JP3226254B2 - Exchange coupling film, magnetoresistive element and magnetoresistive head - Google Patents

Exchange coupling film, magnetoresistive element and magnetoresistive head

Info

Publication number
JP3226254B2
JP3226254B2 JP23733595A JP23733595A JP3226254B2 JP 3226254 B2 JP3226254 B2 JP 3226254B2 JP 23733595 A JP23733595 A JP 23733595A JP 23733595 A JP23733595 A JP 23733595A JP 3226254 B2 JP3226254 B2 JP 3226254B2
Authority
JP
Japan
Prior art keywords
film
ferromagnetic
exchange coupling
exchange
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23733595A
Other languages
Japanese (ja)
Other versions
JPH0982524A (en
Inventor
ひろみ 福家
裕三 上口
仁志 岩崎
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23733595A priority Critical patent/JP3226254B2/en
Priority to US08/672,912 priority patent/US5780176A/en
Publication of JPH0982524A publication Critical patent/JPH0982524A/en
Priority to US09/061,070 priority patent/US6159593A/en
Priority to US09/111,884 priority patent/US6368706B1/en
Priority to US09/442,032 priority patent/US6395388B1/en
Application granted granted Critical
Publication of JP3226254B2 publication Critical patent/JP3226254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3218Exchange coupling of magnetic films via an antiferromagnetic interface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Measuring Magnetic Variables (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、強磁性体膜と反強
磁性体膜との交換結合を利用する交換結合膜、およびこ
の交換結合膜を具備した磁界検出用センサや再生用磁気
ヘッドなどの磁気抵抗効果素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exchange coupling film utilizing exchange coupling between a ferromagnetic film and an antiferromagnetic film, and a magnetic field detecting sensor and a reproducing magnetic head provided with the exchange coupling film. Related to a magnetoresistive effect element.

【0002】[0002]

【従来の技術】従来より高密度磁気記録における再生用
ヘッドとして、磁気抵抗効果素子を用いた磁気ヘッドの
研究が進められている。現在、磁気抵抗効果素子材料と
しては80at%Ni−20at%Fe合金(いわゆる
パーマロイ)薄膜が用いられている。近年、これに代わ
る材料として巨大磁気抵抗効果を示す(Co/Cu)n
などの人工格子膜やスピンバルブ膜が注目されている。
しかし、これらの材料からなる磁気抵抗効果膜は磁区を
持つため、これに起因するバルクハウゼンノイズが実用
化の上で大きな問題となっており、磁気抵抗効果膜を単
磁区化する方法が種々検討されている。その1つに強磁
性体である磁気抵抗効果膜と反強磁性体膜との交換結合
を利用して磁気抵抗効果膜の磁区を特定方向に制御する
方法がある。このような反強磁性体材料としてはγ−F
eMn合金が広く知られている(例えば、米国特許第4
103315号および米国特許第5014147号)。
また、巨大磁気抵抗効果が得られるスピンバルブ膜にお
いては、反強磁性体膜はこれと接する強磁性体膜の磁化
を固定する役割を果たす。この磁化の固定力すなわち交
換結合力の大きさは、スピンバルブ膜を再生ヘッド部に
用いた磁気ヘッドにおける再生出力の大きさに大きく関
ってくる。しかし、現在までに用いられている強磁性体
膜と反強磁性体膜との組み合わせでは大きな交換結合力
が得られず、その結果十分な再生出力が得られないなど
の問題があった。
2. Description of the Related Art As a reproducing head for high-density magnetic recording, a magnetic head using a magnetoresistive element has been studied. At present, an 80 at% Ni-20 at% Fe alloy (so-called permalloy) thin film is used as a magnetoresistive element material. In recent years, it has a giant magnetoresistance effect as an alternative material (Co / Cu) n
Such artificial lattice films and spin valve films have attracted attention.
However, since the magnetoresistive films made of these materials have magnetic domains, Barkhausen noise caused by these magnetic domains has become a serious problem in practical use. Have been. One of the methods is to control the magnetic domain of the magnetoresistive film in a specific direction by utilizing exchange coupling between the magnetoresistive film and the antiferromagnetic film, which are ferromagnetic materials. As such an antiferromagnetic material, γ-F
eMn alloys are widely known (eg, US Pat.
103315 and U.S. Pat. No. 5,014,147).
In a spin valve film capable of obtaining a giant magnetoresistive effect, the antiferromagnetic film plays a role of fixing the magnetization of the ferromagnetic film in contact therewith. The magnitude of the magnetization fixing force, that is, the magnitude of the exchange coupling force, largely depends on the magnitude of the reproduction output in the magnetic head using the spin valve film for the reproduction head. However, the combination of the ferromagnetic film and the antiferromagnetic film used up to now does not provide a large exchange coupling force, resulting in a problem that a sufficient reproduction output cannot be obtained.

【0003】[0003]

【発明が解決しようとする課題】上述したように、強磁
性体膜と反強磁性体膜との交換結合を利用する交換結合
膜は、例えば磁気抵抗効果素子のバルクハウゼンノイズ
の低減、スピンバルブ膜の磁化の固着などに応用されて
いるが、それほど大きな交換結合力が得られないという
問題があった。
As described above, an exchange coupling film utilizing exchange coupling between a ferromagnetic film and an antiferromagnetic film can be used, for example, to reduce Barkhausen noise of a magnetoresistive effect element and to provide a spin valve. Although applied to fixation of the magnetization of a film, there is a problem that a very large exchange coupling force cannot be obtained.

【0004】本発明の目的は、大きな交換結合力が得ら
れる交換結合膜、およびこのような交換結合膜を有し、
安定した出力を長期間にわたって得ることのできる磁気
抵抗効果素子を提供することにある。
[0004] It is an object of the present invention to provide an exchange coupling membrane capable of obtaining a large exchange coupling force, and an exchange coupling membrane having such an exchange coupling membrane.
An object of the present invention is to provide a magnetoresistive element capable of obtaining a stable output for a long period of time.

