁性母材金属
中に磁性微粒子が析出している。この磁性微粒子は、非
磁性母材金属を通じて磁気的結合している。非磁性金属
の割合を変えることにより磁性微粒子間の距離が変化
し、それにつれ磁気的相互作用の大きさ、符号が変わっ
ていく。磁性微粒子間隔を適当にとると、磁性微粒子間
に負の磁気的相互作用が働く。この磁気抵抗効果膜に外
部磁場が印加されていない状態では、磁性微粒子の磁化
の向きが互いに反平行に近い状態になり、膜の抵抗値は
高い。In the magnetoresistive film of the present invention, magnetic fine particles are deposited in the non-magnetic matrix metal. The magnetic fine particles are magnetically coupled through the non-magnetic base metal. By changing the ratio of the non-magnetic metal, the distance between the magnetic particles changes, and the magnitude and sign of the magnetic interaction change accordingly. If the spacing between the magnetic fine particles is set appropriately, a negative magnetic interaction works between the magnetic fine particles. When no external magnetic field is applied to the magnetoresistive effect film, the magnetization directions of the magnetic particles are almost antiparallel to each other, and the resistance value of the film is high.
【0014】この膜に膜面方向に磁場を印加すると、磁
性微粒子の磁化の向きが磁場方向に向くようになり、そ
れに従い膜の抵抗値は減少する。この膜の抵抗変化率、
感度は非磁性母材の種類、割合により連続的に変化す
る。このグラニュラー膜では、非磁性金属と磁性金属を
共スパッタリング、共蒸着したのち熱処理して磁性金属
粒子を析出させる。従って非磁性金属と磁性金属は、2
相分離型あるいは共晶型合金の組み合わせであることが
必要である。When a magnetic field is applied to the film in the film surface direction, the direction of magnetization of the magnetic fine particles is oriented in the magnetic field direction, and the resistance value of the film is reduced accordingly. Resistance change rate of this film,
The sensitivity continuously changes depending on the type and proportion of the non-magnetic base material. In this granular film, non-magnetic metal and magnetic metal are co-sputtered and co-deposited, and then heat-treated to precipitate magnetic metal particles. Therefore, the non-magnetic metal and the magnetic metal are 2
It must be a combination of phase separation type or eutectic type alloys.
【0015】[0015]
【実施例】本発明の磁気抵抗効果膜を添付図面を参照し
て説明する。図1は、本発明の実施例である磁気抵抗効
果膜(1)の模式断面図である。図1において基板
(2)上に磁性金属微粒子(3)が非磁性母材金属
(4)に析出し、非磁性金属(4)を通じて金属微粒子
(3)が互いに磁気的相互作用している。DESCRIPTION OF THE PREFERRED EMBODIMENTS The magnetoresistive film of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view of a magnetoresistive effect film (1) which is an embodiment of the present invention. In FIG. 1, magnetic metal fine particles (3) are deposited on a non-magnetic matrix metal (4) on a substrate (2), and the metal fine particles (3) magnetically interact with each other through the non-magnetic metal (4).
【0016】次に本発明を具体的な実験結果により説明
する。基板(2)としてガラス基板を用い、超高真空蒸
着装置の中に入れ、10-9〜10-10 torrまで真空
引きを行う。基板温度は室温に保ったまま基板を回転さ
せながら、以下の組成を持つ磁気抵抗効果膜(1)を約
0.3オングストローム/秒の成膜速度で成膜を行っ
た。Next, the present invention will be described with reference to specific experimental results. A glass substrate is used as the substrate (2), and the glass substrate is placed in an ultrahigh vacuum vapor deposition apparatus and vacuumed to 10 -9 to 10 -10 torr. While the substrate temperature was kept at room temperature, the magnetoresistive film (1) having the following composition was formed at a film forming rate of about 0.3 angstrom / sec while rotating the substrate.
