JP3346787B2 - Magnetic laminate and magnetoresistive element - Google Patents

Magnetic laminate and magnetoresistive element

Info

Publication number
JP3346787B2
JP3346787B2 JP35467391A JP35467391A JP3346787B2 JP 3346787 B2 JP3346787 B2 JP 3346787B2 JP 35467391 A JP35467391 A JP 35467391A JP 35467391 A JP35467391 A JP 35467391A JP 3346787 B2 JP3346787 B2 JP 3346787B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
thickness
sample
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35467391A
Other languages
Japanese (ja)
Other versions
JPH05166629A (en
Inventor
悟 荒木
大助 宮内
義和 成宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP35467391A priority Critical patent/JP3346787B2/en
Publication of JPH05166629A publication Critical patent/JPH05166629A/en
Application granted granted Critical
Publication of JP3346787B2 publication Critical patent/JP3346787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/002Antiferromagnetic thin films, i.e. films exhibiting a Néel transition temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/325Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being noble metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、磁性積層体と、それを
用いた磁気抵抗効果素子(MR素子)とに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic laminate and a magnetoresistive element (MR element) using the same.

【0002】[0002]

【従来の技術】各種磁気センサ(MRセンサ)や磁気ヘ
ッド(MRヘッド)などのMR素子は、磁界による磁性
膜の電気抵抗変化を検出して磁界強度やその変化を測定
するものであり、一般に、室温における磁気抵抗変化率
が大きく、動作磁界強度が小さいことが要求される。
2. Description of the Related Art MR elements, such as various magnetic sensors (MR sensors) and magnetic heads (MR heads), detect a change in electric resistance of a magnetic film due to a magnetic field and measure the magnetic field strength and its change. It is required that the magnetoresistance ratio at room temperature is large and the operating magnetic field strength is small.

【0003】MR素子の磁性膜としては、従来、異方性
磁気抵抗効果を利用するFe−Ni合金(パーマロイ)
やNi−Co合金が代表的に用いられている。しかし、
Fe−Ni合金やNi−Co合金では、動作磁界強度は
小さいが、縦磁気抵抗変化と横磁気抵抗変化との差、す
なわち異方性磁気抵抗効果が2%と小さい。
Conventionally, as a magnetic film of an MR element, an Fe—Ni alloy (permalloy) utilizing an anisotropic magnetoresistance effect has been used.
And Ni-Co alloys are typically used. But,
In the case of the Fe-Ni alloy or the Ni-Co alloy, the operating magnetic field strength is small, but the difference between the change in the longitudinal magnetoresistance and the change in the horizontal magnetoresistance, that is, the anisotropic magnetoresistance effect is as small as 2%.

【0004】[0004]

【本発明が解決しようとする課題】本発明の主たる目的
は、磁気抵抗変化率が大きく、しかも動作磁界強度を小
さくでき、また動作磁界強度を変化させることのできる
磁性積層体と、この積層体を用いた磁気抵抗変化素子と
を提供することである。
SUMMARY OF THE INVENTION The main object of the present invention is to provide a magnetic laminated body having a large magnetoresistance change rate, a small operating magnetic field strength, and a variable operating magnetic field strength. And a magnetoresistive element using the same.

【0005】[0005]

【課題を解決するための手段】このような目的は、下記
(1)〜(4)の本発明により達成される。 (1) 4〜20Åの厚さのNix1-x (MはFeお
よび/またはCoを表し、xは0<x<1の関係を満た
す。)の組成の磁性薄膜と、2〜60Åの厚さのAg薄
膜とが積層されており、前記磁性薄膜とAg薄膜とのユ
ニットのくり返し回数を2回以上として積層し、面内に
磁化容易軸をもち、磁化容易軸方向の角形比Br/Bs
が0.5以下であることを特徴とする磁性積層体。 (2) 反強磁性を示す上記(1)の磁性積層体。 (3) 前記磁性薄膜とAg薄膜とを分子線エピタキシ
ー法によって積層した上記(1)または(2)の磁性積
層体。 (4) 上記(1)〜(3)のいずれかに記載の磁性積
層体を有することを特徴とする磁気抵抗効果素子。
This and other objects are achieved by the present invention which is defined below as (1) to (4). (1) a magnetic thin film having a composition of Ni x M 1-x (M represents Fe and / or Co, and x satisfies the relationship of 0 <x <1) having a thickness of 4 to 20 °; The magnetic thin film and the Ag thin film are laminated with the number of repetitions being two or more, having an in-plane axis of easy magnetization, and a squareness ratio Br in the direction of the axis of easy magnetization. / Bs
Is 0.5 or less. (2) The magnetic laminate of (1) above, which exhibits antiferromagnetism. (3) The magnetic laminate according to the above (1) or (2), wherein the magnetic thin film and the Ag thin film are laminated by a molecular beam epitaxy method. (4) A magnetoresistance effect element comprising the magnetic laminate according to any one of (1) to (3).

【0006】[0006]

【0007】[0007]

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】なお、近年、薄膜技術の進歩により、分子
線エピタキシー(MBE)法を用いた人工格子が登場し
ている。この人工格子は、分子線エピタキシー(MB
E)法を用いた金属の原子オーダーの厚さの薄膜が周期
的に積層された構成をもち、バルク状の金属とは異なっ
た特性を示す。
In recent years, artificial lattices using the molecular beam epitaxy (MBE) method have appeared with the progress of thin film technology. This artificial lattice uses molecular beam epitaxy (MB
It has a structure in which a thin film having a thickness on the order of atoms of a metal is periodically laminated by using the method E), and exhibits characteristics different from those of a bulk metal.

【0012】このような人工格子の1つとして、Feと
Crを交互に積層したFe/Cr系磁性積層体の巨大磁
気抵抗変化材料が開発されている。このものでは、Cr
薄膜をはさんだFe薄膜が、反平行に磁気的に結合して
いる。そして、外部磁場により、このFeのスピンが一
方向に揃いだし、それに従い抵抗が減少していく。この
結果4.2Kで46%、室温で16%の巨大な磁気抵抗
変化を示す(PhysicalReview Letters 61巻、247
2ページ、1988年等)。
As one of such artificial lattices, a giant magnetoresistance change material of an Fe / Cr-based magnetic laminate in which Fe and Cr are alternately laminated has been developed. In this case, Cr
An Fe thin film sandwiching the thin film is magnetically coupled in antiparallel. Then, due to the external magnetic field, the spins of Fe are aligned in one direction, and the resistance decreases accordingly. The results show a giant magnetoresistance change of 46% at 4.2K and 16% at room temperature (Physical Review Letters 61, 247).
2 pages, 1988).

【0013】しかし、Fe/Cr系磁性積層体は、磁気
抵抗変化率(MR変化率)は大きいものの動作磁界強度
が20kOe程度と極めて大きく、MR素子としては実
用上の制約がある。
However, the Fe / Cr-based magnetic laminate has a large magnetoresistance change rate (MR change rate) but an extremely large operating magnetic field strength of about 20 kOe, and has practical limitations as an MR element.

【0014】このような反強磁性を示す人工格子磁性積
層体については、その後世界中で活発な研究開発が開始
されており、現在までに、Co/Cr系、Co/Ru系
磁性積層体で、反強磁性的なスピンの層間結合が発見さ
れている(Physical ReviewLetters 64巻、2304
ページ、1990年)。しかし、MR変化率は、Co/
Cr系で6.5%(4.5K)、Co/Ru系で6.5
%(4.5K)ときわめて小さな値である。
[0014] Active research and development of such an artificial lattice magnetic laminate exhibiting such antiferromagnetism has been started worldwide thereafter. Until now, Co / Cr-based and Co / Ru-based magnetic laminates have been developed. , Antiferromagnetic spin interlayer coupling has been discovered (Physical Review Letters 64, 2304)
Page, 1990). However, the MR change rate is Co /
6.5% (4.5K) for Cr system, 6.5 for Co / Ru system
% (4.5K), which is an extremely small value.

【0015】また、CoとCuを交互に積層したCo/
Cu系磁性積層体の巨大磁気抵抗変化材料が開示されて
いる[D.H.Mosca, et al., J. Magnetism and Magnetic
Material, vol.94 (1991), L1]。そして、このもの
は、層間でCoが反強磁性的結合をしていると考えら
れ、上記のFe/Cr系磁性積層体と同様のメカニズム
で、4.2Kで78%、室温で48%の巨大な磁気抵抗
を示すことも記載されている。
Further, Co / Cu in which Co and Cu are alternately laminated
A giant magnetoresistance change material of a Cu-based magnetic laminate has been disclosed [DHMosca, et al., J. Magnetism and Magnetic
Material, vol.94 (1991), L1]. It is considered that Co has antiferromagnetic coupling between the layers, and a mechanism similar to that of the above-described Fe / Cr-based magnetic laminated body has 78% at 4.2K and 48% at room temperature. It is also described to exhibit a giant magnetoresistance.