【0005】[0005]

【課題を解決するための手段】本発明の交換結合膜は、
Fe,CoおよびNiからなる群より選択される少なく
とも1種の元素からなる強磁性体膜と、反強磁性体膜と
を積層した構造を有する交換結合膜において、前記強磁
性体膜と前記反強磁性体膜とのに、Fe,Coおよび
Niからなる群より選択される少なくとも1種の元素
と、B,Al,Ca,Sc,Cu,Sr,Rh,Pd,
Ag,La,Ce,Pr,Yb,Ir,Pt,Au,P
b,Li,Ti,Rb,V,Zr,K,Cr,Nb,M
o,Ba,Nd,Eu,Ta,W,C,Zr,Cd,M
g,Y,Tc,Ru,Gd,Tb,Dy,Ho,Er,
Tm,Lu,Hf,Re,Os,Tl,Na,Inおよ
びGaからなる群より選択される少なくとも1種の元素
とを含有する材料(Co−Crを除く)からなり、組成
が膜厚方向に連続的または段階的に変化する中間膜とを
備えることを特徴とするものである。本発明の磁気抵抗
効果素子は、上記交換結合膜と、上記交換結合膜を構成
する強磁性体膜に電流を通電する電極とを具備したこと
を特徴とするものである。また、本発明の磁気抵抗効果
ヘッドは、このような磁気抵抗効果素子を具備したこと
を特徴とするものである。
The exchange coupling membrane of the present invention comprises:
Fe, and the ferromagnetic film made of at least one element selected from the group consisting of Co and Ni, in exchange coupling film having a stacked structure of the antiferromagnetic film, the ferromagnetic film and the anti between the ferromagnetic film, Fe, and at least one element selected from the group consisting of Co and Ni, B, Al, Ca, Sc, Cu, Sr, Rh, Pd,
Ag, La, Ce, Pr, Yb, Ir, Pt, Au, P
b, Li, Ti, Rb, V, Zr, K, Cr, Nb, M
o, Ba, Nd, Eu, Ta, W, C, Zr, Cd, M
g, Y, Tc, Ru, Gd, Tb, Dy, Ho, Er,
Tm, Lu, Hf, Re, Os, Tl, Na, materials containing at least one element selected from the group consisting of In and Ga (except for Co-Cr) Tona is, the composition
There the intermediate layer changes continuously or stepwise in the thickness direction
It is characterized in further comprising. According to another aspect of the invention, there is provided a magnetoresistive element including: the exchange coupling film; and an electrode that supplies a current to the ferromagnetic film that forms the exchange coupling film. A magnetoresistive head according to the present invention is provided with such a magnetoresistive element.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の交換結合膜において、強磁性体膜はFe,Co
およびNiからなる群より選択される少なくとも1種の
元素からなるものであり、一般式CoX FeYNiZ
(0≦X≦1,0≦Y≦1,0≦Z≦1,X+Y+Z=
1)で表される。より具体的には、Co0.9 Fe0.1
Ni0.8 Fe0.2 、Coなどが挙げられる。本発明の交
換結合膜において、反強磁性体膜としては例えばγ−F
eMn合金、NiO、NiMn合金、IrMn合金が挙
げられる。これらの強磁性体膜と反強磁性体膜とは少な
くとも部分的に積層されて、交換結合していればよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
In the exchange coupling film of the present invention, the ferromagnetic film is made of Fe, Co.
And at least one element selected from the group consisting of Ni and Ni, having the general formula Co x Fe Y Ni Z
(0 ≦ X ≦ 1, 0 ≦ Y ≦ 1, 0 ≦ Z ≦ 1, X + Y + Z =
It is represented by 1). More specifically, Co 0.9 Fe 0.1 ,
Ni 0.8 Fe 0.2 , Co and the like. In the exchange coupling film of the present invention, the antiferromagnetic film may be, for example, γ-F
eMn alloy, NiO, NiMn alloy, IrMn alloy are mentioned. The ferromagnetic film and the antiferromagnetic film may be at least partially laminated and exchange-coupled.

【0007】本発明の交換結合膜の特徴的な構成は、強
磁性体膜と反強磁性体膜との界面に、強磁性膜の構成元
素であるFe,CoおよびNiからなる群より選択され
る少なくとも1種の元素と、これ以外の添加元素Mとを
含有する強磁性体膜からなる中間膜を設けたことにあ
る。ここで、添加元素Mとしては、B,Al,Ca,S
c,Cu,Sr,Rh,Pd,Ag,La,Ce,P
r,Yb,Ir,Pt,Au,Pb,Li,Ti,R
b,V,Zr,K,Cr,Nb,Mo,Ba,Nd,E
u,Ta,W,C,Zr,Cd,Mg,Y,Tc,R
u,Gd,Tb,Dy,Ho,Er,Tm,Lu,H
f,Re,Os,Tl,Na,InおよびGaからなる
群より選択される少なくとも1種が用いられる。
The characteristic structure of the exchange-coupling film of the present invention is selected at the interface between the ferromagnetic film and the antiferromagnetic film from the group consisting of Fe, Co and Ni, which are the constituent elements of the ferromagnetic film. An intermediate film made of a ferromagnetic film containing at least one kind of element and another additional element M is provided. Here, as the additive element M, B, Al, Ca, S
c, Cu, Sr, Rh, Pd, Ag, La, Ce, P
r, Yb, Ir, Pt, Au, Pb, Li, Ti, R
b, V, Zr, K, Cr, Nb, Mo, Ba, Nd, E
u, Ta, W, C, Zr, Cd, Mg, Y, Tc, R
u, Gd, Tb, Dy, Ho, Er, Tm, Lu, H
At least one selected from the group consisting of f, Re, Os, Tl, Na, In and Ga is used.

【0008】この中間膜を構成する強磁性体は、下記一
般式 (CoX FeY NiZ100-aa (ここで、0≦X≦1,0≦Y≦1,0≦Z≦1,X+
Y+Z=1,0≦a≦50である。)で表される。より
具体的には、(Co0.9 Fe0.1100-aa 、(Ni
0.8 Fe0.2100-aa 、Co100-aa 、Fe
100-aa などが挙げられる。添加元素Mの添加量aは
50at%以下であり、2at%以上30at%以下で
あることがより好ましい。
[0008] ferromagnetic material constituting the intermediate layer is represented by the following general formula (Co X Fe Y Ni Z) in 100-a M a (where, 0 ≦ X ≦ 1,0 ≦ Y ≦ 1,0 ≦ Z ≦ 1, X +
Y + Z = 1, 0 ≦ a ≦ 50. ). More specifically, (Co 0.9 Fe 0.1) 100 -a M a, (Ni
0.8 Fe 0.2) 100-a M a, Co 100-a M a, Fe
Such as 100-a M a, and the like. The addition amount a of the additional element M is 50 at% or less, and more preferably 2 at% or more and 30 at% or less.