【数1】 [Equation 1]
【表1】 [Table 1]
【0017】なお、例えば、Cr(50)/Ag−Ni
Fe20Vol%(2000)と表示されている場合、
基板上にクロム薄膜を50オングストロームの厚さで形
成した後、NiFeが20vol%のAg−NiFe合
金を2000オングストローム蒸着したことを意味す
る。For example, Cr (50) / Ag-Ni
If it is displayed as Fe20Vol% (2000),
This means that a chromium thin film having a thickness of 50 angstroms was formed on a substrate, and then an Ag-NiFe alloy containing 20 vol% of NiFe was vapor-deposited at 2000 angstroms.
【0018】磁化の測定は、振動型磁力計により行っ
た。抵抗測定は、試料から0.3×10mmの形状のサン
プルを作製し、外部磁界を面内に電流と垂直方向になる
ようにかけながら、−500〜500Oeまで変化させ
たときの抵抗を4端子法により測定し、その抵抗から磁
気抵抗変化率ΔR/Rを求めた。抵抗ΔR/Rは、最大
抵抗値をRmax 、最小抵抗値をRmin とし、数1の式に
より計算した。The magnetization was measured by a vibrating magnetometer. For resistance measurement, a sample with a shape of 0.3 x 10 mm was prepared from the sample, and the resistance when changing from -500 to 500 Oe while applying an external magnetic field in the plane so as to be perpendicular to the current flow was measured by the 4-terminal method. The magnetic resistance change rate ΔR / R was determined from the measured resistance. The resistance ΔR / R was calculated by the formula 1 with the maximum resistance value being R max and the minimum resistance value being R min .
【0019】表1に、作製した磁気抵抗効果膜を示し、
これらの膜を熱処理した後の抵抗変化率も一緒に記載し
てある。抵抗変化率は、従来のグラニュラー膜では十数
kOeの外部磁場を印加して十数%抵抗変化していた
が、本発明では表1に示すように外部磁場を 500 O
e印加して8〜18%抵抗変化した。又、熱的安定性に
優れ400℃前後の熱処理でも特性の劣化は認められな
かった。また、磁気抵抗効果膜を熱処理した後の、その
構造は磁性金属と非磁性金属が相分離し非磁性金属母材
中に磁性金属粒子が析出したもので、磁性金属粒子径が
50から300オングストローム、磁性金属粒子間距離
が20から50オングストローム、磁性金属粒子の長径
と短径の比が1:1〜3:1であった。Table 1 shows the produced magnetoresistive film.
The rate of resistance change after heat treatment of these films is also described. Regarding the rate of resistance change, in the conventional granular film, an external magnetic field of tens of kOe was applied to change the resistance by tens%, but in the present invention, as shown in Table 1, an external magnetic field of 500 O
e applied, the resistance changed by 8 to 18%. Moreover, the thermal stability was excellent, and no deterioration of the properties was observed even by heat treatment at about 400 ° C. Further, the structure after heat treatment of the magnetoresistive film is such that magnetic metal and nonmagnetic metal are phase-separated and magnetic metal particles are deposited in the nonmagnetic metal base material, and the magnetic metal particle diameter is 50 to 300 angstrom. The distance between the magnetic metal particles was 20 to 50 angstroms, and the ratio of the major axis to the minor axis of the magnetic metal particles was 1: 1 to 3: 1.
【0020】[0020]
【発明の効果】以上説明したように、本発明によれば、
磁性金属と非磁性金属が2相分離型あるいは共晶型合金
の組み合わせであり、基板上に共蒸着あるいは共スパッ
タリングにより、磁性金属が1〜20vol%残りが非
磁性金属に成膜し、その構造が熱処理により磁性金属と
非磁性金属が相分離し、非磁性金属母材中に磁性金属粒
子が析出したことにより、小さい磁界で大きな抵抗変化
し、熱的安定性に優れ、ヒステリシスの小さい磁気抵抗
効果膜を得ることができるという効果を奏するものであ
る。As described above, according to the present invention,
A magnetic metal and a non-magnetic metal are a combination of two-phase separation type or eutectic type alloy, and 1 to 20 vol% of the magnetic metal is deposited on the non-magnetic metal on the substrate by co-deposition or co-sputtering, and its structure Magnetic phase and non-magnetic metal are phase-separated by heat treatment, and magnetic metal particles are deposited in the non-magnetic metal base material, resulting in a large resistance change in a small magnetic field, excellent thermal stability, and magnetic resistance with small hysteresis. The effect that the effect film can be obtained is exhibited.