【0016】さらに、CoおよびFeと、Cuを交互に
積層したCo−Fe/Cu系磁性積層体の巨大磁気抵抗
変化材料が開示されている[Saito, et al., J.J.A.P.,
vol.30(1991), L1733]。このものも、反強磁性的結合
に基づき、磁気抵抗変化を示すと考えられ、その変化
は、室温で40%程度の大きなものであることが示され
ている。
Furthermore, a giant magnetoresistance material of a Co—Fe / Cu-based magnetic laminate in which Co and Fe and Cu are alternately laminated has been disclosed [Saito, et al., JJAP,
vol.30 (1991), L1733]. This is also considered to show a change in magnetoresistance based on antiferromagnetic coupling, and the change is shown to be as large as about 40% at room temperature.

【0017】しかし、Co/Cu系やCo−Fe/Cu
系の磁性積層体は、上記のように、磁気抵抗変化率は大
きいものの、いずれもイオンビームスパッタ法により作
製されている。イオンビームスパッタ法では、被着され
る粒子をもつ運動エネルギーが数十〜数百eVと高いた
め、界面において各々の元素が相互拡散を起こし組成の
分布が生じてしまう。その結果、異種元素が直接接する
ことによって生じると考えられる人工格子本来の特異な
特性が得られにくくなってしまう。
However, Co / Cu-based or Co-Fe / Cu
As described above, all of the magnetic laminated bodies of the system are manufactured by the ion beam sputtering method, although the magnetoresistance ratio is large. In the ion beam sputtering method, since the kinetic energy of the particles to be deposited is as high as several tens to several hundreds eV, each element causes mutual diffusion at the interface, resulting in a composition distribution. As a result, it becomes difficult to obtain the unique characteristic of the artificial lattice, which is considered to be caused by the direct contact of the different elements.

【0018】また、NiとAgを交互に積層した磁性積
層体が開示されており[B. Rodmacq, et al., First Ky
oto-Duisburg Workshop on Ultrathin Magnetic Films
andMultilayers (1991):C. A. dos Santos, et al., Ap
plied Physics Letters, Vol.59 (1991): P126]、反強
磁性的結合に基づき、磁気抵抗変化を示すことも記載さ
れている。そして、このときの磁気抵抗変化は、4.2
Kで25%程度である。
Further, a magnetic laminate in which Ni and Ag are alternately laminated is disclosed [B. Rodmacq, et al., First Ky.
oto-Duisburg Workshop on Ultrathin Magnetic Films
andMultilayers (1991): CA dos Santos, et al., Ap
plied Physics Letters, Vol. 59 (1991): P126], and describes that it shows a change in magnetoresistance based on antiferromagnetic coupling. The change in magnetoresistance at this time is 4.2
K is about 25%.

【0019】しかし、このものはスパッタ法により作製
されるものであり、上記のものと同様の欠点がある。
However, this is produced by a sputtering method, and has the same drawbacks as those described above.

【0020】しかしながら、Fe−Niパーマロイ系合
金を用いた磁性積層体の反強磁性結合については従来知
られていない。
However, antiferromagnetic coupling of a magnetic laminate using an Fe—Ni permalloy alloy has not been known.

【0021】[0021]

【具体的構成】以下、本発明の具体的構成を詳細に説明
する。
[Specific Configuration] Hereinafter, a specific configuration of the present invention will be described in detail.

【0022】本発明の磁性積層体は、基体上に、Nix
1-x (MはFeおよび/またはCoを表し、xは0<
x<1の関係を満たす。)の組成の磁性薄膜を有し、各
磁性薄膜は、非磁性中間層であるAg薄膜と交互に積層
されている。本発明における磁性薄膜は、上記のよう
に、Ni−Fe合金(パーマロイ合金)組成あるいはN
i−Co合金組成を有するものであり、さらにはNi−
Fe−Co合金組成を有するものであってもよく、Ni
のほかに、FeおよびCoの少なくとも一方を含有す
る。
The magnetic laminate of the present invention comprises Ni x
M 1-x (M represents Fe and / or Co, x is 0 <
The relationship x <1 is satisfied. ), And each magnetic thin film is alternately laminated with an Ag thin film as a non-magnetic intermediate layer. As described above, the magnetic thin film according to the present invention has a Ni—Fe alloy (permalloy alloy) composition or N
It has an i-Co alloy composition and further has Ni-
Fe-Co alloy composition may be used, and Ni
And at least one of Fe and Co.

【0023】MがFeのとき、xは、好ましくは0.4
<x<1、特に0.7≦x≦0.9の関係を満足するこ
とが好ましい。xを、このような範囲とすることによ
り、結晶磁気異方性が小さくなって等方的になり、磁性
積層体としたとき層間の反強磁性的結合が結晶磁気異方
性に比べて相対的に大きくなり、このような反強磁性に
基づく磁気抵抗変化(MR変化)が大きくなりやすい。
すなわち、MR素子としたときの感度上昇の効果が得ら
れる。これに対し、xが小さくなって、Feの割合が大
となると結晶磁気異方性が大きくなり反強磁性が十分に
得られにくくなり、十分な磁気抵抗変化(MR変化)を
示さなくなる。x=0のときが、この端的な例となる。
また、xが大きくなると、人工格子構造をとった場合に
おいてはNiがキュリー温度の低下により十分な磁化を
示さなくなり、MR変化が極端に減少する。x=1のと
きが、この端的な例となる。
When M is Fe, x is preferably 0.4
It is preferable to satisfy the relationship of <x <1, especially 0.7 ≦ x ≦ 0.9. By setting x in such a range, the magnetocrystalline anisotropy becomes small and becomes isotropic, and the antiferromagnetic coupling between the layers in the magnetic laminate becomes relatively smaller than the magnetocrystalline anisotropy. The magnetoresistance change (MR change) based on such antiferromagnetism tends to increase.
That is, the effect of increasing the sensitivity when the MR element is used can be obtained. On the other hand, when x becomes small and the proportion of Fe becomes large, the crystal magnetic anisotropy becomes large, and it becomes difficult to sufficiently obtain antiferromagnetism, so that a sufficient magnetoresistance change (MR change) is not exhibited. When x = 0, this is a simple example.
Also, when x becomes large, when the artificial lattice structure is adopted, Ni does not show sufficient magnetization due to a decrease in the Curie temperature, and the MR change is extremely reduced. A simple example is when x = 1.

【0024】また、MがCoの時には、0<x≦0.9
の関係を満足することが好ましい。xを、このような範
囲とすることにより、室温で強磁性を示しやすくなり、
十分なMR変化が得られる。これに対し、xが大きくな
ってNi単体に近くなると、本発明における磁性膜の厚
さでは、室温で強磁性を示さなくなる。このため、MR
センサやMRヘッドへの実質的な利用が不可能となる。
x=1のときが、この端的な例となる。
When M is Co, 0 <x ≦ 0.9
Is preferably satisfied. By setting x in such a range, it becomes easy to show ferromagnetism at room temperature,
A sufficient MR change can be obtained. On the other hand, when x becomes large and approaches Ni alone, the thickness of the magnetic film in the present invention does not show ferromagnetism at room temperature. For this reason, MR
Substantial use for sensors and MR heads becomes impossible.
A simple example is when x = 1.

【0025】さらに、MがFeおよびCoのとき、その
組成をNix Fey Co1-x-y で示すと、xは0<x≦
0.5の関係を満足することが好ましい。xをこのよう
な範囲とすることによってMR変化が大きくなる。xが
大きくなると、相対的にNiの割合が増加してしまい、
室温で十分な磁化を示さなくなる。その結果、室温での
MR変化が減少し、MRセンサやMRヘッドとしての機
能を果さなくなってしまう。x=1のときが、この端的
な例となる。また、yは0.1≦y≦0.6、特に0.
1≦y≦0.4の関係を満足することが好ましい。yを
このような範囲とすることによって、磁性膜のもつスピ
ンの方向が反平行のときと平行のときとの電子の散乱度
が大きくなり、そのためMR変化が増大する。yが小さ
くなりすぎたり、大きくなりすぎたりすると、電子の散
乱度が小さくなり、あまり大きなMR変化を示さなくな
る。
Further, when M is Fe and Co, if the composition is represented by Ni x Fe y Co 1-xy , x is 0 <x ≦
It is preferable to satisfy the relation of 0.5. By setting x in such a range, the MR change becomes large. When x increases, the proportion of Ni relatively increases,
It does not show sufficient magnetization at room temperature. As a result, the change in MR at room temperature is reduced, and the function as an MR sensor or MR head cannot be achieved. A simple example is when x = 1. In addition, y is 0.1 ≦ y ≦ 0.6, particularly, 0.1.
It is preferable that the relationship of 1 ≦ y ≦ 0.4 is satisfied. By setting y in such a range, the degree of electron scattering between when the spin direction of the magnetic film is antiparallel and when the spin direction is parallel is increased, thereby increasing the MR change. If y is too small or too large, the degree of scattering of electrons becomes small, so that a large MR change is not exhibited.

【0026】本発明における磁性薄膜の厚さは4〜20
Å、好ましくは6〜16Åとするのがよい。厚さが大き
くなりすぎると、層間の磁性元素間の距離が相対的に遠
くなり、反強磁性的結合がなくなり、巨大磁気抵抗変化
が示されなくなってくる。これに対し、磁性薄膜の厚さ
が小さすぎると、形成面内に磁性元素が連続して配列し
なくなり、強磁性を示さなくなる。
In the present invention, the thickness of the magnetic thin film is 4 to 20.
{, Preferably 6 to 16}. If the thickness is too large, the distance between the magnetic elements between the layers becomes relatively long, the antiferromagnetic coupling is lost, and no giant magnetoresistance change is exhibited. On the other hand, if the thickness of the magnetic thin film is too small, the magnetic elements will not be continuously arranged in the formation surface, and will not exhibit ferromagnetism.

【0027】Ag薄膜は、Agのみから形成されること
が好ましく、その厚さは60Å以下、特に50Å以下、
より好ましくは45Å以下とすることが好ましい。膜厚
が大きくなると、磁性薄膜間の距離が大きくなり、反強
磁性的結合が失われてくる。また、Ag薄膜の厚さは、
2Å以上とすることが好ましい。膜厚が小さくなると、
連続とならず、非磁性中間層の機能が失われてくる。
The Ag thin film is preferably formed only of Ag, and has a thickness of 60 ° or less, particularly 50 ° or less.
More preferably, the angle is set to 45 ° or less. As the film thickness increases, the distance between the magnetic thin films increases, and antiferromagnetic coupling is lost. The thickness of the Ag thin film is
It is preferable that the thickness be 2 mm or more. When the film thickness decreases,
As a result, the function of the non-magnetic intermediate layer is lost.

【0028】このような場合、本発明の磁性積層体で
は、磁性層のくり返し周期、とりわけAg薄膜の膜厚変
化によって、磁気交換結合エネルギーが周期的に振動し
つつ変化する。より具体的には、主にAg薄膜の膜厚に
よる振動型磁気結合によって、Ag薄膜の膜厚を2〜6
0Åの範囲で変化させると、飽和印加磁界Hsatが周
期的に変化する。Hsatは、1kOe 〜10kOe の範囲
にて周期的に変化し、しかもHsatの極大値および極
小値も変化する。この際、磁気抵抗変化率も周期的に変
化し、振動するが、室温にて8%をこえる磁気抵抗変化
率が得られるAg薄膜膜厚領域が存在する。
In such a case, in the magnetic laminate of the present invention, the magnetic exchange coupling energy changes while periodically oscillating due to the repetition period of the magnetic layer, in particular, the change in the thickness of the Ag thin film. More specifically, the thickness of the Ag thin film is set to 2 to 6 by vibrating magnetic coupling mainly based on the thickness of the Ag thin film.
When it is changed within the range of 0 °, the saturation applied magnetic field Hsat changes periodically. Hsat changes periodically in the range of 1 kOe to 10 kOe, and the maximum value and the minimum value of Hsat also change. At this time, the magnetoresistance change rate also periodically changes and vibrates, but there is an Ag thin film thickness region where a magnetoresistance change rate exceeding 8% can be obtained at room temperature.

【0029】この結果、2〜60Åの範囲にてAg薄膜
の厚さを選択することにより、動作磁界強度0.01〜
20kOe にて、室温にて1〜15%の磁気抵抗変化率を
もつ磁性積層体を自由に設計することができる。
As a result, by selecting the thickness of the Ag thin film in the range of 2 to 60 °, the operating magnetic field strength is set to 0.01 to
At 20 kOe, a magnetic laminate having a magnetoresistance ratio of 1 to 15% at room temperature can be freely designed.

【0030】なお、磁性薄膜やAg薄膜の厚さは、透過
型電子顕微鏡、走査型電子顕微鏡、オージェ電子分光分
析等により測定することができ、また、その結晶構造等
はX線回折や高速反射電子線回折(RHEED)等によ
り確認することができる。
The thickness of the magnetic thin film and the Ag thin film can be measured by a transmission electron microscope, a scanning electron microscope, an Auger electron spectroscopic analysis, and the like. It can be confirmed by electron beam diffraction (RHEED) or the like.

【0031】また、膜組成の分析は、X線マイクロアナ
リシス(EPMA)や蛍光X線分析(ICP)等により
行なうことができる。
The analysis of the film composition can be performed by X-ray microanalysis (EPMA), X-ray fluorescence analysis (ICP), or the like.

【0032】本発明の磁性積層体において、磁性薄膜の
積層数および磁性薄膜/Ag薄膜ユニットのくり返し回
数に特に制限はなく、目的とする磁気抵抗変化率等に応
じて適宜選定すればよいが、十分な磁気抵抗変化率を得
るためには、くり返し回数を2回以上、特に8回以上と
する。くり返し回数が多いほど自由電子が散乱される割
合が多くなり好ましい。また、くり返し回数をあまりに
多くすると膜質の劣化が大きくなり、特性の向上が望め
なくなるので、500回以下、特に200回以下とする
ことが好ましい。なお、長周期構造は、小角X線回折パ
ターンにて、くり返し周期に応じた1次2次ピーク等の
出現により確認することができる。
In the magnetic laminate of the present invention, the number of layers of the magnetic thin film and the number of repetitions of the magnetic thin film / Ag thin film unit are not particularly limited, and may be appropriately selected according to the intended rate of change in magnetoresistance. In order to obtain a sufficient magnetoresistance change rate, the number of repetitions is set to 2 or more, particularly 8 or more. The higher the number of repetitions, the higher the ratio of scattering of free electrons, which is preferable. Further, if the number of repetitions is too large, the quality of the film deteriorates greatly, and the improvement of the characteristics cannot be expected. The long-period structure can be confirmed by the appearance of a first-order secondary peak or the like corresponding to the repetition period in a small-angle X-ray diffraction pattern.

【0033】このような積層体は、磁性薄膜の層間の反
強磁性的結合の結果、反強磁性を示すものである。反強
磁性は、例えば偏極中性子線回折によって容易に確認す
ることができる。また、反強磁性を示す結果、振動型磁
力計やB−Hトレーサーにて、積層体面内の印加磁場−
磁化曲線ないしB−Hループを測定すると、角形比Br
/Bsは0.5以下、特に0.3以下の値となり、場合
によってはBr/Bsはほぼ0となる。この際、印加磁
場−磁化曲線やB−Hループの減磁カーブと昇磁カーブ
とはきわめて近接する。そして、振動型磁力計やB−H
トレーサーやトルク計で、面内および面内法線方向面の
磁化のしやすさ、あるいは異方性エネルギーを測定する
と、磁化容易軸は面内に存在する。なお、面内のBr/
Bsが0.5をこえると積層体の内部において反強磁性
を示す割合が急激に減少してしまい、その結果、MR変
化率が減少してしまう。
Such a laminate exhibits antiferromagnetism as a result of antiferromagnetic coupling between the layers of the magnetic thin film. Antiferromagnetism can be easily confirmed by, for example, polarized neutron diffraction. In addition, as a result of showing antiferromagnetism, the applied magnetic field in the plane of the laminate was measured using a vibrating magnetometer or BH tracer.
When the magnetization curve or BH loop is measured, the squareness ratio Br
/ Bs is 0.5 or less, especially 0.3 or less, and in some cases, Br / Bs is almost 0. At this time, the applied magnetic field-magnetization curve and the demagnetization curve and the demagnetization curve of the BH loop are extremely close to each other. And a vibrating magnetometer or BH
When the easiness of magnetization or the anisotropy energy of the in-plane and in-plane normal directions is measured with a tracer or a torque meter, the easy axis exists in the plane. In addition, Br /
When Bs exceeds 0.5, the ratio of exhibiting antiferromagnetism in the inside of the stacked body rapidly decreases, and as a result, the MR ratio decreases.

【0034】積層体を形成する基体の材質に特に制限は
なく、アモルファスガラス基板、結晶化ガラス基板の
他、通常用いられる各種基板、例えば、マグネシア、サ
ファイヤ、シリコン、ガリウム−ヒ素、チタン酸ストロ
ンチウム、チタン酸バリウム、ニオブ酸リチウム等の各
種酸化物等の単結晶基板や、アルミナ−チタンカーバイ
ド、チタン酸カルシウム等の多結晶基板はいずれも使用
可能である。
There are no particular restrictions on the material of the substrate forming the laminate, and various substrates that are commonly used, such as magnesia, sapphire, silicon, gallium-arsenic, strontium titanate, as well as amorphous glass substrates and crystallized glass substrates. Single crystal substrates such as various oxides such as barium titanate and lithium niobate, and polycrystalline substrates such as alumina-titanium carbide and calcium titanate can be used.

【0035】Fe/Cr系ではガラス基板を用いると特
性劣化が生じるが、本発明では、ガラス基板を用いても
十分に良好な特性が得られる。このような場合、一般
に、中角領域でのX線回折によれば、ガラス基板上で
は、Ag薄膜は(111)配向しており、Nix Fe
1-x 、Nix Co1-x 、Nix Fey Co1-x-y ではい
ずれもfcc(111)配向をとっており、多結晶とな
っていると考えられる。また、MgO基板上では、Ag
(200)ピークと、Nix Fe1-x 、Nix Co
1- x 、Nix Fey Co1-x-y のいずれでも、(20
0)ピークとが確認され、(100)のエピタキシャル
成長が主になっていると考えられる。
In the case of the Fe / Cr system, when a glass substrate is used, the characteristics deteriorate. However, in the present invention, sufficiently good characteristics can be obtained even when a glass substrate is used. In such a case, generally, according to X-ray diffraction in the mid-angle region, the Ag thin film is (111) -oriented on the glass substrate, and Ni x Fe
1-x , Ni x Co 1-x , and Ni x Fe y Co 1-xy all have fcc (111) orientation and are considered to be polycrystalline. On the MgO substrate, Ag
(200) peak, Ni x Fe 1-x , Ni x Co
1- x , Ni x Fe y Co 1-xy , (20
0) peak was confirmed, and it is considered that epitaxial growth of (100) was mainly performed.

【0036】なお、基体の寸法にも特に制限はなく、適
用される素子に応じて適宜選定すればよい。基体の磁性
積層体が形成される側の表面には、必要に応じて各種下
地膜が形成されていてもよい。
The dimensions of the substrate are not particularly limited, and may be appropriately selected according to the element to be applied. Various base films may be formed on the surface of the base on the side where the magnetic laminate is formed, if necessary.

【0037】さらに、最上層表面には、窒化けい素や酸
化けい素および種々の金属層等の酸化防止膜が設けられ
てもよく、電極引き出しのための金属導電層が設けられ
てもよい。
Further, an oxidation preventing film such as silicon nitride, silicon oxide and various metal layers may be provided on the uppermost layer surface, and a metal conductive layer for leading out electrodes may be provided.

【0038】本発明の磁性積層体を製造するには、分子
線エピタキシー(MBE)法を用いることが好ましい。
本発明の場合、形成する磁性薄膜およびAg薄膜の層厚
が極めてうすいため、ゆっくりと被着させることが必要
となる。成膜中の不純物混入を避けるため、超高真空領
域での成膜が必要となる。また、各々の層を生成する際
に相互拡散を起こし、反強磁性が失われることのないよ
う、被着粒子のエネルギーは低い程よい。この目的にも
っとも適しているのは、MBE法である。
For producing the magnetic laminate of the present invention, it is preferable to use a molecular beam epitaxy (MBE) method.
In the case of the present invention, the thickness of the magnetic thin film and the Ag thin film to be formed are extremely thin, so that it is necessary to apply them slowly. In order to avoid impurity contamination during film formation, film formation in an ultra-high vacuum region is required. The lower the energy of the adhered particles, the better, so as not to cause interdiffusion when forming each layer and to lose the antiferromagnetism. Most suitable for this purpose is the MBE method.

【0039】これに対し、イオンビームスパッタ法によ
る磁性積層体では、被着粒子のエネルギーが高いため、
層間において各々の元素の組成分布が生じる等、膜質に
難点があり、これに起因して、MR変化率の減少等が生
じる。
On the other hand, in the case of a magnetic laminate by ion beam sputtering, the energy of the adhered particles is high,
There are difficulties in film quality, such as the composition distribution of each element between the layers, and this leads to a decrease in the MR change rate and the like.

【0040】MBE法は、超高真空蒸着法の1種であ
り、超高真空中で蒸着源から蒸発した分子ないし物質を
基体表面に付着させて薄膜を成長させる方法である。具
体的には、シャッタの開閉により蒸着源を選択し、膜厚
計で測定しながら磁性薄膜と非磁性薄膜とを交互に蒸着
する。
The MBE method is a type of ultra-high vacuum deposition method in which molecules or substances evaporated from a deposition source are attached to the surface of a substrate in an ultra-high vacuum to grow a thin film. Specifically, a deposition source is selected by opening and closing a shutter, and a magnetic thin film and a non-magnetic thin film are alternately deposited while measuring with a film thickness meter.

【0041】この際、通常、10-11 〜10-9Torr程度
の到達圧力とし、蒸着中の圧力10-11 〜10-7Torr、
特に10-10 〜10-7Torr程度にて、成膜速度0.01
〜10Å/sec 、特に0.1〜1.0Å/sec 程度で成
膜することが好ましい。また、被着粒子は0.01〜5
eV、好ましくは0.01〜1eVの運動エネルギーを有す
る。そして、中心エネルギーは0.05〜0.5eVであ
る。
At this time, the ultimate pressure is usually about 10 -11 to 10 -9 Torr, and the pressure during the deposition is 10 -11 to 10 -7 Torr.
In particular, at about 10 −10 to 10 −7 Torr, a film forming rate of 0.01
It is preferable to form the film at a rate of about 10 to 10 ° / sec, particularly about 0.1 to 1.0 ° / sec. The adhered particles are 0.01 to 5
It has a kinetic energy of eV, preferably 0.01-1 eV. The central energy is 0.05 to 0.5 eV.

【0042】また、Nix1-x (MまたはFeおよび
/またはCoを表し、xは0<x<1の関係を満た
す。)の組成の磁性薄膜を作製する際に用いる蒸着源と
なる母合金としては、Nix1-x (MまたはFeおよ
び/またはCoを表し、xは0<x<1の関係を満た
す。)の組成のものを用いることが好ましい。
Further, it is an evaporation source used for producing a magnetic thin film having a composition of Ni x M 1-x (M represents Fe or / and Co, and x satisfies the relationship of 0 <x <1). As the mother alloy, it is preferable to use an alloy having a composition of Ni x M 1-x (M represents Fe or Fe and / or Co, and x satisfies the relationship of 0 <x <1).

【0043】また、薄膜の結晶構造を整えるために、必
要に応じ、成膜時に基体を加熱してもよい。加熱温度
は、各薄膜間での拡散を防ぐため800℃以下とするこ
とが好ましい。なお、磁性薄膜を磁界中で成膜し、面内
磁気異方性を強めてもよい。
In order to adjust the crystal structure of the thin film, the substrate may be heated at the time of film formation, if necessary. The heating temperature is preferably set to 800 ° C. or less to prevent diffusion between the thin films. Note that a magnetic thin film may be formed in a magnetic field to enhance in-plane magnetic anisotropy.

【0044】本発明の磁性積層体は、MRセンサやMR
ヘッドなどの各種MR素子に好ましく適用され、使用す
る際には、必要に応じてバイアス磁界が印加される。さ
らに、薄膜型の磁気ヘッドのギャップ内、あるいは同一
トラック内に、本発明の磁性積層体を配置し、読み出し
をMR素片で行なうものであってもよい。
The magnetic laminate of the present invention can be used for an MR sensor or an MR sensor.
It is preferably applied to various MR elements such as a head, and when used, a bias magnetic field is applied as necessary. Further, the magnetic laminate of the present invention may be arranged in the gap of the thin film type magnetic head or in the same track, and the reading may be performed by the MR element.

【0045】[0045]

【実施例】以下、具体的実施例を挙げ、本発明をさらに
詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to specific examples.

【0046】実施例1 マグネシア単結晶基体上にNix Fe1-x (x=0.8
1)の組成の磁性薄膜と、Ag薄膜とを交互に蒸着し、
8ÅのNix Fe1-x と24ÅのAgを1単位として、
これを30回積層した磁性積層体サンプルNo. 1を作製
した。以下において、このような場合を [NiFe(8)−Ag(24)]30 と表示する。各薄膜の厚さは、透過型電子顕微鏡により
測定した。
Example 1 Ni x Fe 1-x (x = 0.8) was formed on a magnesia single crystal substrate.
The magnetic thin film having the composition of 1) and the Ag thin film are alternately deposited,
With 8% of Ni x Fe 1-x and 24% of Ag as one unit,
This was laminated 30 times to produce a magnetic laminate sample No. 1. Hereinafter, such a case is indicated as [NiFe (8) -Ag (24)] 30 . The thickness of each thin film was measured with a transmission electron microscope.

【0047】また、薄膜の組成はICPにより測定し
た。
The composition of the thin film was measured by ICP.

【0048】蒸着は、到達圧力7×10-11 Torrの真空
槽内において、MBE法により行なった。動作圧力は9
×10-10 Torr、成膜速度は約0.5Å/sec とし、基
体を30rpm で回転させながら蒸着を行なった。蒸着の
際の基体温度は30℃とした。被着粒子の中心運動エネ
ルギーは、約0.1eVである。
The vapor deposition was carried out by a MBE method in a vacuum chamber at an ultimate pressure of 7 × 10 −11 Torr. Operating pressure is 9
The deposition was performed while rotating the substrate at 30 rpm, at × 10 −10 Torr and at a deposition rate of about 0.5 ° / sec. The substrate temperature during vapor deposition was 30 ° C. The central kinetic energy of the deposited particles is about 0.1 eV.

【0049】また、Nix Fe1-x 磁性薄膜作製の蒸着
源に用いる母合金は、Ni0.8 Fe0.2 の組成のものと
した。
The mother alloy used for the deposition source for producing the Ni x Fe 1-x magnetic thin film had a composition of Ni 0.8 Fe 0.2 .

【0050】このものの印加磁場−磁化曲線を振動型磁
力計により測定した。
The applied magnetic field-magnetization curve was measured using a vibrating magnetometer.

【0051】図1には、試料面内方向の印加磁場−磁化
曲線が示される。この場合の角形比(面内Br/Bs)
は0.1であった。
FIG. 1 shows an applied magnetic field-magnetization curve in the in-plane direction of the sample. Squareness ratio in this case (in-plane Br / Bs)
Was 0.1.

【0052】このものは面内に磁化容易軸をもち、上記
のように、角形比は0.1と小さく、反強磁性を示すこ
とが推定された。実際、偏極中性子線回折の結果も、積
層ユニット厚の2倍周期に対応したブラッグ角に回折線
が認められ、層間の反強磁性的結合が確認された。
This product has an easy axis of magnetization in the plane, and as described above, the squareness ratio was as small as 0.1, and it was estimated that it exhibited antiferromagnetism. In fact, in the result of polarized neutron diffraction, diffraction lines were observed at Bragg angles corresponding to twice the period of the stacking unit thickness, and antiferromagnetic coupling between layers was confirmed.

【0053】サンプルNo. 1を0.5mm×1.0mmの短
冊状とし、外部磁界を最大−20〜+20kOe まで変化
させたときの抵抗を4端子法により測定した。
Sample No. 1 was made into a rectangular shape of 0.5 mm × 1.0 mm, and the resistance when the external magnetic field was changed from −20 to +20 kOe at the maximum was measured by a four-terminal method.

【0054】サンプルNo. 1について、試料面内、電流
と直角方向に外部磁界を印加した場合(Trans )の、室
温RTでの磁気抵抗変化率Δρ/ρS を求めた。ここ
で、ρS は飽和抵抗率(印加磁場を増加させたときにρ
が飽和したときの値)である。また、Δρ=ρ−ρS
で、ρは各々の印加磁場での抵抗率であり、本発明の反
強磁性によるMR変化の場合のΔρは、印加磁場をHと
して、Δρ=ρ(H=O)−ρ(H=20kOe )で表す
ことができる。
For sample No. 1, the magnetoresistance change rate Δρ / ρ S at room temperature RT when an external magnetic field was applied in the plane of the sample and in a direction perpendicular to the current (Trans) was determined. Here, ρ S is the saturation resistivity (when the applied magnetic field is increased, ρ S
Is the value when is saturated). Also, Δρ = ρ−ρ S
Where ρ is the resistivity at each applied magnetic field, and Δρ in the case of MR change due to antiferromagnetism of the present invention is Δρ = ρ (H = O) −ρ (H = 20 kOe, where H is the applied magnetic field. ).

【0055】この結果、Δρ/ρS は7.9%であっ
た。またρS は11.4μΩcm、Δρは0.9μΩcmで
あった。
As a result, Δρ / ρ S was 7.9%. Ρ S was 11.4 μΩcm and Δρ was 0.9 μΩcm.

【0056】実施例2 実施例1のサンプルNo. 1において、基体をアモルファ
スガラスにかえたほかは同様にして[NiFe(8)−
Ag(24)]30の磁性積層体を形成し、サンプルNo.
2を作製した。このものも面内Br/Bsが0.2で、
面内に磁化容易軸をもち、反強磁性を示すことが推定さ
れた。
Example 2 [NiFe (8)-] was prepared in the same manner as in Sample 1 of Example 1 except that the substrate was changed to amorphous glass.
Ag (24)] to form a magnetic laminate of 30
2 was produced. This also has an in-plane Br / Bs of 0.2,
It was presumed that it had an easy axis of magnetization in the plane and exhibited antiferromagnetism.

【0057】サンプルNo. 2について、実施例1と同様
にしてΔρ/ρS を求めたところ、7.1%であった。
またρS は12.0μΩcm、Δρは0.85μΩcmであ
った。
For sample No. 2, Δρ / ρ S was determined in the same manner as in Example 1, and was found to be 7.1%.
Further, ρ S was 12.0 μΩcm and Δρ was 0.85 μΩcm.

【0058】実施例3 実施例1のサンプルNo. 1において、Agの1単位当た
りの厚さを12Åとするほかは同様にして、[NiFe
(8)−Ag(12)]30で表示されるサンプルNo. 3
をMBE法により作製した。ただし、動作圧力は8×1
-10 Torrとした。
Example 3 In the same manner as in the sample No. 1 of Example 1, except that the thickness per unit of Ag was set to 12 °, [NiFe
(8) -Ag (12)] Sample No. 3 displayed by 30
Was prepared by MBE method. However, the operating pressure is 8 × 1
0 -10 Torr.

【0059】このものの試料面内方向の印加磁場−磁化
曲線が図2に示される。この場合の面内Br/Bsは
0.4であり、面内に磁化容易軸をもち、反強磁性を示
すことが推定された。
FIG. 2 shows an applied magnetic field-magnetization curve in the in-plane direction of the sample. In this case, in-plane Br / Bs was 0.4, and it was presumed to have an easy axis of magnetization in the plane and exhibit antiferromagnetism.

【0060】サンプルNo. 3について、実施例1と同様
にしてΔρ/ρS を求めたところ、7.1%であった。
またρS は18.4μΩcm、Δρは1.3μΩcmであっ
た。
For sample No. 3, Δρ / ρ S was determined in the same manner as in Example 1, and found to be 7.1%.
Ρ S was 18.4 μΩcm and Δρ was 1.3 μΩcm.

【0061】実施例4 実施例3のサンプルNo. 3において、基体をアモルファ
スガラスにかえたほかは同様にして[NiFe(8)−
Ag(12)]30の磁性積層体を形成し、サンプルNo.
4を作製した。このものも面内Br/Bsは0.4で、
面内に磁化容易軸をもち、反強磁性を示すことが推定さ
れた。
Example 4 [NiFe (8)-] was prepared in the same manner as in Example 3 except that the substrate was changed to amorphous glass.
Ag (12)] A magnetic laminate of 30 was formed.
4 was produced. This also has an in-plane Br / Bs of 0.4,
It was presumed that it had an easy axis of magnetization in the plane and exhibited antiferromagnetism.

【0062】サンプルNo. 4について、実施例1と同様
にしてΔρ/ρS を求めたところ、6.3%であった。
またρS は19.0μΩcm、Δρは1.2μΩcmであっ
た。
For sample No. 4, Δρ / ρ S was determined in the same manner as in Example 1, and it was 6.3%.
Further, ρ S was 19.0 μΩcm and Δρ was 1.2 μΩcm.

【0063】実施例5 実施例1のサンプルNo. 1(基体:マグネシア)に準じ
た[NiFe(8)−Ag(t)]30において、Ag薄
膜の厚さtを種々変えたときの室温RTでのAg薄膜の
厚さと、Δρ/ρS との関係が図3に示される。ここで
Δρは印加磁場0での抵抗率をρO としたときの絶対抵
抗値であり、Δρ=ρO −ρS で与えられる。
Example 5 Room temperature RT when the thickness t of the Ag thin film was variously changed in [NiFe (8) -Ag (t)] 30 according to the sample No. 1 of Example 1 (substrate: magnesia) FIG. 3 shows the relationship between the thickness of the Ag thin film and Δρ / ρ S in FIG. Here, Δρ is an absolute resistance value when the resistivity at an applied magnetic field of 0 is ρ O, and is given by Δρ = ρ O −ρ S.

【0064】図3から明らかなように、Δρ/ρS はA
g薄膜の膜厚に依存し、周期的に振動して変化し、膜厚
24ÅでΔρ/ρS の最大値7.9%を示した。
As is clear from FIG. 3, Δρ / ρ S is A
The thickness g depends on the thickness of the thin film, and changes by vibrating periodically. The maximum value of Δρ / ρ S was 7.9% at a thickness of 24 °.

【0065】実施例6 実施例2のサンプルNo. 2(基体:ガラス)に準じた
[NiFe(8)−Ag(t)]30において、Ag薄膜
の厚さtを種々変えたときの室温RTでのAg薄膜の厚
さと、Δρ/ρS との関係が、実施例5と同様に、図3
に併せて示される。
Example 6 Room temperature RT when [NiFe (8) -Ag (t)] 30 according to the sample No. 2 (substrate: glass) of Example 2 and the thickness t of the Ag thin film was variously changed The relationship between the thickness of the Ag thin film and Δρ / ρ S in FIG.
Are also shown.

【0066】図3から明らかなように、実施例5同様、
Δρ/ρS はAg薄膜の膜厚に依存し、周期的に振動し
て変化し、膜厚24ÅでΔρ/ρS の最大値7.1%を
示した。
As is apparent from FIG. 3, similar to the fifth embodiment,
Δρ / ρ S depends on the film thickness of the Ag thin film, and changes by vibrating periodically. The maximum value of Δρ / ρ S was 7.1% at a film thickness of 24 °.

【0067】実施例7 実施例1のサンプルNo. 1において、Nix Fe1-x
1単位当たりの厚さを12Åとするほかは同様にして、
[NiFe(12)−Ag(24)]30で表示されるサ
ンプルNo. 7を、MBE法により作製した。ただし、動
作圧力は9×10-10Torr とした。
Example 7 Sample No. 1 of Example 1 was repeated except that the thickness per unit of Ni x Fe 1-x was 12 mm.
Sample No. 7 represented by [NiFe (12) -Ag (24)] 30 was prepared by MBE. However, the operating pressure was 9 × 10 −10 Torr.

【0068】サンプルNo. 7は面内Br/Bsが0.4
で、面内に磁化容易軸をもち、反強磁性を示すことが推
定された。
Sample No. 7 had an in-plane Br / Bs of 0.4.
It was presumed that the film had an easy axis of magnetization in the plane and exhibited antiferromagnetism.

【0069】サンプルNo. 7において、実施例1と同様
にしてΔρ/ρS を求めたところ、5.7%であった。
For sample No. 7, Δρ / ρ S was determined in the same manner as in Example 1, and found to be 5.7%.

【0070】実施例7において、基体をガラス基板とす
るほかは同様にして磁性積層体を作製し、特性を調べた
ところ、ほぼ同等の結果が得られた。
A magnetic laminate was prepared in the same manner as in Example 7 except that the substrate was a glass substrate, and its characteristics were examined. As a result, almost the same results were obtained.

【0071】なお、上記において、磁性薄膜の組成をN
x Fe1-x (x=0.9)にかえて、そのほかは同様
に、磁性積層体を作製し、特性を調べたところ、上記と
ほぼ同等の結果が得られた。
In the above description, the composition of the magnetic thin film is set to N
A magnetic laminate was prepared in the same manner as above except that i x Fe 1-x (x = 0.9) was used, and the characteristics were examined. As a result, substantially the same results as described above were obtained.

【0072】実施例8 マグネシア単結晶基体上にNix Co1-x (x=0.7
9)の組成の磁性薄膜と、Ag薄膜とを交互に蒸着し、
8ÅのNix Co1-x と10ÅのAgを1単位として、
これを30回積層した[NiCo(8)−Ag(1
0)]30で表示される磁性積層体サンプルNo. 11を作
製した。各薄膜の厚さは、透過型電子顕微鏡により測定
した。
Example 8 Ni x Co 1 -x (x = 0.7) was formed on a magnesia single crystal substrate.
A magnetic thin film having the composition of 9) and an Ag thin film are alternately deposited,
With 8% Ni x Co 1-x and 10% Ag as one unit,
This was laminated 30 times [NiCo (8) -Ag (1
0)] A magnetic laminate sample No. 11 indicated by 30 was produced. The thickness of each thin film was measured with a transmission electron microscope.

【0073】また、薄膜の組成はICPにより測定し
た。
The composition of the thin film was measured by ICP.

【0074】蒸着は、到達圧力9×10-11 Torrの真空
槽内において、MBE法により行なった。動作圧力は1
×10-9Torr、成膜速度は約0.3Å/sec とし、基体
を30rpm で回転させながら蒸着を行なった。蒸着の際
の基体温度は28℃とした。被着粒子の中心運動エネル
ギーは、約0.1eVである。
The vapor deposition was performed by MBE in a vacuum chamber having a ultimate pressure of 9 × 10 −11 Torr. Operating pressure is 1
The deposition was performed at a rotation speed of 30 rpm at × 10 −9 Torr and a deposition rate of about 0.3 ° / sec. The substrate temperature at the time of vapor deposition was 28 ° C. The central kinetic energy of the deposited particles is about 0.1 eV.

【0075】また、Nix Co1-x 磁性薄膜作製の蒸着
源に用いる母合金は、Ni0.8 Co0.2 の組成のものと
した。
The mother alloy used for the deposition source for producing the Ni x Co 1 -x magnetic thin film had a composition of Ni 0.8 Co 0.2 .

【0076】このものの印加磁場−磁化曲線を振動型磁
力計により測定した。
The applied magnetic field-magnetization curve was measured with a vibrating magnetometer.

【0077】図4には、試料面内方向の印加磁場−磁化
曲線が示される。この場合の角形比(面内Br/Bs)
は0.1であった。
FIG. 4 shows an applied magnetic field-magnetization curve in the in-plane direction of the sample. Squareness ratio in this case (in-plane Br / Bs)
Was 0.1.

【0078】このものは面内に磁化容易軸をもち、上記
のように、角形比は0.1と小さく、反強磁性を示すこ
とが推定された。実際、偏極中性子線回折の結果も、積
層ユニット厚の2倍周期に対応したブラッグ角に回折線
が認められ、層間の反強磁性的結合が確認された。
It was presumed to have an easy axis of magnetization in the plane, a small squareness ratio of 0.1 as described above, and exhibit antiferromagnetism. In fact, in the result of polarized neutron diffraction, diffraction lines were observed at Bragg angles corresponding to twice the period of the stacking unit thickness, and antiferromagnetic coupling between layers was confirmed.

【0079】サンプルNo. 11を0.5mm×1.0mmの
短冊状とし、外部磁界を最大−20〜+20kOe まで変
化させたときの抵抗を4端子法により測定した。
Sample No. 11 was formed into a rectangular shape of 0.5 mm × 1.0 mm, and the resistance when the external magnetic field was varied from −20 to +20 kOe at the maximum was measured by a four-terminal method.

【0080】サンプルNo. 11について、試料面内、電
流と直角方向に外部磁界を印加した場合(Trans )の、
室温RTでの磁気抵抗変化率Δρ/ρS を実施例1と同
様にして求めたところ、7.5%であった。またρS
14.9μΩcm、Δρは1.1μΩcmであった。
For sample No. 11, when an external magnetic field was applied in the plane of the sample and perpendicular to the current (Trans),
It was determined by a magnetoresistance ratio [Delta] [rho] / [rho S at room temperature RT in the same manner as in Example 1, was 7.5%. Ρ S was 14.9 μΩcm and Δρ was 1.1 μΩcm.

【0081】さらに、77KでのΔρ/ρS は15.8
%であり、このときのρS は12.8μΩcm、Δρは
2.0μΩcmであった。
Further, Δρ / ρ S at 77K is 15.8.
%, Ρ S at this time was 12.8 μΩcm, and Δρ was 2.0 μΩcm.

【0082】実施例9 実施例8のサンプルNo. 11において、Agの1単位当
たりの厚さを15Åとするほかは同様にして、[NiC
o(8)−Ag(15)]30で表示されるサンプルNo.
12をMBE法により作製した。ただし、動作圧力は9
×10-10 Torrとした。
Example 9 Sample No. 11 of Example 8 was repeated except that the thickness per unit of Ag was 15 °.
o (8) -Ag (15)] Sample No. indicated by 30
No. 12 was produced by the MBE method. However, the operating pressure is 9
× 10 −10 Torr.

【0083】このものの試料面内方向の印加磁場−磁化
曲線が図5に示される。この場合の面内Br/Bsは
0.02であり、面内に磁化容易軸をもち、反強磁性を
示すことが推定された。
FIG. 5 shows an applied magnetic field-magnetization curve in the in-plane direction of the sample. In this case, in-plane Br / Bs was 0.02, and it was presumed to have an easy axis of magnetization in the plane and exhibit antiferromagnetism.

【0084】サンプルNo. 12について、実施例1と同
様にして室温RTでのΔρ/ρS を求めたところ、6.
4%であった。またρS は13.9μΩcm、Δρは0.
9μΩcmであった。
For sample No. 12, Δρ / ρ S at room temperature RT was determined in the same manner as in Example 1.
4%. Further, ρ S is 13.9 μΩcm, and Δρ is 0.1.
It was 9 μΩcm.

【0085】さらに、77KでのΔρ/ρS は17.7
%であり、このときのρS は10.1μΩcm、Δρは
1.8μΩcmであった。
Further, Δρ / ρ S at 77K is 17.7.
%, Ρ S at this time was 10.1 μΩcm, and Δρ was 1.8 μΩcm.

【0086】実施例10 実施例8のサンプルNo. 11(基体:マグネシア)に準
じた[NiCo(8)−Ag(t)]30において、Ag
薄膜の厚さtを種々変えたときの室温RTおよび77K
でのAg薄膜の厚さと、Δρ/ρS との関係が、それぞ
れ、図6に示される。ここでΔρは印加磁場0での抵抗
率をρO としたときの絶対抵抗値であり、Δρ=ρO
ρS で与えられる。
Example 10 [NiCo (8) -Ag (t)] 30 according to Sample No. 11 of Example 8 (base: magnesia)
Room temperature RT and 77K when the thickness t of the thin film is variously changed
6 shows the relationship between the thickness of the Ag thin film and Δρ / ρ S in FIG. Here, Δρ is an absolute resistance value when the resistivity at an applied magnetic field of 0 is ρ O, and Δρ = ρ O
given by ρ S.

【0087】図6から明らかなように、Δρ/ρS はA
g薄膜の膜厚に依存し、周期的に振動して変化し、室温
RTでは膜厚10ÅでΔρ/ρS の最大値7.5%を示
した。また、77Kでは膜厚15ÅでΔρ/ρS の最大
値17.7%を示した。
As is clear from FIG. 6, Δρ / ρ S is A
It changes depending on the thickness of the g thin film and vibrates periodically. At room temperature RT, the maximum value of Δρ / ρ S is 7.5% at a thickness of 10 °. At 77K, the maximum value of Δρ / ρ S was 17.7% at a film thickness of 15 °.

【0088】なお、このとき、室温RT、77Kにおけ
るAg薄膜の厚さとρS 、Δρとの関係は、図7に示さ
れるとおりである。
At this time, the relationship between the thickness of the Ag thin film at room temperature RT and 77 K and ρ s and Δρ is as shown in FIG.

【0089】実施例11 実施例8のサンプルNo. 11において、Nix Co1-x
の1単位当たりの厚さを11Åとするほかは同様にし
て、[NiCo(11)−Ag(10)]30で表示され
るサンプルNo. 13を、MBE法により作製した。ただ
し、動作圧力は2×10-9Torrとした。
Example 11 In the sample No. 11 of the example 8, Ni x Co 1 -x
Sample No. 13 represented by [NiCo (11) -Ag (10)] 30 was similarly prepared except that the thickness per unit was set to 11 ° by MBE. However, the operating pressure was 2 × 10 −9 Torr.

【0090】サンプルNo. 13は面内Br/Bsが0.
2で、面内に磁化容易軸をもち、反強磁性を示すことが
推定された。
Sample No. 13 has an in-plane Br / Bs of 0.
In No. 2, it was presumed to have an easy axis of magnetization in the plane and exhibit antiferromagnetism.

【0091】サンプルNo. 13において、実施例1と同
様にして室温でのΔρ/ρS を求めたところ、5.8%
であった。またρS は15.4μΩcm、Δρは0.9μ
Ωcmであった。
For sample No. 13, Δρ / ρ S at room temperature was determined in the same manner as in Example 1. As a result, 5.8%
Met. Ρ S is 15.4 μΩcm, Δρ is 0.9 μΩ
Ωcm.

【0092】実施例12 実施例8のサンプルNo. 11において、Nix Co1-x
の1単位当たりの厚さを14Åとするほかは同様にし
て、[NiCo(14)−Ag(10)]30で表示され
るサンプルNo. 14をMBE法により作製した。ただ
し、動作圧力は9×10-10Torr とした。
Example 12 In the sample No. 11 of the example 8, the Ni x Co 1-x
The sample No. 14 represented by [NiCo (14) -Ag (10)] 30 was similarly prepared by MBE except that the thickness per unit was 14 °. However, the operating pressure was 9 × 10 −10 Torr.

【0093】サンプルNo. 14は面内Br/Bsが0.
5で、面内に磁化容易軸をもち、反強磁性を示すことが
推定された。
Sample No. 14 had an in-plane Br / Bs of 0.
In No. 5, it was presumed to have an easy axis of magnetization in the plane and exhibit antiferromagnetism.

【0094】サンプルNo. 14について、実施例1と同
様にして室温でのΔρ/ρS を求めたところ、3.9%
であった。
For sample No. 14, Δρ / ρ S at room temperature was determined in the same manner as in Example 1. As a result, 3.9%
Met.

【0095】実施例8〜12において、基体をガラス基
板とするほかは同様にして磁性積層体を作製し、特性を
調べたところ、上記とほぼ同等の結果が得られた。
In Examples 8 to 12, a magnetic laminate was prepared in the same manner as above except that the substrate was a glass substrate, and its characteristics were examined. As a result, substantially the same results as described above were obtained.

【0096】また、実施例8〜12において、磁性薄膜
の組成をNix Co1-x (x=0.7)にかえて、その
ほかは同様に、磁性積層体を作製し、特性を調べたとこ
ろ、上記とほぼ同等の結果が得られた。
[0096] Further, in Examples 8 to 12, by changing the composition of the magnetic thin film Ni x Co 1-x (x = 0.7), other likewise to produce a magnetic multilayer structure, was characterized However, almost the same results as above were obtained.

【0097】実施例13 マグネシア単結晶基体上にNix Fey Co1-x-y (x
=0.1、y=0.1)の組成の磁性薄膜と、Ag薄膜
とを交互に蒸着し、8ÅのNix Fey Co1-x-y と1
2ÅのAgを1単位として、これを50回積層した[N
iFeCo(8)−Ag(12)]50で表示される磁性
積層体サンプルNo. 21を作製した。
Example 13 Ni x Fe y Co 1-xy (x
= 0.1, y = 0.1), and a magnetic thin film and an Ag thin film are alternately vapor-deposited, and Ni x Fe y Co 1-xy of 8 ° and 1
This was laminated 50 times using 2% Ag as one unit [N
iFeCo (8) -Ag (12)] 50 was prepared as a magnetic laminate sample No. 21.

【0098】各薄膜の厚さは、透過型電子顕微鏡により
測定した。
The thickness of each thin film was measured with a transmission electron microscope.

【0099】また、薄膜の組成はICPにより測定し
た。
The composition of the thin film was measured by ICP.

【0100】蒸着は、到達圧力7×10-11 Torrの真空
槽内において、MBE法により行なった。動作圧力は9
×10-10 Torr、成膜速度は約0.3Å/sec とし、基
体を30rpm で回転させながら蒸着を行なった。蒸着の
際の基体温度は25℃とした。被着粒子の中心運動エネ
ルギーは、約0.1eVである。
The vapor deposition was performed by MBE in a vacuum chamber at a ultimate pressure of 7 × 10 −11 Torr. Operating pressure is 9
The deposition was performed at a rate of × 10 −10 Torr and a deposition rate of about 0.3 ° / sec, while rotating the substrate at 30 rpm. The substrate temperature during vapor deposition was 25 ° C. The central kinetic energy of the deposited particles is about 0.1 eV.

【0101】また、Nix Fey Co1-x-y 磁性薄膜作
製の蒸着源に用いる母合金は、Ni0.12Fe0.12Co
0.76の組成のものとした。
The mother alloy used for the deposition source for producing the Ni x Fe y Co 1-xy magnetic thin film was Ni 0.12 Fe 0.12 Co
The composition was 0.76 .

【0102】このものの面内Br/Bsが0.1で、面
内に磁化容易軸をもち、反強磁性を示すことが推定され
た。
It was estimated that the in-plane Br / Bs was 0.1, the surface had an easy axis of magnetization, and exhibited antiferromagnetism.

【0103】サンプルNo. 21について、実施例1と同
様にして室温でのΔρ/ρS を求めたところ、12%で
あった。またρS は14μΩcm、Δρは1.7μΩcmで
あった。
For Sample No. 21, the Δρ / ρ S at room temperature was determined in the same manner as in Example 1, and found to be 12%. Ρ S was 14 μΩcm and Δρ was 1.7 μΩcm.

【0104】[0104]

【発明の効果】本発明の磁性積層体は、従来の反強磁性
的結合による磁気抵抗変化積層体と比較して、より低磁
場でより大きな磁気抵抗変化が得られる。そして、磁気
結合エネルギーの振動周期変化を利用して、0.01〜
20kOe の任意の動作磁界にて、1〜15%の任意の磁
気変化を得ることができる。また、ガラス基体にも積層
できる等、基板材質の制限がなく、成膜時の基体温度に
も制限がなく、量産上有利である。そして、外部磁場方
向によって、異なるMR変化特性を得ることができると
いう特徴をもつ。
According to the magnetic laminate of the present invention, a larger magnetoresistance change can be obtained at a lower magnetic field, as compared with a conventional magnetoresistance change laminate by antiferromagnetic coupling. Then, using the oscillation cycle change of the magnetic coupling energy,
At any operating magnetic field of 20 kOe, any magnetic change of 1 to 15% can be obtained. Further, there is no restriction on the material of the substrate, such as lamination on a glass substrate, and there is no restriction on the substrate temperature during film formation, which is advantageous in mass production. Further, it has a feature that different MR change characteristics can be obtained depending on the direction of the external magnetic field.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁性積層体の印加磁場−磁化曲線を示
すグラフである。
FIG. 1 is a graph showing an applied magnetic field-magnetization curve of a magnetic laminate of the present invention.

【図2】本発明の磁性積層体の印加磁場−磁化曲線を示
すグラフである。
FIG. 2 is a graph showing an applied magnetic field-magnetization curve of the magnetic laminate of the present invention.

【図3】本発明の磁性積層体のAg薄膜の厚さと、磁気
抵抗変化率との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the thickness of the Ag thin film of the magnetic laminate of the present invention and the rate of change in magnetoresistance.

【図4】本発明の磁性積層体の印加磁場−磁化曲線を示
すグラフである。
FIG. 4 is a graph showing an applied magnetic field-magnetization curve of the magnetic laminate of the present invention.

【図5】本発明の磁性積層体の印加磁場−磁化曲線を示
すグラフである。
FIG. 5 is a graph showing an applied magnetic field-magnetization curve of the magnetic laminate of the present invention.

【図6】本発明の磁性積層体のAg薄膜の厚さと、磁気
抵抗変化率との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the thickness of the Ag thin film of the magnetic laminate of the present invention and the rate of change in magnetoresistance.

【図7】本発明の磁性積層体のAg薄膜の厚さと、ρ
S 、Δρとの関係を示すグラフである。
FIG. 7 shows the thickness of the Ag thin film of the magnetic laminate of the present invention and ρ.
6 is a graph showing the relationship between S and Δρ.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−23681(JP,A) 特開 昭63−64374(JP,A) 特開 平3−52111(JP,A) 特許3320079(JP,B2) (58)調査した分野(Int.Cl.7,DB名) H01F 10/16 H01F 1/147 H01L 43/08 H01L 43/10 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-23681 (JP, A) JP-A-63-64374 (JP, A) JP-A-3-52111 (JP, A) Patent 3320079 (JP, A) B2) (58) Field surveyed (Int.Cl. 7 , DB name) H01F 10/16 H01F 1/147 H01L 43/08 H01L 43/10

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 4〜20Åの厚さのNix1-x (Mは
Feおよび/またはCoを表し、xは0<x<1の関係
を満たす。)の組成の磁性薄膜と、2〜60Åの厚さの
Ag薄膜とが積層されており、前記磁性薄膜とAg薄膜
とのユニットのくり返し回数を2回以上として積層し、
面内に磁化容易軸をもち、磁化容易軸方向の角形比Br
/Bsが0.5以下であることを特徴とする磁性積層
体。
1. A magnetic thin film having a composition of Ni x M 1-x (M represents Fe and / or Co and x satisfies a relation of 0 <x <1) having a thickness of 4 to 20 °; An Ag thin film having a thickness of about 60 ° is laminated, and the unit of the magnetic thin film and the Ag thin film is laminated two or more times, and laminated.
Has an easy axis of magnetization in the plane and has a squareness ratio Br in the easy axis direction.
/ Bs is 0.5 or less.
【請求項2】 反強磁性を示す請求項1の磁性積層体。2. The magnetic laminate according to claim 1, which exhibits antiferromagnetism. 【請求項3】 前記磁性薄膜とAg薄膜とを分子線エピ
タキシー法によって積層した請求項1または2の磁性積
層体。
3. The magnetic laminate according to claim 1, wherein the magnetic thin film and the Ag thin film are laminated by a molecular beam epitaxy method.
【請求項4】 請求項1〜3のいずれかに記載の磁性積
層体を有することを特徴とする磁気抵抗効果素子。
4. A magnetoresistive element comprising the magnetic laminate according to claim 1.
JP35467391A 1991-12-19 1991-12-19 Magnetic laminate and magnetoresistive element Expired - Fee Related JP3346787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35467391A JP3346787B2 (en) 1991-12-19 1991-12-19 Magnetic laminate and magnetoresistive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35467391A JP3346787B2 (en) 1991-12-19 1991-12-19 Magnetic laminate and magnetoresistive element

Publications (2)

Publication Number Publication Date
JPH05166629A JPH05166629A (en) 1993-07-02
JP3346787B2 true JP3346787B2 (en) 2002-11-18

Family

ID=18439137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35467391A Expired - Fee Related JP3346787B2 (en) 1991-12-19 1991-12-19 Magnetic laminate and magnetoresistive element

Country Status (1)

Country Link
JP (1) JP3346787B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033106A (en) * 2015-12-25 2019-02-28 国立研究開発法人物質・材料研究機構 Surface direct electrification giant magnetoresistance element lamination film, surface direct electrification giant magnetoresistance element, and application of the same

Also Published As

Publication number Publication date
JPH05166629A (en) 1993-07-02

Similar Documents

Publication Publication Date Title
JP3320079B2 (en) Magnetic laminate and magnetoresistive element
US7443639B2 (en) Magnetic tunnel junctions including crystalline and amorphous tunnel barrier materials
EP0717422B1 (en) Exchange coupling film and magnetoresistive element
US5858125A (en) Magnetoresistive materials
US20050122636A1 (en) Stability-enhancing underlayer for exchange-coupled magnetic structures, magnetoresistive sensors, and magnetic disk drive systems
US5578385A (en) Magnetoresistance effect element
TWI826643B (en) Anti-ferromagnets (saf) device
CN107887506B (en) Magnetoresistive effect element
JPH08127864A (en) Magneto resistance effect film and its production
US5716719A (en) Magnetoresistance effect element
US5942309A (en) Spin valve magnetoresistive device
JPH10188235A (en) Magneto-resistive film and its production
JP2743806B2 (en) Magnetoresistive film and method of manufacturing the same
JP2961914B2 (en) Magnetoresistive material and method of manufacturing the same
JP2830513B2 (en) Magnetoresistive material and method of manufacturing the same
JP3346787B2 (en) Magnetic laminate and magnetoresistive element
JP3226254B2 (en) Exchange coupling film, magnetoresistive element and magnetoresistive head
JP3100714B2 (en) Magnetic laminate and magnetoresistive element
JP2957233B2 (en) Magnetic multilayer film
JP2957236B2 (en) Magnetic multilayer film
JPH0567525A (en) Magnetic laminated body, its manufacture, and manufacture of magneto-resistance effect element
JPH11329882A (en) Manufacture of exchange coupling film and magnetoresistive effect device
JP3021785B2 (en) Magnetoresistive material and method of manufacturing the same
JPH05275232A (en) Magnetic laminate and magnetic resisting effect element
JPH08316033A (en) Magnetic laminate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070906

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees