JP2830513B2 - Magnetoresistive material and method of manufacturing the same - Google Patents

Magnetoresistive material and method of manufacturing the same

Info

Publication number
JP2830513B2
JP2830513B2 JP3148475A JP14847591A JP2830513B2 JP 2830513 B2 JP2830513 B2 JP 2830513B2 JP 3148475 A JP3148475 A JP 3148475A JP 14847591 A JP14847591 A JP 14847591A JP 2830513 B2 JP2830513 B2 JP 2830513B2
Authority
JP
Japan
Prior art keywords
thin film
magnetic thin
layer
thickness
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3148475A
Other languages
Japanese (ja)
Other versions
JPH0590026A (en
Inventor
三男 里見
博 榊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15453585&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2830513(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3148475A priority Critical patent/JP2830513B2/en
Priority to US07/840,821 priority patent/US5277991A/en
Priority to EP92103874A priority patent/EP0503499B2/en
Priority to DE69200169T priority patent/DE69200169T3/en
Publication of JPH0590026A publication Critical patent/JPH0590026A/en
Application granted granted Critical
Publication of JP2830513B2 publication Critical patent/JP2830513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は磁気媒体より信号を読み
とるための磁気抵抗効果材料およびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive material for reading signals from a magnetic medium and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来より磁気抵抗素子を用いた磁気抵抗
センサ−(以下MRセンサ−という)、磁気抵抗ヘッド
(以下MRヘッドという)の開発が進められており、磁
性体には主にNi0.8Fe0.2のパ−マロイが用いられてい
る。ただしこの材料の場合は抵抗変化率(以下ΔR/R
と記す)が2.5%程度であり、より高感度な磁気抵抗素
子をうるにはよりΔR/Rの大きなものが求められて来
た。
BACKGROUND ART magnetoresistive sensor using a magnetoresistance element conventionally - (hereinafter MR sensor - called), has been advanced development of magnetoresistive head (hereinafter referred to as MR head), mainly Ni 0.8 to magnetic Permalloy of Fe 0.2 is used. However, in the case of this material, the resistance change rate (hereinafter, ΔR / R
) Is about 2.5%, and to obtain a magnetoresistive element with higher sensitivity, a larger ΔR / R has been required.

【0003】近年[Fe/Cr]人工格子膜で大きな磁気抵抗
効果が起こることが発見された(フィジカル レビュー
レター ブイオーエル61、ピー2472、1988
「Physical Review Letter Vol.61, p2472, 1988」)
が、この材料の場合は十数kOe以上の大きな磁界を印加
しないと大きなΔR/Rが得られず、実用性に難点があ
った。 また、超高真空蒸着装置を用いNi0.8Fe0.2(30
Å)/Cu(50Å)/Co(30Å)/Cu(50Å)×15層の人工格
子膜でΔR/Rが約10%(3kOeの磁界を印加)の抵抗変化
が観測された報告がある(1990年秋 応用物理学会
予稿)。
In recent years, it has been discovered that a large magnetoresistance effect occurs in the [Fe / Cr] artificial lattice film (Physical Review Letter V. Biol 61, P2472, 1988).
"Physical Review Letter Vol.61, p2472, 1988")
However, in the case of this material, a large ΔR / R cannot be obtained unless a large magnetic field of more than tens of kOe is applied, and there is a problem in practicality. Also, Ni 0.8 Fe 0.2 (30
There is a report that a ΔR / R of about 10% (with a magnetic field of 3 kOe applied) in a 15-layer artificial lattice film of (格子) / Cu (50 °) / Co (30 °) / Cu (50 °) × 15 was observed ( Autumn 1990, Japan Society of Applied Physics Preprint).

【0004】しかしながら、膜を製作するのに高価な多
元の超高真空蒸着装置が必要なことや、3kOe程度の大き
な磁界を印加しないと大きなΔR/Rが得られない問題
があった。
[0004] However, there have been problems that an expensive multi-source ultra-high vacuum deposition apparatus is required to produce a film, and that a large ΔR / R cannot be obtained unless a large magnetic field of about 3 kOe is applied.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の問題点
を解決し、タ−ゲットを2個しか必要としない2元(も
しくは多元)スパッタ装置で成膜ができ、かつ実用性の
ある低磁界で比較的大きなΔR/Rを示す磁気抵抗効果
材料を可能とするものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and can form a film with a binary (or multi-element) sputtering apparatus requiring only two targets, and has a practically useful low-temperature sputtering apparatus. This enables a magnetoresistive material exhibiting a relatively large ΔR / R in a magnetic field.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決すべく
本発明の磁気抵抗素子は以下の構成より成る。すなわ
ち、スパッタ装置を用い厚さ10〜100ÅのNiXFeYCoZより
成る金属磁性薄膜層と厚さ10〜25ÅのCuより成る金属非
磁性薄膜層とを積層した構造からなる磁気抵抗効果材料
であって、金属磁性薄膜層は(NiXFeY)CoZを主成分と
し、X, Y,Z はそれぞれ原子組成比で 0.6≦X≦0.9、0≦
Y≦0.3、0.01≦Z≦0.3であり、金属非磁性薄膜層はCuを
主成分とするものである。
In order to solve the above-mentioned problems, a magnetoresistive element according to the present invention has the following configuration. That is, the magnetoresistive material composed of Ni X Fe Y Co Z with the metal magnetic thin film layer made of made of Cu having a thickness of 10~25Å by laminating a metal non-magnetic thin layer structure having a thickness of 10~100Å using a sputtering apparatus Wherein the metal magnetic thin film layer has (Ni X Fe Y ) Co Z as a main component, and X, Y, and Z each have an atomic composition ratio of 0.6 ≦ X ≦ 0.9 and 0 ≦
Y ≦ 0.3 and 0.01 ≦ Z ≦ 0.3, and the metal non-magnetic thin film layer is mainly composed of Cu.

【0007】[0007]

【作用】金属非磁性薄膜層によって分離されて隣接する
2つの金属磁性薄膜層間には金属非磁性薄膜層がある層
厚のとき反強磁性的な相互作用が働き、隣接する2つの
磁性薄膜層のスピン配列が互いに反平行となり伝導電子
のスピン散乱が極大となって大きな磁気抵抗を示すと考
えられる。更に印加磁界を強くすると前記隣接する2つ
の磁性薄膜層のスピン配列は平行となり伝導電子のスピ
ン散乱が小さくなり磁気抵抗は減少する。この様にして
大きなΔR/Rが得られると考えられるが金属非磁性薄
膜層が無いと前記隣接する2つの磁性薄膜層は強磁性的
に結合してしまい反平行の状態を実現できないため大き
な磁気抵抗効果が得られない。又金属非磁性薄膜層の層
厚があまり厚くなると、上記の相互作用がRKKY的に
振動して減衰するためにやはり大きな磁気抵抗効果が得
られない。
When the metal non-magnetic thin film layer has a certain thickness between two adjacent metal magnetic thin film layers separated by the metal non-magnetic thin film layer, an antiferromagnetic interaction acts, and two adjacent magnetic thin film layers are formed. Are considered to be antiparallel to each other, and the spin scattering of conduction electrons is maximized, resulting in a large magnetoresistance. When the applied magnetic field is further increased, the spin arrangement of the two adjacent magnetic thin film layers becomes parallel, so that the spin scattering of conduction electrons is reduced and the magnetoresistance is reduced. It is considered that a large ΔR / R can be obtained in this manner, but without the metal non-magnetic thin film layer, the two adjacent magnetic thin film layers are ferromagnetically coupled and cannot be in an antiparallel state, so that a large magnetic field cannot be realized. No resistance effect is obtained. If the thickness of the metal non-magnetic thin film layer is too large, the above interaction vibrates like RKKY and attenuates, so that a large magnetoresistance effect cannot be obtained.

【0008】[0008]

【実施例】金属磁性薄膜層はNi-richの(NiXFeY)CoZを主
成分とする膜である。磁歪が小さく軟磁性を示すと同時
に磁気抵抗効果を示すのは X, Y, Z がそれぞれ原子組
成比で、0.6≦X≦0.9, 0≦Y≦0.3, 0≦Z≦0.3のもので
あるが、磁気抵抗効果を考慮するとNi-Fe系よりもNi-Fe
-Co系の方が膜全体としてのΔR/Rが大きくなり0.01
≦Zとする必要がある。これらの条件を満足する代表的
なものはNi0.8Fe0.15Co0.05である。又更に軟磁性を改
良したり耐摩耗性及び耐食性を改良するためにNb,Mo,C
r,W,Ru等を添加しても良い。これら磁性薄膜層はその厚
さが10Å未満ではキュリ−温度の低下による室温での磁
化の低減等が問題となり、又実用上磁気抵抗素子は全膜
厚が数百Åで用いられるため、本発明のように積層効果
を利用するには各磁性薄膜層を少なくとも100Å以下に
する必要がある。従ってこれら磁性薄膜層の厚さはは10
〜100Åとすることが望ましい。
EXAMPLES metallic magnetic film layer is a film mainly composed of (Ni X Fe Y) Co Z of Ni-rich. The magnetostriction is small, the soft magnetism is exhibited, and the magnetoresistance effect is exhibited at the same time when X, Y, and Z have the atomic composition ratios of 0.6 ≦ X ≦ 0.9, 0 ≦ Y ≦ 0.3, and 0 ≦ Z ≦ 0.3. Considering the magnetoresistance effect, Ni-Fe
The ΔR / R of the whole film is larger in the case of
≤Z. A typical material satisfying these conditions is Ni 0.8 Fe 0.15 Co 0.05 . Nb, Mo, C to improve soft magnetism and abrasion and corrosion resistance.
r, W, Ru, etc. may be added. When the thickness of these magnetic thin film layers is less than 10 mm, there is a problem of a decrease in magnetization at room temperature due to a decrease in Curie temperature, and in practice, the total thickness of a magnetoresistive element is hundreds of mm. In order to utilize the lamination effect as described above, each magnetic thin film layer must be at least 100 ° or less. Therefore, the thickness of these magnetic thin film layers is 10
It is desirable to set it to 100 mm.

【0009】これらの磁性薄膜の間に介在させる金属薄
膜はNi-Fe-Co系磁性薄膜と界面での反応が少なくかつ非
磁性であることが必要で、Cuが適している。このCu層の
厚さは20Åぐらいが最適で、10Å未満では隣接する2つ
の磁性薄膜層が磁気的に結合して(図1)のように磁性
層間のスピンが反平行となる状態の実現が困難となる。
又理由はさだかでないがΔR/Rの値はCu層の厚さに
よってRKKY的な振動を示し極大の第1ピ−クまでを
利用する場合はCu層の厚さは25Å以下とすることがより
望ましい。
The metal thin film interposed between these magnetic thin films must have a small reaction at the interface with the Ni—Fe—Co based magnetic thin film and be nonmagnetic, and Cu is suitable. The thickness of this Cu layer is optimally about 20 mm, and if it is less than 10 mm, two adjacent magnetic thin film layers are magnetically coupled to each other (Fig. 1) to realize a state in which the spin between the magnetic layers is antiparallel. It will be difficult.
Although the reason is not obvious, the value of ΔR / R shows RKKY-like vibration depending on the thickness of the Cu layer, and when the first peak of the maximum is used, the thickness of the Cu layer should be less than 25 °. desirable.

【0010】以下具体的な実施例により本発明の効果の
説明を行う。 (実施例1)多元RFスパッタ装置を用いて、タ−ゲッ
トに Cu, Ni0.8Fe0.15Co0.05を用いスパッタ装置内部を
2×10-7Torrに排気した後Arガスを導入して8×10-3Torr
とし、スパッタ法により順次以下に示した構成の磁気抵
抗素子をガラス基板上に作製した。
Hereinafter, the effects of the present invention will be described with reference to specific examples. (Example 1) Using a multi-source RF sputtering apparatus, Cu, Ni 0.8 Fe 0.15 Co 0.05 was used as a target, and the inside of the sputtering apparatus was used.
After evacuating to 2 × 10 -7 Torr, Ar gas was introduced and 8 × 10 -3 Torr
Then, magnetoresistive elements having the following structures were sequentially formed on a glass substrate by a sputtering method.

【0011】[NiFeCo(30)/Cu(0〜50)](( )内は厚さ
(Å)を表わす)、又各膜厚はスパッタ時間とシャッタ−
により制御し、総厚約0.2μmの膜を作製した。
[NiFeCo (30) / Cu (0-50)] (The thickness in () is
(Indicates (Å)), and each film thickness is based on sputtering time and shutter
And a film having a total thickness of about 0.2 μm was produced.

【0012】得られた磁気抵抗材料の特性を(図2)に
示した。なお、ΔR/Rは300Oeの印加磁界にて測定し
た。
The characteristics of the obtained magnetoresistive material are shown in FIG. Note that ΔR / R was measured with an applied magnetic field of 300 Oe.

【0013】(図2)より明らかなように、ΔR/Rの
極大値はCu層が20Å付近に存在し、それ以上ではCu層の
層厚の増加とともに減少することが分かった。従って最
大のΔR/Rを得ようとすると、Cu層が20Å付近が最適
となる。
As is clear from FIG. 2, it is found that the maximum value of ΔR / R exists around 20 ° for the Cu layer, and that the maximum value decreases with an increase in the thickness of the Cu layer. Therefore, in order to obtain the maximum ΔR / R, the optimum value is about 20 ° for the Cu layer.

【0014】(実施例2)RFスパッタ装置を用いて、
タ−ゲットとして、Cu, Ni0.8Fe0.15Co0.05を用いCu層
の厚さを一定とし磁性層の厚さを変えた膜をスパッタ法
により(実施例1)と同様に作製した。
(Embodiment 2) Using an RF sputtering apparatus,
As a target, a film in which the thickness of the Cu layer was kept constant and the thickness of the magnetic layer was changed using Cu, Ni 0.8 Fe 0.15 Co 0.05 was produced in the same manner as in Example 1 by sputtering.

【0015】得られた膜の特性を(表1)に示した。The properties of the obtained film are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】なお、参考までにNo.Bと同じ構成で、Ni
0.8Fe0.15Co0.05の代わりにCoを使用した試料のΔR/
Rは5%であった。
For reference, the same configuration as that of No.
0.8 Fe 0.15 Co of the samples using a Co instead of 0.05 [Delta] R /
R was 5%.

【0018】[0018]

【発明の効果】以上説明したように本発明は高価な超高
真空蒸着装置を用いず、通常のスパッタ装置で実質的に
タ−ゲットを2個必要とするだけで作製出来る事、又室
温でかつ実用的な印加磁界で大きな磁気抵抗効果を示す
磁気抵抗素子を可能とするもので、高感度MRヘッドや
MRセンサ−等への応用に適したものである。
As described above, according to the present invention, it is possible to fabricate a conventional sputter apparatus by using only two targets without using an expensive ultra-high vacuum deposition apparatus. Further, it enables a magnetoresistive element exhibiting a large magnetoresistance effect with a practically applied magnetic field, and is suitable for application to a high-sensitivity MR head, an MR sensor, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】印加磁界が弱い場合における本発明磁気抵抗材
料の各磁性層のスピンの配列方向を示す図である。
FIG. 1 is a view showing the arrangement direction of spins in each magnetic layer of a magnetoresistive material of the present invention when an applied magnetic field is weak.

【図2】(実施例1)における磁気抵抗材料のMR変化
率のCu層厚依存性を示す図である。
FIG. 2 is a diagram showing the dependence of the MR change rate of a magnetoresistive material in Example 1 on the thickness of a Cu layer.

【符号の説明】[Explanation of symbols]

1、1’ 金属磁性薄膜層 2 金属非磁性薄膜層 1, 1 'metal magnetic thin film layer 2 metal nonmagnetic thin film layer

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01F 10/12 H01F 41/18──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01F 10/12 H01F 41/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 厚さ10〜100ÅのNiXFeYCoZより成る金属
磁性薄膜層と厚さ10〜25ÅのCuより成る金属非磁性薄膜
層とを積層した構造からなる磁気抵抗効果材料、ただし
X, Y, Z はそれぞれ原子組成比で 0.6≦X≦0.9, 0≦Y
≦0.3, 0.01≦Z≦0.3である。
1. A thick 10~100Å Ni X Fe Y Co Z with the metal magnetic thin film layer made of made of Cu having a thickness of 10~25Å metal nonmagnetic thin layer and the magnetoresistive material consisting of a structure stacked, However
X, Y, and Z are atomic composition ratios of 0.6 ≦ X ≦ 0.9 and 0 ≦ Y, respectively.
≦ 0.3, 0.01 ≦ Z ≦ 0.3.
【請求項2】 金属磁性薄膜層と金属非磁性薄膜層とを
多元スパッタ装置を用いて逐次積層して形成することを
特徴とする請求項1に記載の磁気抵抗効果材料の製造方
法。
2. The method of manufacturing a magnetoresistive material according to claim 1, wherein the metal magnetic thin film layer and the metal non-magnetic thin film layer are sequentially laminated by using a multi-source sputtering apparatus.
JP3148475A 1991-03-08 1991-06-20 Magnetoresistive material and method of manufacturing the same Expired - Lifetime JP2830513B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3148475A JP2830513B2 (en) 1991-06-20 1991-06-20 Magnetoresistive material and method of manufacturing the same
US07/840,821 US5277991A (en) 1991-03-08 1992-02-25 Magnetoresistive materials
EP92103874A EP0503499B2 (en) 1991-03-08 1992-03-06 Magnetoresistive materials
DE69200169T DE69200169T3 (en) 1991-03-08 1992-03-06 Magnetoresistive materials.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3148475A JP2830513B2 (en) 1991-06-20 1991-06-20 Magnetoresistive material and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0590026A JPH0590026A (en) 1993-04-09
JP2830513B2 true JP2830513B2 (en) 1998-12-02

Family

ID=15453585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3148475A Expired - Lifetime JP2830513B2 (en) 1991-03-08 1991-06-20 Magnetoresistive material and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2830513B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2551321B2 (en) * 1993-04-21 1996-11-06 日本電気株式会社 Integrated magnetoresistive sensor
US6738234B1 (en) 2000-03-15 2004-05-18 Tdk Corporation Thin film magnetic head and magnetic transducer
US6639763B1 (en) 2000-03-15 2003-10-28 Tdk Corporation Magnetic transducer and thin film magnetic head
US6603642B1 (en) 2000-03-15 2003-08-05 Tdk Corporation Magnetic transducer having a plurality of magnetic layers stacked alternately with a plurality of nonmagnetic layers and a fixed-orientation-of-magnetization layer and thin film magnetic head including the magnetic transducer
JP3474523B2 (en) 2000-06-30 2003-12-08 Tdk株式会社 Thin film magnetic head and method of manufacturing the same
US6669983B2 (en) 2001-10-25 2003-12-30 Tdk Corporation Manufacturing method of thin-film magnetic head with magnetoresistive effect element

Also Published As

Publication number Publication date
JPH0590026A (en) 1993-04-09

Similar Documents

Publication Publication Date Title
JP2690623B2 (en) Magnetoresistance effect element
US6882509B2 (en) GMR configuration with enhanced spin filtering
US6111782A (en) Magnetoresistance effect device, and magnetoresistance effect type head, memory device, and amplifying device using the same
US6198610B1 (en) Magnetoresistive device and magnetoresistive head
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
US6256222B1 (en) Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
JP2924785B2 (en) Magnetoresistive element thin film and method of manufacturing the same
JPH10188235A (en) Magneto-resistive film and its production
JP2961914B2 (en) Magnetoresistive material and method of manufacturing the same
EP0560350B1 (en) Magneto-resistance effect element
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
JP2830513B2 (en) Magnetoresistive material and method of manufacturing the same
JP3219329B2 (en) Magnetoresistance effect element
JP3321615B2 (en) Magnetoresistive element and magnetic transducer
Sano et al. Exchange coupling and GMR properties in ion beam sputtered hematite spin-valves
JP2002314171A (en) Layer to be fixed, forming method therefor, spin valve structure and forming method therefor
JP3021785B2 (en) Magnetoresistive material and method of manufacturing the same
JP3488652B2 (en) Magnetoresistive film, method of manufacturing the same, and magnetic head using the same
JP2964690B2 (en) Magnetoresistive material and method of manufacturing the same
JP2848083B2 (en) Magnetoresistance effect element
JPH08321016A (en) Magnetoresistive film
JP3100714B2 (en) Magnetic laminate and magnetoresistive element
JP3346787B2 (en) Magnetic laminate and magnetoresistive element
JP3274440B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element
JP3255901B2 (en) Method for producing exchange coupling membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080925

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090925

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100925

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110925

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110925

Year of fee payment: 13