【0009】この中間膜は、強磁性体膜と反強磁性体膜
との界面に介在することにより、膜間の格子マッチング
を向上させる作用を有し、これによって大きな交換結合
力が得られる。上述した添加元素Mは、耐食性、交換結
合力、ブロッキング温度の改善にとっても好ましい成分
である。特に上述した添加元素のうちPd,Cu,P
t,Au,Agは、抵抗変化率に対する影響を最小限度
に抑えられる観点から好ましい元素である。
The intermediate film has an effect of improving lattice matching between the films by being interposed at the interface between the ferromagnetic film and the antiferromagnetic film, thereby providing a large exchange coupling force. The above-mentioned additive element M is a preferable component for improving corrosion resistance, exchange coupling strength, and blocking temperature. Particularly, among the above-mentioned additional elements, Pd, Cu, P
t, Au, and Ag are preferable elements from the viewpoint of minimizing the influence on the rate of change in resistance.

【0010】本発明において中間膜は、反強磁性体膜と
の界面において格子マッチングが良好になるという条件
を満たせば、組成変調型であってもよい。例えば、中間
膜中において添加元素Mの組成が連続的に変化してもよ
いし、所定の膜厚で段階的に変化してもよい。この場
合、反強磁性体膜側の界面において、添加元素Mの添加
量が最大になっていればよい。一般的に強磁性体膜に元
素添加を行うと磁化が減少したりキュリー温度が低下し
たりするが、上記のように反強磁性体膜側の界面におい
て添加元素Mの添加量が最大になるように制御すれば、
強磁性体膜の特性の劣化を最小限に抑えることができ
る。また、本発明の強磁性膜を2種以上積層した形態で
もよい。
In the present invention, the intermediate film may be of a composition modulation type as long as it satisfies the condition that lattice matching is good at the interface with the antiferromagnetic film. For example, the composition of the additive element M in the intermediate film may change continuously, or may change stepwise at a predetermined film thickness. In this case, the addition amount of the additional element M may be the maximum at the interface on the antiferromagnetic film side. In general, when an element is added to a ferromagnetic film, the magnetization decreases and the Curie temperature decreases, but as described above, the addition amount of the additional element M is maximized at the interface on the antiferromagnetic film side. If you control
Deterioration of the characteristics of the ferromagnetic film can be minimized. Further, a form in which two or more kinds of the ferromagnetic films of the present invention are stacked may be used.

【0011】本発明の交換結合膜では、強磁性体膜およ
び反強磁性体膜の膜厚は、それぞれ強磁性および反強磁
性を発現する範囲であれば特に限定されない。ただし、
大きな交換結合力を得るためには、反強磁性体膜の膜厚
が強磁性体膜の膜厚よりも厚いことが望ましい。また、
中間膜の膜厚も特に限定されず、少なくとも一原子層だ
け存在していればよい。
In the exchange-coupling film of the present invention, the thicknesses of the ferromagnetic film and the antiferromagnetic film are not particularly limited as long as they are ferromagnetic and antiferromagnetic, respectively. However,
In order to obtain a large exchange coupling force, it is desirable that the thickness of the antiferromagnetic film is larger than the thickness of the ferromagnetic film. Also,
The thickness of the intermediate film is not particularly limited, and it is sufficient that at least one atomic layer exists.

【0012】本発明の交換結合膜は、蒸着法、スパッタ
法、MBE法など公知の成膜方法を用いて所定の基板上
に形成される。この際、反強磁性体膜と強磁性体膜との
結合に一方向異方性を付与するために、磁界中で成膜す
るかまたは熱処理を行ってもよい。
The exchange coupling film of the present invention is formed on a predetermined substrate by using a known film forming method such as an evaporation method, a sputtering method, and an MBE method. At this time, in order to impart unidirectional anisotropy to the coupling between the antiferromagnetic film and the ferromagnetic film, film formation or heat treatment may be performed in a magnetic field.

【0013】基板は特に限定されず、ガラス、樹脂など
の非晶質基板、Si,MgO,Al23 、各種フェラ
イトなどの単結晶基板、配向基板、焼結基板などを用い
ることができる。また、反強磁性体膜や強磁性体膜の結
晶性を向上させるために、基板上に1〜100nmの厚
さの下地層を設けてもよい。下地層は結晶性を向上させ
るものであれば特に限定されないが、例えばPdやPt
などの貴金属、CoZrNbなどの非晶質金属、面心立
方構造を持つ金属や合金を用いることができる。
The substrate is not particularly limited, and an amorphous substrate such as glass or resin, a single crystal substrate such as Si, MgO, Al 2 O 3 , various ferrites, an oriented substrate, a sintered substrate and the like can be used. Further, a base layer having a thickness of 1 to 100 nm may be provided over the substrate in order to improve the crystallinity of the antiferromagnetic film or the ferromagnetic film. The underlayer is not particularly limited as long as it improves the crystallinity. For example, Pd or Pt
, A noble metal such as CoZrNb, and a metal or alloy having a face-centered cubic structure.

【0014】本発明の磁気抵抗効果素子は、上述した交
換結合膜に対し、少なくとも強磁性体膜に電流を通電す
るための電極を設けたものである。電極としては、例え
ばCu,Ag,Au,Alやこれらの合金が用いられ
る。電極は強磁性体膜に直接接触してもよいし、反強磁
性体膜を介して形成されていてもよい。
The magnetoresistive element of the present invention is provided with an electrode for passing a current through at least the ferromagnetic film, with respect to the above-mentioned exchange coupling film. As the electrode, for example, Cu, Ag, Au, Al, or an alloy thereof is used. The electrode may be in direct contact with the ferromagnetic film, or may be formed via the antiferromagnetic film.

【0015】本発明の磁気抵抗効果素子は、上述したよ
うに大きな交換結合力が得られる交換結合膜を具備して
いるので、磁界検出用センサー、再生用磁気ヘッドなど
に用いた場合に大きな再生出力が得られる。
Since the magnetoresistive element of the present invention is provided with the exchange coupling film capable of obtaining a large exchange coupling force as described above, it has a large reproducing capability when used in a magnetic field detecting sensor, a reproducing magnetic head or the like. The output is obtained.

【0016】なお、本発明の磁気抵抗効果素子におい
て、反強磁性体膜と強磁性体膜との交換結合力は強磁性
体膜におけるバルクハウゼンノイズ除去、人工格子膜や
スピンバルブ膜に対する磁化固着などに利用することも
できる。
In the magnetoresistive element according to the present invention, the exchange coupling force between the antiferromagnetic film and the ferromagnetic film is determined by removing Barkhausen noise in the ferromagnetic film, fixing the magnetization to the artificial lattice film or the spin valve film. It can also be used for such purposes.