【図1】 本発明の磁気抵抗効果膜の模式断面図であ
る。FIG. 1 is a schematic sectional view of a magnetoresistive effect film of the present invention.
1 磁気抵抗効果膜 2 基板 3 磁性金属微粒子 4 非磁性母材金属 1 Magnetoresistive film 2 Substrate 3 Magnetic metal fine particles 4 Non-magnetic base metal
Claims (4)
いは共晶型合金の組み合わせであり、基板上に共蒸着あ
るいは共スパッタリングにより、磁性金属が1〜20v
ol%残りが非磁性金属に成膜し、その構造が熱処理に
より磁性金属と非磁性金属が相分離し非磁性金属母材中
に磁性金属粒子が析出したもので、磁性金属粒子径が1
0から500オングストローム、磁性金属粒子間距離が
10から100オングストローム、磁性金属粒子の長径
と短径の比が1:1〜5:1であることを特徴とする磁
気抵抗効果膜。1. A non-magnetic metal and a magnetic metal are a combination of two-phase separation type or eutectic type alloy, and the magnetic metal is 1 to 20 v by co-evaporation or co-sputtering on a substrate.
ol% The rest is a film formed on a non-magnetic metal, and the structure is such that magnetic metal and non-magnetic metal are phase-separated by heat treatment and magnetic metal particles are deposited in the non-magnetic metal base material.
A magnetoresistive effect film, characterized in that the distance between magnetic metal particles is 0 to 500 angstroms, the distance between magnetic metal particles is 10 to 100 angstroms, and the ratio of the major axis to the minor axis of the magnetic metal particles is 1: 1 to 5: 1.
Ag−Fe,Ag−Ni,Ag−NiFe,Ag−Co
Ni,Ag−CoNiFe,Ag−Mnのいずれかであ
ることを特徴とする請求項1に記載の磁気抵抗効果膜。2. A combination of a non-magnetic metal and a magnetic metal,
Ag-Fe, Ag-Ni, Ag-NiFe, Ag-Co
The magnetoresistive film according to claim 1, which is one of Ni, Ag-CoNiFe, and Ag-Mn.
Au−Co,Au−Fe,Au−CoFe,Au−Co
Ni,Au−FeNiのいずれかであることを特徴とす
る請求項1に記載の磁気抵抗効果膜。3. A combination of non-magnetic metal and magnetic metal,
Au-Co, Au-Fe, Au-CoFe, Au-Co
The magnetoresistive film according to claim 1, wherein the magnetoresistive film is Ni or Au-FeNi.
Cu−Fe,Cu−CoFe,Cu−CoNi,Cu−
FeNiのいずれかであることを特徴とする請求項1に
記載の磁気抵抗効果膜。4. A combination of a non-magnetic metal and a magnetic metal,
Cu-Fe, Cu-CoFe, Cu-CoNi, Cu-
The magnetoresistive film according to claim 1, wherein the magnetoresistive film is FeNi.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6225584A JPH0867966A (en) | 1994-08-26 | 1994-08-26 | Magnetoresistance effect film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6225584A JPH0867966A (en) | 1994-08-26 | 1994-08-26 | Magnetoresistance effect film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0867966A true JPH0867966A (en) | 1996-03-12 |
Family
ID=16831610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6225584A Pending JPH0867966A (en) | 1994-08-26 | 1994-08-26 | Magnetoresistance effect film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0867966A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1069435C (en) * | 1996-07-31 | 2001-08-08 | 南京大学 | Granular membrane huge magnetic resistance effect sensor material |
US6613448B1 (en) | 1999-03-25 | 2003-09-02 | National Institute Of Advanced Industrial Science And Technology | Magnetoresistance effect film and method of forming same |
KR100397613B1 (en) * | 2001-06-20 | 2003-09-13 | 삼성전자주식회사 | Fabricating Method of Ferromagnetic Nanoparticles |
WO2016002061A1 (en) * | 2014-07-04 | 2016-01-07 | 株式会社日立製作所 | Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material |
CN113416936A (en) * | 2021-06-25 | 2021-09-21 | 北京卫星环境工程研究所 | Film coating system and method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06140687A (en) * | 1992-10-26 | 1994-05-20 | Hitachi Maxell Ltd | Magnetic film for magnetoresistance element and its manufacture |
-
1994
- 1994-08-26 JP JP6225584A patent/JPH0867966A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06140687A (en) * | 1992-10-26 | 1994-05-20 | Hitachi Maxell Ltd | Magnetic film for magnetoresistance element and its manufacture |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1069435C (en) * | 1996-07-31 | 2001-08-08 | 南京大学 | Granular membrane huge magnetic resistance effect sensor material |
US6613448B1 (en) | 1999-03-25 | 2003-09-02 | National Institute Of Advanced Industrial Science And Technology | Magnetoresistance effect film and method of forming same |
US6808740B2 (en) | 1999-03-25 | 2004-10-26 | National Institute Of Advanced Industrial Science And Technology | Magnetoresistance effect film and method of forming same |
KR100397613B1 (en) * | 2001-06-20 | 2003-09-13 | 삼성전자주식회사 | Fabricating Method of Ferromagnetic Nanoparticles |
WO2016002061A1 (en) * | 2014-07-04 | 2016-01-07 | 株式会社日立製作所 | Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method for manufacturing thermoelectric conversion material |
CN113416936A (en) * | 2021-06-25 | 2021-09-21 | 北京卫星环境工程研究所 | Film coating system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3088478B2 (en) | Magnetoresistive element | |
US6057049A (en) | Exchange coupling film and magnetoresistive element | |
JP3182399B2 (en) | Soft magnetic alloy film and manufacturing method thereof, magnetic head, and magnetic disk | |
JP3207477B2 (en) | Magnetoresistance effect element | |
US5868910A (en) | Giant magnetoresistant single film alloys | |
JP2000160332A (en) | Sputtering target, antiferromagnetic film formed by using the same, magneto-resistance effect element and magnetic device | |
JP2008146801A (en) | Magnetic recording medium, sputtering target and manufacturing method of magnetic recording medium | |
JP3022909B2 (en) | Magnetic recording medium and method of manufacturing the same | |
JP2616561B2 (en) | Magnetoresistance effect element thin film and magnetoresistance effect element using the same | |
JP3088519B2 (en) | Magnetoresistive element | |
JP3497573B2 (en) | Exchange coupling film and magnetoresistive element | |
JPH07202292A (en) | Magnetoresistive film and its manufacture | |
JPH0867966A (en) | Magnetoresistance effect film | |
JP2001256631A (en) | Magnetic recording medium and method of manufacturing the same | |
JPH0729733A (en) | Magnetoresistance effect film and manufacture thereof | |
JPH06314617A (en) | Exchange connection film and magnetoresistance effect element | |
US5432661A (en) | Magnetoresistance effect element | |
Xi et al. | Annealing effect on exchange bias in Ni/sub 81/Fe/sub 19//Cr/sub 50/Mn/sub 50/bilayers | |
JP3337732B2 (en) | Magnetoresistance effect element | |
JP2002280641A (en) | Exchange connection film and magnetic detection element using the same | |
JP3262697B2 (en) | Magnetoresistance effect multilayer film | |
JPH06140687A (en) | Magnetic film for magnetoresistance element and its manufacture | |
JP3374984B2 (en) | Material for MR element and method for manufacturing the same | |
JP2000068569A (en) | Exchange coupled film and magneto resistive effect element using the same | |
US6001430A (en) | Magnetoresistance effect film and production process thereof |