【0017】[0017]

【実施例】以下、本発明の実施例を図面を参照して説明
する。 実施例1 RFマグネトロンスパッタ装置を用い、基板を加熱して
いない状態で磁界中成膜することにより、図1に示す構
造を有する交換結合膜を作製した。具体的には、表面が
C面であるサファイア基板1上に、Co90Fe10の組成
を有する膜厚4nmの強磁性体膜2、(Co0.9 Fe
0.19010で表される組成を有する強磁性体からなる
膜厚1nmの中間膜3、Fe50Mn50の組成を有する膜
BR>厚15nmの反強磁性体膜4を順次形成した。中間
膜3の添加元素Mとして、それぞれB,Al,Ca,S
c,Cu,Sr,Rh,Pd,Ag,La,Ce,P
r,Yb,Ir,Pt,Au,Pb,Li,Ti,R
b,V,Zr,K,Cr,Nb,Mo,Ba,Nd,E
u,Ta,W,C,Zr,Cd,Mg,Y,Tc,R
u,Gd,Tb,Dy,Ho,Er,Tm,Lu,H
f,Re,Os,Tl,Na,InまたはGaを用い
た。
Embodiments of the present invention will be described below with reference to the drawings. Example 1 An exchange coupling film having the structure shown in FIG. 1 was produced by using an RF magnetron sputtering apparatus to form a film in a magnetic field without heating the substrate. Specifically, a 4 nm-thick ferromagnetic film 2 having a composition of Co 90 Fe 10 and a (Co 0.9 Fe
0.1) 90 made of a ferromagnetic material having a composition represented by M 10 thickness 1nm intermediate film 3, the film having a composition of Fe 50 Mn 50
An antiferromagnetic material film 4 having a thickness of 15 nm was sequentially formed. B, Al, Ca, and S, respectively, as additive elements M of the intermediate film 3
c, Cu, Sr, Rh, Pd, Ag, La, Ce, P
r, Yb, Ir, Pt, Au, Pb, Li, Ti, R
b, V, Zr, K, Cr, Nb, Mo, Ba, Nd, E
u, Ta, W, C, Zr, Cd, Mg, Y, Tc, R
u, Gd, Tb, Dy, Ho, Er, Tm, Lu, H
f, Re, Os, Tl, Na, In or Ga was used.

【0018】得られた交換結合膜について、結晶構造と
その配向方位をX線回折により調べた。その結果、結晶
構造は面心立方構造であり、(111)配向した膜であ
ることが確認された。
With respect to the obtained exchange-coupled film, the crystal structure and its orientation were examined by X-ray diffraction. As a result, it was confirmed that the crystal structure was a face-centered cubic structure and the film was (111) -oriented.

【0019】図2に得られた交換結合膜の磁化容易軸方
向(成膜時の磁界方向)の磁化曲線aおよび磁化困難軸
方向の磁化曲線bを示す。図2において、cの値が交換
結合力を示す交換バイアス磁界(Hua)である。
FIG. 2 shows a magnetization curve a in the easy axis direction (magnetic field direction during film formation) and a magnetization curve b in the hard axis direction of the exchange-coupled film obtained. In FIG. 2, the value of c is an exchange bias magnetic field (Hua) indicating exchange coupling force.

【0020】図3に、上述したそれぞれの添加元素Mを
添加した中間膜を有する各交換結合膜、および中間膜を
設けていない交換結合膜について測定された交換バイア
ス磁界の値を示す。この図に示されるように、中間膜を
有する交換結合膜は、中間膜を設けていない交換結合膜
よりも、交換結合力が大きいことがわかる。
FIG. 3 shows the values of the exchange bias magnetic field measured for each exchange coupling film having an intermediate film to which each of the above-described additional elements M is added and for the exchange coupling film having no intermediate film. As shown in this figure, it can be seen that the exchange coupling film having the intermediate film has a higher exchange coupling force than the exchange coupling film having no intermediate film.

【0021】実施例2 実施例1と同様の方法により図1に示す構造を有する交
換結合膜を作製した。本実施例では、表面がC面である
サファイア基板1上に、Co90Fe10の組成を有する膜
厚3nmの強磁性体膜2、(Co0.9 Fe0.1100-a
Pda (a=5,10,15,20,25,30)で表
される組成を有する強磁性体からなる膜厚2nmの中間
膜3、Fe50Mn50の組成を有する膜厚15nmの反強
磁性体膜4を順次形成した。
Example 2 An exchange coupling film having the structure shown in FIG. 1 was produced in the same manner as in Example 1. In this embodiment, a 3 nm-thick ferromagnetic film 2 having a composition of Co 90 Fe 10 and a (Co 0.9 Fe 0.1 ) 100-a are formed on a sapphire substrate 1 having a C-plane surface.
A 2 nm-thick intermediate film 3 made of a ferromagnetic material having a composition represented by Pd a (a = 5, 10, 15, 20, 25, 30), and a 15 nm-thick film having a composition of Fe 50 Mn 50 Ferromagnetic films 4 were sequentially formed.

【0022】図4に中間膜におけるPdの添加量aと交
換バイアス磁界との関係を示す。図4から、Pdの添加
量aが増加するのに伴って交換結合力が増加することが
わかる。
FIG. 4 shows the relationship between the added amount a of Pd in the intermediate film and the exchange bias magnetic field. From FIG. 4, it can be seen that the exchange coupling force increases as the added amount a of Pd increases.

【0023】図5に中間膜におけるPdの添加量aと中
間膜の格子定数との関係を示す。図5から、Pdの添加
量aが増加するのに伴って中間膜の格子定数が反強磁性
体膜であるFe50Mn50の格子定数に近づいていること
がわかる。
FIG. 5 shows the relationship between the added amount a of Pd in the intermediate film and the lattice constant of the intermediate film. From FIG. 5, it can be seen that the lattice constant of the intermediate film approaches the lattice constant of Fe 50 Mn 50 which is an antiferromagnetic film as the addition amount a of Pd increases.

【0024】実施例3 実施例1と同様の方法により図6に示す構造を有する交
換結合膜を作製した。本実施例においては、サファイア
基板1上に、Co90Fe10の組成を有する膜厚4nmの
強磁性体膜2、(Co0.9 Fe0.190Ta10で表され
る組成を有する強磁性体からなる膜厚1.5nmの中間
膜11、(Co0.9 Fe0.180Ta20で表される組成
を有する強磁性体からなる膜厚1.5nmの中間膜1
2、Fe50Mn50の組成を有する膜厚15nmの反強磁
性体膜4を順次形成した。
Example 3 An exchange coupling film having the structure shown in FIG. 6 was produced in the same manner as in Example 1. In this embodiment, a 4 nm-thick ferromagnetic film 2 having a composition of Co 90 Fe 10 and a ferromagnetic material having a composition represented by (Co 0.9 Fe 0.1 ) 90 Ta 10 are formed on a sapphire substrate 1. An intermediate film 11 having a thickness of 1.5 nm and an intermediate film 1 having a thickness of 1.5 nm made of a ferromagnetic material having a composition represented by (Co 0.9 Fe 0.1 ) 80 Ta 20
2. An antiferromagnetic material film 4 having a composition of Fe 50 Mn 50 and a thickness of 15 nm was sequentially formed.

【0025】図3に本実施例で得られた交換結合膜の交
換バイアス磁界の値を併記する。本実施例のように中間
膜として組成が段階的に変化する組成変調膜を用いた場
合、大きな交換結合力が得られることがわかる。
FIG. 3 also shows the value of the exchange bias magnetic field of the exchange coupling film obtained in this embodiment. It can be seen that a large exchange coupling force can be obtained when a composition modulation film whose composition changes stepwise is used as the intermediate film as in this example.

【0026】実施例4 実施例1と同様の方法により図1と類似の構造を有する
交換結合膜を作製した。本実施例においては、サファイ
ア基板1上に、Co90Fe10の組成を有する膜厚2nm
の強磁性体膜2、(Co0.9 Fe0.1100-a Nda
表される組成を有し、Nd組成aが強磁性体膜2側でa
=1、反強磁性体膜4側でa=20となるように連続的
に変化させた強磁性体からなる膜厚3nmの中間膜3、
Fe50Mn50の組成を有する膜厚15nmの反強磁性体
膜4を順次形成した。
Example 4 An exchange-coupling film having a structure similar to that of FIG. 1 was produced in the same manner as in Example 1. In this embodiment, a 2 nm-thick film having a composition of Co 90 Fe 10 is formed on the sapphire substrate 1.
Ferromagnetic film 2, (Co 0.9 Fe 0.1) 100-a Nd has a composition represented by a, Nd composition a is a ferromagnetic material film 2 side
= 1, a 3 nm-thick intermediate film 3 made of a ferromagnetic material continuously changed so that a = 20 on the antiferromagnetic material film 4 side;
An antiferromagnetic film 4 having a composition of Fe 50 Mn 50 and a thickness of 15 nm was sequentially formed.

【0027】図3に本実施例で得られた交換結合膜の交
換バイアス磁界の値を併記する。本実施例のように中間
膜として組成が連続的に変化する組成変調膜を用いた場
合、大きな交換結合力が得られることがわかる。
FIG. 3 also shows the value of the exchange bias magnetic field of the exchange coupling film obtained in this embodiment. It can be seen that a large exchange coupling force can be obtained when a composition modulation film having a continuously changing composition is used as the intermediate film as in this example.

【0028】実施例5 実施例1と同様の方法により図1に示す構造を有する交
換結合膜を作製した。本実施例では、表面がC面である
サファイア基板1上に、Ni80Fe20の組成を有する膜
厚4nmの強磁性体膜2、(Ni0.8 Fe0.29010
で表される組成を有する強磁性体からなる膜厚1nmの
中間膜3、Fe50Mn50の組成を有する膜厚15nmの
反強磁性体膜4を順次形成した。中間膜3の添加元素M
として、それぞれB,Al,Ca,Sc,Cu,Sr,
Rh,Pd,Ag,La,Ce,Pr,Yb,Ir,P
t,Au,Pb,Li,Ti,Rb,V,Zr,K,C
r,Nb,Mo,Ba,Nd,Eu,Ta,W,C,Z
r,Cd,Mg,Y,Tc,Ru,Gd,Tb,Dy,
Ho,Er,Tm,Lu,Hf,Re,Os,Tl,N
a,InまたはGaを用いた。
Example 5 An exchange coupling film having the structure shown in FIG. 1 was produced in the same manner as in Example 1. In this embodiment, a 4 nm-thick ferromagnetic film 2 having a composition of Ni 80 Fe 20 and a (Ni 0.8 Fe 0.2 ) 90 M 10 are formed on a sapphire substrate 1 having a C-plane surface.
A 1 nm-thick intermediate film 3 made of a ferromagnetic material having a composition represented by the following formula and a 15 nm-thick antiferromagnetic material film 4 having a Fe 50 Mn 50 composition were sequentially formed. Additional element M of intermediate film 3
As B, Al, Ca, Sc, Cu, Sr,
Rh, Pd, Ag, La, Ce, Pr, Yb, Ir, P
t, Au, Pb, Li, Ti, Rb, V, Zr, K, C
r, Nb, Mo, Ba, Nd, Eu, Ta, W, C, Z
r, Cd, Mg, Y, Tc, Ru, Gd, Tb, Dy,
Ho, Er, Tm, Lu, Hf, Re, Os, Tl, N
a, In or Ga was used.

【0029】図7に、上述したそれぞれの添加元素Mを
添加した中間膜を有する各交換結合膜、および中間膜を
設けていない交換結合膜について測定された交換バイア
ス磁界の値を示す。この図に示されるように、中間膜を
有する交換結合膜は、中間膜を設けていない交換結合膜
よりも、交換結合力が大きいことがわかる。
FIG. 7 shows the values of the exchange bias magnetic fields measured for each exchange coupling film having an intermediate film to which each of the above-described additional elements M is added and for the exchange coupling film having no intermediate film. As shown in this figure, it can be seen that the exchange coupling film having the intermediate film has a higher exchange coupling force than the exchange coupling film having no intermediate film.

【0030】実施例6 本実施例では通常の半導体プロセスを用いて加工を行
い、図8に示す磁気抵抗効果素子を作製した。具体的に
は、シリコン基板21表面に形成された熱酸化膜22の
上に、膜厚40nmのCo83Pt17ハード膜23を成膜
した後、その一部を選択的に除去して下地の熱酸化膜2
2を部分的に露出させた。その上に膜厚10nmのCo
88Zr5 Nb7 膜24、膜厚2nmのNi80Fe20膜2
5、膜厚4nmのCo90Fe10強磁性体膜26、膜厚3
nmのCu膜27、膜厚2nmのCo90Fe10強磁性体
膜28、膜厚1nmの(Co0.9 Fe0.190Pb10
間膜29、膜厚15nmのFe50Mn50反強磁性体膜3
0、膜厚20nmのTi保護膜31を順次成膜した。さ
らに膜厚20μmのCu電極32を成膜して加工した。
Example 6 In this example, processing was performed using a normal semiconductor process to produce a magnetoresistive element shown in FIG. Specifically, after forming a Co 83 Pt 17 hard film 23 having a thickness of 40 nm on the thermal oxide film 22 formed on the surface of the silicon substrate 21, a part thereof is selectively removed to form a base Thermal oxide film 2
2 was partially exposed. On top of this, a 10 nm-thick Co
88 Zr 5 Nb 7 film 24, 2 nm thick Ni 80 Fe 20 film 2
5. Co 90 Fe 10 ferromagnetic film 26 with a thickness of 4 nm, thickness 3
nm Cu film 27, 2 nm thick Co 90 Fe 10 ferromagnetic film 28, 1 nm thick (Co 0.9 Fe 0.1 ) 90 Pb 10 intermediate film 29, 15 nm thick Fe 50 Mn 50 antiferromagnetic film 3
A Ti protective film 31 having a thickness of 0 and a thickness of 20 nm was sequentially formed. Further, a Cu electrode 32 having a thickness of 20 μm was formed and processed.

【0031】なお、磁界中で熱処理を行った後、ハード
膜23を着磁し、反強磁性体膜30と中間膜29および
強磁性体膜28との結合に一方向異方性を付与し、また
強磁性体膜26に一軸異方性を付与した。ハード膜23
はCo90Fe10強磁性体膜26を単磁区化させる役割を
果たす。
After the heat treatment in the magnetic field, the hard film 23 is magnetized to give a unidirectional anisotropy to the coupling between the antiferromagnetic film 30, the intermediate film 29 and the ferromagnetic film 28. Further, the ferromagnetic film 26 is given uniaxial anisotropy. Hard film 23
Plays a role in converting the Co 90 Fe 10 ferromagnetic film 26 into a single magnetic domain.

【0032】得られた磁気抵抗効果素子に外部から磁界
を印加して、その磁界応答性を調べた。その結果、上部
磁性層にCo90Fe10強磁性体膜のみを用いた磁気抵抗
効果素子と同等以上の安定した出力が得られた。また、
磁壁移動に伴うバルクハウゼンノイズの発生は認められ
なかった。
A magnetic field was externally applied to the obtained magnetoresistive element, and its magnetic field response was examined. As a result, a stable output equal to or higher than that of the magnetoresistive effect element using only the Co 90 Fe 10 ferromagnetic film for the upper magnetic layer was obtained. Also,
No Barkhausen noise was generated due to domain wall movement.

【0033】[0033]

【発明の効果】以上詳述したように本発明の交換結合膜
では大きな交換結合力が得られ、熱安定性にも優れてい
る。また、このような交換結合膜を具備した本発明の磁
気抵抗効果素子では安定した出力を長期間にわたって得
ることができ、その工業的価値は大なるものがある。
As described above in detail, the exchange coupling film of the present invention can provide a large exchange coupling force and is excellent in thermal stability. Further, the magnetoresistive effect element of the present invention having such an exchange coupling film can obtain a stable output for a long period of time, and its industrial value is large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る交換結合膜の一例を示す断面図。FIG. 1 is a cross-sectional view showing an example of an exchange coupling film according to the present invention.

【図2】本発明の実施例1で得られた交換結合膜の磁化
曲線を示す図。
FIG. 2 is a diagram showing a magnetization curve of an exchange coupling film obtained in Example 1 of the present invention.

【図3】本発明の実施例1で得られた交換結合膜につい
て交換バイアス磁界の値を示す図。
FIG. 3 is a diagram showing values of exchange bias magnetic fields for the exchange coupling film obtained in Example 1 of the present invention.

【図4】本発明の実施例2で得られた交換結合膜につい
て中間膜におけるPdの添加量aと交換バイアス磁界と
の関係を示す図。
FIG. 4 is a diagram showing the relationship between the added amount a of Pd in an intermediate film and the exchange bias magnetic field in the exchange coupling film obtained in Example 2 of the present invention.

【図5】本発明の実施例2で得られた交換結合膜につい
て中間膜におけるPdの添加量aと中間膜の格子定数と
の関係を示す図。
FIG. 5 is a view showing the relationship between the added amount a of Pd in the intermediate film and the lattice constant of the intermediate film in the exchange-coupling film obtained in Example 2 of the present invention.

【図6】本発明に係る交換結合膜の他の例を示す断面
図。
FIG. 6 is a cross-sectional view showing another example of the exchange coupling film according to the present invention.

【図7】本発明の実施例5で得られた交換結合膜につい
て交換バイアス磁界の値を示す図。
FIG. 7 is a diagram showing the value of an exchange bias magnetic field for the exchange coupling film obtained in Example 5 of the present invention.

【図8】本発明に係る磁気抵抗効果素子の一例を示す断
面図。
FIG. 8 is a sectional view showing an example of a magnetoresistive element according to the present invention.

【符号の説明】[Explanation of symbols]

1…サファイア基板、2…強磁性体膜、3…中間膜、4
…反強磁性体膜、11、12…中間膜、21…シリコン
基板、22…熱酸化膜、23…Co83Pt17ハード膜、
24…Co88Zr5 Nb7 膜、25…Ni80Fe20膜、
26…Co90Fe10強磁性体膜、27…Cu膜、28…
Co90Fe10強磁性体膜、29…(Co0.9 Fe0.1
90Pb10中間膜、30…Fe50Mn50反強磁性体膜、3
1…Ti保護膜、32…Cu電極。
DESCRIPTION OF SYMBOLS 1 ... Sapphire substrate, 2 ... Ferromagnetic film, 3 ... Interlayer, 4
... Antiferromagnetic films, 11, 12 intermediate films, 21 silicon substrates, 22 thermal oxide films, 23 Co 83 Pt 17 hard films,
24 ... Co 88 Zr 5 Nb 7 film, 25 ... Ni 80 Fe 20 film,
26 ... Co 90 Fe 10 ferromagnetic film, 27 ... Cu film, 28 ...
Co 90 Fe 10 ferromagnetic film, 29 ... (Co 0.9 Fe 0.1 )
90 Pb 10 intermediate film, 30 ... Fe 50 Mn 50 antiferromagnetic film, 3
1: Ti protective film, 32: Cu electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐橋 政司 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (56)参考文献 特開 平6−314617(JP,A) 特開 平7−201018(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 10/00 - 10/32 G01R 33/09 H01L 43/08 - 43/10 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masashi Sahashi 1 Toshiba R & D Center, Komukai Toshiba-ku, Kawasaki-shi, Kanagawa Prefecture (56) References JP-A-6-314617 (JP, A) Kaihei 7-201018 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01F 10/00-10/32 G01R 33/09 H01L 43/08-43/10

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Fe,CoおよびNiからなる群より選
択される少なくとも1種の元素からなる強磁性体膜と、
反強磁性体膜とを積層した構造を有する交換結合膜にお
いて、 前記強磁性体膜と前記反強磁性体膜との間に、Fe,C
oおよびNiからなる群より選択される少なくとも1種
の元素と、B,Al,Ca,Sc,Cu,Sr,Rh,
Pd,Ag,La,Ce,Pr,Yb,Ir,Pt,A
u,Pb,Li,Ti,Rb,V,Zr,K,Cr,N
b,Mo,Ba,Nd,Eu,Ta,W,C,Zr,C
d,Mg,Y,Tc,Ru,Gd,Tb,Dy,Ho,
Er,Tm,Lu,Hf,Re,Os,Tl,Na,I
nおよびGaからなる群より選択される少なくとも1種
の元素とを含有する材料(Co−Crを除く)からな
り、組成が膜厚方向に連続的または段階的に変化する
間膜とを備えることを特徴とする交換結合膜。
A ferromagnetic film comprising at least one element selected from the group consisting of Fe, Co and Ni;
An exchange coupling film having a structure in which an antiferromagnetic material film is laminated, wherein Fe 2 , C 3 is interposed between the ferromagnetic material film and the antiferromagnetic material film.
at least one element selected from the group consisting of o and Ni, and B, Al, Ca, Sc, Cu, Sr, Rh,
Pd, Ag, La, Ce, Pr, Yb, Ir, Pt, A
u, Pb, Li, Ti, Rb, V, Zr, K, Cr, N
b, Mo, Ba, Nd, Eu, Ta, W, C, Zr, C
d, Mg, Y, Tc, Ru, Gd, Tb, Dy, Ho,
Er, Tm, Lu, Hf, Re, Os, Tl, Na, I
a material containing at least one element selected from the group consisting of n and Ga (excluding Co-Cr), wherein the composition changes continuously or stepwise in the film thickness direction. An exchange-coupled membrane, comprising: a membrane;
【請求項2】 前記中間膜の材料が、下記一般式 (CoXFeYNiZ100-aa (ここで、0≦X≦1、0≦Y≦1、0≦Z≦1、X+
Y+Z=1、0≦a≦50であり、MはB,Al,C
a,Sc,Cu,Sr,Rh,Pd,Ag,La,C
e,Pr,Yb,Ir,Pt,Au,Pb,Li,T
i,Rb,V,Zr,K,Cr,Nb,Mo,Ba,N
d,Eu,Ta,W,C,Zr,Cd,Mg,Y,T
c,Ru,Gd,Tb,Dy,Ho,Er,Tm,L
u,Hf,Re,Os,Tl,Na,InおよびGaか
らなる群より選択される少なくとも1種の元素であ
る。) で表される(ただし、Co−Crを除く)ことを特徴と
する請求項1記載の交換結合膜。
Wherein said material of the intermediate layer is represented by the following general formula (Co X Fe Y Ni Z) 100-a M a ( where, 0 ≦ X ≦ 1,0 ≦ Y ≦ 1,0 ≦ Z ≦ 1, X +
Y + Z = 1, 0 ≦ a ≦ 50, and M is B, Al, C
a, Sc, Cu, Sr, Rh, Pd, Ag, La, C
e, Pr, Yb, Ir, Pt, Au, Pb, Li, T
i, Rb, V, Zr, K, Cr, Nb, Mo, Ba, N
d, Eu, Ta, W, C, Zr, Cd, Mg, Y, T
c, Ru, Gd, Tb, Dy, Ho, Er, Tm, L
at least one element selected from the group consisting of u, Hf, Re, Os, Tl, Na, In and Ga. 2. The exchange-coupling film according to claim 1, wherein (excluding Co-Cr).
【請求項3】 前記中間膜が、Pd,Cu,Pt,Au
およびAgからなる群より選択される1種の元素を含む
ことを特徴とする請求項1または2に記載の交換結合
膜。
3. The method according to claim 1, wherein the intermediate film is made of Pd, Cu, Pt, Au.
The exchange-coupling film according to claim 1 , further comprising one element selected from the group consisting of Ag and Ag .
【請求項4】 請求項1乃至3のいずれか一項に記載の4. The method according to claim 1, wherein
交換結合膜と、前記交換結合膜を構成する強磁性体膜にAn exchange coupling film, and a ferromagnetic film constituting the exchange coupling film.
電流を通電する電極とを具備したことを特徴とすAnd an electrode for passing a current. る磁気Magnetic
抵抗効果素子。Resistance effect element.
【請求項5】 外部磁界により磁化が回転する強磁性体
膜と、 前記強磁性体膜に積層された非磁性体膜と、 前記非磁性体膜に積層され、前記外部磁界中において実
質的に磁化が固着された強磁性体膜と、 前記磁化が固着された強磁性体膜に積層され、Fe,C
oおよびNiからなる群より選択される1種の元素と、
B,Al,Ca,Sc,Cu,Sr,Rh,Pd,A
g,La,Ce,Pr,Yb,Ir,Pt,Au,P
b,Li,Ti,Rb,V,Zr,K,Cr,Nb,M
o,Ba,Nd,Eu,Ta,W,C,Zr,Cd,M
g,Y,Tc,Ru,Gd,Tb,Dy,Ho,Er,
Tm,Lu,Hf,Re,Os,Tl,Na,Inおよ
びGaからなる群より選択される少なくとも1種の元素
とを含有する材料(ただし、Co−Crを除く)からな
り、組成が膜厚方向に連続的または段階的に変化する中
間膜と、 前記中間膜に積層され、前記磁化が固着された強磁性体
膜と交換結合した反強磁性体膜とを備える ことを特徴と
する磁気抵抗効果素子。
5. A ferromagnetic material whose magnetization is rotated by an external magnetic field.
A film, a non-magnetic film laminated on the ferromagnetic film, and a non-magnetic film laminated on the non -magnetic film,
A ferromagnetic film having a qualitatively fixed magnetization and a ferromagnetic film having a fixed magnetization, and
one element selected from the group consisting of o and Ni;
B, Al, Ca, Sc, Cu, Sr, Rh, Pd, A
g, La, Ce, Pr, Yb, Ir, Pt, Au, P
b, Li, Ti, Rb, V, Zr, K, Cr, Nb, M
o, Ba, Nd, Eu, Ta, W, C, Zr, Cd, M
g, Y, Tc, Ru, Gd, Tb, Dy, Ho, Er,
Tm, Lu, Hf, Re, Os, Tl, Na, In and
And at least one element selected from the group consisting of Ga and Ga
(Excluding Co-Cr)
The composition changes continuously or stepwise in the film thickness direction.
A ferromagnetic material laminated on the intermediate film and the intermediate film, wherein the magnetization is fixed.
A magnetoresistive element comprising a film and an antiferromagnetic film exchange-coupled .
【請求項6】 前記中間膜の材料が、下記一般式 (Co X Fe Y Ni Z 100-a a (ここで、0≦X≦1、0≦Y≦1、0≦Z≦1、X+
Y+Z=1、0≦a≦50であり、MはB,Al,C
a,Sc,Cu,Sr,Rh,Pd,Ag,La,C
e,Pr,Yb,Ir,Pt,Au,Pb,Li,T
i,Rb,V,Zr,K,Cr,Nb,Mo,Ba,N
d,Eu,Ta,W,C,Zr,Cd,Mg,Y,T
c,Ru,Gd,Tb,Dy,Ho,Er,Tm,L
u,Hf,Re,Os,Tl,Na,InおよびGaか
らなる群より選択される少なくとも1種の元素であ
る。) で表される(ただし、Co−Crを除く)ことを特徴と
する請求項5記載の 磁気抵抗効果素子。
Wherein said material of the intermediate layer is represented by the following general formula (Co X Fe Y Ni Z) 100-a M a ( where, 0 ≦ X ≦ 1,0 ≦ Y ≦ 1,0 ≦ Z ≦ 1, X +
Y + Z = 1, 0 ≦ a ≦ 50, and M is B, Al, C
a, Sc, Cu, Sr, Rh, Pd, Ag, La, C
e, Pr, Yb, Ir, Pt, Au, Pb, Li, T
i, Rb, V, Zr, K, Cr, Nb, Mo, Ba, N
d, Eu, Ta, W, C, Zr, Cd, Mg, Y, T
c, Ru, Gd, Tb, Dy, Ho, Er, Tm, L
u, Hf, Re, Os, Tl, Na, In and Ga
At least one element selected from the group consisting of
You. ) (However, excluding Co-Cr)
The magnetoresistance effect element according to claim 5, wherein
【請求項7】 前記中間膜が、Pd,Cu,Pt,Au
およびAgからなる群より選択される1種の元素を含む
ことを特徴とする請求項5または6に記載の 磁気抵抗効
果素子。
7. The intermediate film is made of Pd, Cu, Pt, Au.
And one kind of element selected from the group consisting of Ag
7. The magnetoresistive element according to claim 5, wherein:
【請求項8】 請求項4乃至7のいずれか一項に記載の8. The method according to claim 4, wherein
磁気抵抗効果素子を具備したことを特徴とする磁気抵抗Magnetoresistance characterized by comprising a magnetoresistance effect element
効果ヘッド。Effect head.
JP23733595A 1992-10-30 1995-09-14 Exchange coupling film, magnetoresistive element and magnetoresistive head Expired - Fee Related JP3226254B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23733595A JP3226254B2 (en) 1995-09-14 1995-09-14 Exchange coupling film, magnetoresistive element and magnetoresistive head
US08/672,912 US5780176A (en) 1992-10-30 1996-06-28 Magnetoresistance effect element
US09/061,070 US6159593A (en) 1992-10-30 1998-04-16 Magnetoresistance effect element
US09/111,884 US6368706B1 (en) 1992-10-30 1998-07-08 Magnetoresistance effect element
US09/442,032 US6395388B1 (en) 1992-10-30 1999-11-17 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23733595A JP3226254B2 (en) 1995-09-14 1995-09-14 Exchange coupling film, magnetoresistive element and magnetoresistive head

Publications (2)

Publication Number Publication Date
JPH0982524A JPH0982524A (en) 1997-03-28
JP3226254B2 true JP3226254B2 (en) 2001-11-05

Family

ID=17013861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23733595A Expired - Fee Related JP3226254B2 (en) 1992-10-30 1995-09-14 Exchange coupling film, magnetoresistive element and magnetoresistive head

Country Status (1)

Country Link
JP (1) JP3226254B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11273033A (en) * 1998-03-18 1999-10-08 Tdk Corp Magnetoresistance multi-layer film and thin film magnetic head provided with its multi-layer film
US7050275B2 (en) 2001-02-20 2006-05-23 Alps Electric Co., Ltd. Exchange coupled film having improved current-carrying reliability and improved rate of change in resistance and magnetic sensing element using same
JP3650092B2 (en) 2002-09-09 2005-05-18 Tdk株式会社 Exchange coupling film, spin valve film, thin film magnetic head, magnetic head device, and magnetic recording / reproducing apparatus
JP2005056538A (en) 2003-08-07 2005-03-03 Tdk Corp Manufacturing method of thin film magnetic head
JP4176062B2 (en) 2004-08-04 2008-11-05 Tdk株式会社 Magnetoresistive element, thin film magnetic head, head gimbal assembly, head arm assembly, and magnetic disk apparatus
JP6204391B2 (en) * 2015-02-12 2017-09-27 アルプス電気株式会社 Magnetic sensor and current sensor

Also Published As

Publication number Publication date
JPH0982524A (en) 1997-03-28

Similar Documents

Publication Publication Date Title
US6313973B1 (en) Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
US5552949A (en) Magnetoresistance effect element with improved antiferromagnetic layer
JP3088478B2 (en) Magnetoresistive element
US6455178B1 (en) Exchange coupling film and magnetoresistive element
JP3735443B2 (en) Exchange coupling film, magnetoresistive effect element, magnetic head, and magnetic storage device using the same
JP2901501B2 (en) Magnetic multilayer film, method of manufacturing the same, and magnetoresistive element
JP2000222709A (en) Spin valve magnetoresistance sensor and thin film magnetic head
JPH08204253A (en) Magnetoresistive effect film
JPH08127864A (en) Magneto resistance effect film and its production
JPH10143822A (en) Thin-film magnetic structure and thin-film magnetic head
JPH08315326A (en) Magnetoresistant head
JPH10284768A (en) Magnetoresistive effect element
JP2743806B2 (en) Magnetoresistive film and method of manufacturing the same
JP3497573B2 (en) Exchange coupling film and magnetoresistive element
JP3247535B2 (en) Magnetoresistance effect element
JP3226254B2 (en) Exchange coupling film, magnetoresistive element and magnetoresistive head
US6215631B1 (en) Magnetoresistive effect film and manufacturing method therefor
JP2672802B2 (en) Exchange coupling film and magnetoresistive element
JP3321615B2 (en) Magnetoresistive element and magnetic transducer
JP3393963B2 (en) Exchange coupling film and magnetoresistive element
JPH09237716A (en) Exchange bonding film, magnetoresistance effect element and method for manufacturing magnetoresistance effect element
JPH0794326A (en) Magnetoresistance effect film and manufacture thereof
JPH06200364A (en) Magnetic multilayer film and magneto-resistance effect element
JP2000020926A (en) Magnetoresistance effect head
JP3255901B2 (en) Method for producing exchange coupling membrane

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees