JPH0567525A - Magnetic laminated body, its manufacture, and manufacture of magneto-resistance effect element - Google Patents

Magnetic laminated body, its manufacture, and manufacture of magneto-resistance effect element

Info

Publication number
JPH0567525A
JPH0567525A JP3254600A JP25460091A JPH0567525A JP H0567525 A JPH0567525 A JP H0567525A JP 3254600 A JP3254600 A JP 3254600A JP 25460091 A JP25460091 A JP 25460091A JP H0567525 A JPH0567525 A JP H0567525A
Authority
JP
Japan
Prior art keywords
magnetic
buffer layer
laminated body
thin film
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3254600A
Other languages
Japanese (ja)
Inventor
Satoru Araki
荒木悟
Yoshikazu Narumiya
成宮義和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP3254600A priority Critical patent/JPH0567525A/en
Publication of JPH0567525A publication Critical patent/JPH0567525A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/325Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being noble metal

Abstract

PURPOSE:To obtain a magnetic laminated body which shows a large magneto- resistance change and can change the intensity of its operating magnetic field showing a big magneto-resistance change by piling up magnetic thin films containing one or more kinds among Fe, Co, and Ni and Ag thin films on a single-crystal-like buffer layer containing one or more kinds among Ag, Au, and Cu, and so on. CONSTITUTION:This magnetic laminated body is composed of a multilayered film 2 formed by piling up magnetic thin films containing at least one or more kinds among Fe, Co, and Ni and Ag thin films on a single-crystal-like buffer layer 1 containing at least one or more kinds among Ag, Au, and Cu. For example, after an Ag buffer layer 1 having a thickness of 739Angstrom is formed on a MgO (100) single-crystal substrate 3, the surface of which is polished to a mirror surface, by an MBE method, the crystal structure of the layer 1 is improved to a single-crystal state by annealing the layer 1 in a superhigh vacuum tank. Then, the multilayered film 2 is formed by alternately forming by magnetic Co thin films having a film thickness of 6Angstrom and Ag thin films having a film thickness of 21Angstrom 30 times by vapor-deposition by using the MBE method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁性積層体と、その製
造方法と、磁気抵抗効果素子(MR素子)の製造方法と
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic laminate, a method for manufacturing the same, and a method for manufacturing a magnetoresistive effect element (MR element).

【0002】[0002]

【従来の技術】各種磁気抵抗センサ(MRセンサ)や磁
気抵抗ヘッド(MRヘッド)などのMR素子は、磁界に
よる磁性膜の電気抵抗変化を検出して磁界強度やその変
化を測定するものであり、一般に、室温における磁気抵
抗変化率が大きく、動作磁界強度が小さいことが要求さ
れる。
2. Description of the Related Art MR elements such as various magnetoresistive sensors (MR sensors) and magnetoresistive heads (MR heads) measure the magnetic field strength and its changes by detecting changes in the electrical resistance of a magnetic film due to a magnetic field. Generally, it is required that the rate of change in magnetoresistance at room temperature is large and the operating magnetic field strength is small.

【0003】MR素子の磁性膜としては、従来、異方性
磁気抵抗効果を利用するFe−Ni合金(パーマロイ)
やNi−Co合金が代表的に用いられている。しかし、
Fe−Ni合金やNi−Co合金では、動作磁界強度は
小さいが磁気抵抗変化率が2〜5%と小さい。
As a magnetic film of an MR element, a Fe--Ni alloy (permalloy) which utilizes the anisotropic magnetoresistive effect has been used.
Ni-Co alloys are typically used. But,
In Fe—Ni alloys and Ni—Co alloys, the operating magnetic field strength is small, but the magnetoresistance change rate is small at 2 to 5%.

【0004】他方、薄膜技術の進歩により、分子線エピ
タキシー(MBE)法を用いた人工格子が登場してい
る。この人工格子は、分子線エピタキシー(MBE)法
を用いて形成された金属の原子オーダーの厚さの薄膜が
周期的に積層された構成をもち、バルク状の金属とは異
なった特性を示す。
On the other hand, with the progress of thin film technology, artificial lattices using the molecular beam epitaxy (MBE) method have appeared. This artificial lattice has a structure in which thin films having a thickness on the order of atoms of a metal, which are formed by using a molecular beam epitaxy (MBE) method, are periodically laminated, and exhibit characteristics different from those of a bulk metal.

【0005】このような人工格子の1つとして、Feと
Crを交互に積層したFe/Cr系磁性積層体の巨大磁
気抵抗変化材料が開発されている。このものでは、Cr
薄膜をはさんだFe薄膜が、反平行に磁気的に結合して
いる。そして、外部磁場により、このFeのスピンが一
方向に揃いだし、それに従い抵抗が減少していく。この
結果4.2Kで46%、室温で16%の巨大な磁気抵抗
変化を示す(PhysicalReview Letters 61巻、247
2ページ、1988年等)。
As one of such artificial lattices, a giant magnetoresistive variable material of a Fe / Cr type magnetic laminated body in which Fe and Cr are alternately laminated has been developed. In this one, Cr
Fe thin films sandwiching the thin film are magnetically coupled antiparallel to each other. Then, the spin of Fe is aligned in one direction by the external magnetic field, and the resistance decreases accordingly. As a result, it shows a huge magnetoresistance change of 46% at 4.2K and 16% at room temperature (Physical Review Letters 61, 247).
2 pages, 1988 etc.).

【0006】しかし、Fe/Cr型磁性積層体は、磁気
抵抗変化率(MR変化率)は大きいものの動作磁界強度
が20kOe程度と極めて大きく、MR素子としては実
用上の制約がある。
However, although the Fe / Cr type magnetic laminate has a large magnetoresistance change rate (MR change rate), the operating magnetic field strength is extremely large at about 20 kOe, which is a practical limitation as an MR element.

【0007】このような反強磁性を示す人工格子磁性積
層体については、その後世界中で活発な研究開発が開始
されており、現在までに、Co/Cr系、Co/Ru系
磁性積層体で、反強磁性的なスピンの層間結合が発見さ
れている。(Physical Review Letters 64巻、230
4ページ、1990年)。しかし、MR変化率は、Co
/Cr系で6.5%(4.5K)、Co/Ru系で6.
5%(4.5K)ときわめて小さな値である。
Since then, active research and development have been started all over the world for the artificial lattice magnetic layered body exhibiting such antiferromagnetism. To date, Co / Cr type and Co / Ru type magnetic layered bodies have been used. , Antiferromagnetic spin interlayer coupling has been discovered. (Physical Review Letters Volume 64, 230
4 pages, 1990). However, the MR change rate is
6./6.5% (4.5K) for Cr / Cr system and 6.% for Co / Ru system.
It is an extremely small value of 5% (4.5K).

【0008】そこで本発明者らは、巨大磁気抵抗変化を
示し、しかも巨大磁気抵抗変化を示す動作磁界強度を小
さくでき、またその動作磁界強度を変化させることので
きる磁性積層体の開発を目的として種々検討を行なっ
た。その結果、特願昭3−186906号として、F
e、CoおよびNiの1種以上を含む磁性薄膜と、Ag
薄膜とを分子線エピタキシー法で積層した磁性積層体を
提案している。このものは、面内に磁化容易軸をもち、
面内の角型比Br/Bsが0.5以下であり、反強磁性
的スピン配列をしており、数kOe と低い磁場でも巨大磁
気抵抗変化率を示し、室温で最大20%にもおよぶ巨大
磁気抵抗変化率が得られる。
Therefore, the inventors of the present invention aim to develop a magnetic laminated body which exhibits a giant magnetoresistance change and can reduce the operating magnetic field strength exhibiting the giant magnetoresistance change and can change the operating magnetic field intensity. Various studies were conducted. As a result, as Japanese Patent Application No. 3-186906, F
a magnetic thin film containing at least one of e, Co and Ni;
We have proposed a magnetic laminate in which a thin film and a thin film are laminated by a molecular beam epitaxy method. This one has an easy axis of magnetization in the plane,
The in-plane squareness ratio Br / Bs is 0.5 or less, it has antiferromagnetic spin alignment, shows a giant magnetoresistance change rate even in a magnetic field as low as several kOe, and reaches a maximum of 20% at room temperature. Giant magnetoresistance change rate can be obtained.

【0009】[0009]

【本発明が解決しようとする課題】本発明の主たる目的
は、先の提案の(Fe、Co、Ni)/Ag系磁性積層
体の磁気抵抗変化率をさらに増大し、きわめて大きな磁
気抵抗変化を示し、巨大磁気抵抗変化を示す動作磁界強
度を変化させることのできる磁性積層体と、その製造方
法と、磁気抵抗変化素子の製造方法とを提供することで
ある。
SUMMARY OF THE INVENTION The main object of the present invention is to further increase the magnetoresistance change rate of the previously proposed (Fe, Co, Ni) / Ag type magnetic layered body and to achieve an extremely large magnetoresistance change. It is to provide a magnetic laminate capable of changing the operating magnetic field strength showing a giant magnetoresistance change, a method for manufacturing the same, and a method for manufacturing a magnetoresistance change element.

【0010】[0010]

【課題を解決するための手段】このような目的は、下記
(1)〜(8)の本発明により達成される。
The above objects are achieved by the present invention described in (1) to (8) below.

【0011】(1)Ag、AuおよびCuの少なくとも
1種を含む単結晶状バッファ層上に、Fe、Coおよび
Niの少なくとも1種を含む磁性薄膜と、Ag薄膜とを
積層した多層膜を有することを特徴とする磁性積層体。
(1) A multilayer film in which a magnetic thin film containing at least one of Fe, Co and Ni and an Ag thin film are laminated on a single crystal buffer layer containing at least one of Ag, Au and Cu. A magnetic laminated body characterized by the above.

【0012】(2)前記多層膜が、2〜60A の厚さの
Fe、CoおよびNiの1種以上を含む磁性薄膜と、2
〜60A の厚さのAg薄膜とを分子線エピタキシー法に
よってエピタキシャル成長させながら積層したものであ
る上記(1)に記載の磁性積層体。
(2) The multilayer film comprises a magnetic thin film having a thickness of 2 to 60 A and containing at least one of Fe, Co and Ni;
The magnetic laminate according to (1) above, which is obtained by laminating an Ag thin film having a thickness of -60 A while epitaxially growing it by a molecular beam epitaxy method.

【0013】(3)面内に磁化容易軸をもち、面内の角
型比がBr/Bsが0.5以下である上記(1)または
(2)に記載の磁性積層体。
(3) The magnetic laminate according to the above (1) or (2), which has an easy axis of magnetization in the plane and has an in-plane squareness ratio of 0.5 or less Br / Bs.

【0014】(4)反強磁性を示す上記(1)ないし
(3)のいずれかに記載の磁性積層体。
(4) The magnetic laminate according to any one of (1) to (3), which exhibits antiferromagnetism.

【0015】(5)前記バッファ層の厚さが100〜2
000A である上記(1)ないし(4)のいずれかに記
載の磁性積層体。
(5) The thickness of the buffer layer is 100 to 2
The magnetic laminate according to any one of (1) to (4) above, which has a magnetic field intensity of 000 A.

【0016】(6)基体上に、Ag、AuおよびCuの
少なくとも1種を含む単結晶状のバッファ層を形成し、
このバッファ層上に、上記(1)ないし(5)のいずれ
かに記載の多層膜を形成することを特徴とする磁性積層
体の製造方法。
(6) A single crystal buffer layer containing at least one of Ag, Au and Cu is formed on a substrate,
A method for producing a magnetic laminated body, comprising forming the multilayer film according to any one of (1) to (5) on the buffer layer.

【0017】(7)前記バッファ層は、分子線エピタキ
シー法によって成膜後、150〜500℃にてアニール
して形成される上記(6)に記載の磁性積層体の製造方
法。
(7) The method for producing a magnetic laminate according to the above (6), wherein the buffer layer is formed by a molecular beam epitaxy method and then annealed at 150 to 500 ° C.

【0018】(8)上記(6)または(7)に記載の方
法で磁性積層体を得、この磁性積層体の多層膜表面に基
板を接着し、その後、前記基体およびバッファ層を除去
し、前記多層膜をパターニングすることを特徴とする磁
気抵抗効果素子の製造方法。
(8) A magnetic laminate is obtained by the method described in (6) or (7) above, a substrate is adhered to the surface of the multilayer film of this magnetic laminate, and then the substrate and the buffer layer are removed, A method of manufacturing a magnetoresistive element, comprising patterning the multilayer film.

【0019】[0019]

【具体的構成】以下、本発明の具体的構成を詳細に説明
する。
Specific Structure The specific structure of the present invention will be described in detail below.

【0020】本発明の磁性積層体は、基体上に、バッフ
ァ層を有する。バッファ層は、Ag、AuおよびCuの
1種以上を含むものであればよく、実質的にAg、Au
あるいはCuから形成されるものの他、これらの2種ま
たは3種の合金であってもよい。あるいは、場合によっ
ては、これらの1〜3種を30at% 以上含む合金であっ
てもよい。
The magnetic laminate of the present invention has a buffer layer on the substrate. The buffer layer should just contain at least 1 sort (s) of Ag, Au, and Cu, and is substantially Ag, Au.
Alternatively, other than those formed of Cu, alloys of these two or three kinds may be used. Alternatively, in some cases, an alloy containing 1 to 3 of these at 30 at% or more may be used.

【0021】そして、バッファ層は、実質的に単結晶を
なし、(100)配向をしており、高速反射電子線回折
(RHEEP)パターンには、<010>方向や<01
1>方向に明瞭な等間隔のストリークが観察され、リン
グ状の回析は実質的に存在しない。
The buffer layer is substantially a single crystal and has a (100) orientation, and in the high speed reflected electron diffraction (RHEEP) pattern, the <010> direction and the <01> direction.
Streaks with clear equal intervals are observed in the 1> direction, and ring-shaped diffraction is substantially absent.

【0022】バッファ層の厚さは、100〜2000A
より好ましくは200〜1500A、特に400〜10
00A とすることが好ましい。バッファ層を厚くしすぎ
ることは時間やコストの無駄となり、薄すぎるとバッフ
ァ層本来のバルクとしての格子定数を保てなくなり、バ
ッファ層としての機能が消失する。
The thickness of the buffer layer is 100-2000A.
More preferably 200-1500 A, especially 400-10
It is preferably 00A. If the buffer layer is too thick, it wastes time and cost, and if it is too thin, the original bulk lattice constant of the buffer layer cannot be maintained, and the function as the buffer layer is lost.

【0023】このようなバッファ層により、バッファ層
の抵抗を除外した抵抗変化である実質磁気抵抗変化率
は、2〜8倍程度向上する。
With such a buffer layer, the substantial magnetoresistance change rate, which is a resistance change excluding the resistance of the buffer layer, is improved by about 2 to 8 times.

【0024】用いる基体の材質としては、マグネシアM
gO(100)、ガリウム−ヒ素GaAs(100)、
その他一般的な正方晶の単結晶基板が、使用可能であ
る。なお、基体の厚さには特に制限はないが、後述の基
体除去を行なうときには0.1〜3mm程度とすることが
好ましい。
The material of the substrate used is magnesia M
gO (100), gallium-arsenic GaAs (100),
Other common tetragonal single crystal substrates can be used. The thickness of the substrate is not particularly limited, but it is preferably about 0.1 to 3 mm when removing the substrate described later.

【0025】このような基体上に形成されたバッファ層
上には、複数の鉄族元素を含む磁性薄膜が形成されてお
り、各磁性薄膜は、非磁性中間層であるAg薄膜と交互
に積層されている。本発明における磁性薄膜は、Fe、
CoおよびNiの1種以上を含むものであればよく、実
質的にFe、CoあるいはNiから形成されるもののほ
か、これらの2種または3種の合金であってもよい。あ
るいはこれらの1〜3種を30at% 以上含む合金であっ
てもよい。
A magnetic thin film containing a plurality of iron group elements is formed on the buffer layer formed on such a substrate, and each magnetic thin film is alternately laminated with an Ag thin film which is a non-magnetic intermediate layer. Has been done. The magnetic thin film in the present invention is Fe,
Any material containing at least one of Co and Ni may be used, and in addition to an alloy formed substantially of Fe, Co or Ni, an alloy of two or three of these may be used. Alternatively, it may be an alloy containing 1 to 3 of these at 30 at% or more.

【0026】磁性薄膜の厚さは60A 以下、 特に50A
以下、より好ましくは40A 以下、さらに好ましくは2
0A 以下とすることが好ましい。厚さが60A を超える
と、層間の磁性元素間の距離が相対的に遠くなり、反強
磁性的結合がなくなり、巨大磁気抵抗変化が示されなく
なってくる。また、磁性薄膜の厚さは2A 以上、特に、
4A 以上とすることが好ましい。2A 未満となると、形
成面内に磁性元素が連続して配列しなくなり、強磁性を
示さなくなる。
The thickness of the magnetic thin film is less than 60A, especially 50A.
Or less, more preferably 40 A or less, and further preferably 2
It is preferably 0 A or less. If the thickness exceeds 60 A, the distance between the magnetic elements between layers becomes relatively large, the antiferromagnetic coupling is lost, and the giant magnetoresistance change is not exhibited. In addition, the thickness of the magnetic thin film is 2A or more,
It is preferably 4 A or more. If it is less than 2 A, the magnetic elements will not be continuously arranged in the forming surface, and ferromagnetism will not be exhibited.

【0027】Ag薄膜は、Agのみから形成されること
が好ましく、その厚さは60A 以下、特に50A 以下、
より好ましくは45A 以下とすることが好ましい。60
A を超えると、磁性薄膜間の距離が大きくなり、反強磁
性的結合が失われてくる。また、Ag薄膜の厚さは、2
A 以上とすることが好ましい。2A 未満であると、連続
膜とならず、非磁性中間層の機能が失われてくる。
The Ag thin film is preferably formed only from Ag and has a thickness of 60 A or less, particularly 50 A or less,
It is more preferably 45 A or less. 60
Beyond A, the distance between the magnetic thin films increases, and antiferromagnetic coupling is lost. The thickness of the Ag thin film is 2
It is preferably A or more. If it is less than 2 A, it will not be a continuous film and the function of the non-magnetic intermediate layer will be lost.

【0028】これら磁性薄膜、Ag薄膜およびそれらの
人工格子多層膜は、バッファ層により、実質的に単結晶
をなし、(100)配向している。そして、この(10
0)エピタキシャル成長は、前記同様、RHEEDパタ
ーンにて、<010>方向や<011>方向に明瞭な等
間隔のストリークが観察されることで確認される。
The magnetic thin film, the Ag thin film and the artificial lattice multi-layered film thereof are substantially single crystals and have a (100) orientation due to the buffer layer. And this (10
0) Epitaxial growth is confirmed by the clear observing of streaks at equal intervals in the <010> direction and the <011> direction in the RHEED pattern, as described above.

【0029】このような場合、本発明の磁性積層体で
は、磁性層のくり返し周期、とりわけAg薄膜の膜厚変
化によって、磁気交換結合エネルギーが周期的に振動し
つつ変化する。このような事実は、最近、スパッタによ
る磁性積層体では報告されているが、MBE法による本
発明の磁性積層体人工格子では始めての発見である。
In such a case, in the magnetic layered body of the present invention, the magnetic exchange coupling energy changes while periodically oscillating due to the repetition period of the magnetic layer, especially the thickness change of the Ag thin film. Although such a fact has been recently reported in the magnetic laminated body by sputtering, it is the first discovery in the magnetic laminated body artificial lattice of the present invention by the MBE method.

【0030】より具体的には、主にAg薄膜の膜厚によ
る振動型磁気結合によって、Ag薄膜の膜厚を2〜60
A の範囲で変化させると、飽和印加磁界Hsatが周期
的に変化する。Hsatは、1kOe 〜10kOe の範囲に
て周期的に変化し、しかもHsatの極大値および極小
値も変化する。この際、磁気抵抗変化率も周期的に変化
し、振動するが、実質磁気抵抗変化率として、室温にて
20%をこえ、30%にも及ぶ巨大磁気抵抗変化率が得
られるAg薄膜膜厚領域が存在する。
More specifically, the thickness of the Ag thin film is set to 2 to 60 mainly by vibration type magnetic coupling depending on the thickness of the Ag thin film.
When changed within the range of A, the saturation applied magnetic field Hsat changes periodically. Hsat changes periodically in the range of 1 kOe to 10 kOe, and the maximum and minimum values of Hsat also change. At this time, the magnetoresistance change rate also periodically changes and vibrates, but as a substantial magnetoresistance change rate, a giant magnetoresistance change rate exceeding 20% at room temperature and reaching 30% can be obtained. Area exists.

【0031】この結果、2〜60A の範囲にてAg薄膜
の厚さを選択することにより、動作磁界強度0.01〜
20kOe にて、室温にて1〜50%の実質磁気抵抗変化
率をもつ磁性積層体を自由に設計することができる。な
お、実質磁気抵抗変化率とは、バッファ層の抵抗分を差
し引いた多層膜の磁気抵抗変化率である。
As a result, by selecting the thickness of the Ag thin film in the range of 2 to 60 A, the operating magnetic field strength of 0.01 to
At 20 kOe, a magnetic laminate having a substantial magnetoresistance change rate of 1 to 50% at room temperature can be freely designed. The substantial magnetoresistance change rate is the magnetoresistance change rate of the multilayer film after subtracting the resistance of the buffer layer.

【0032】なお、磁性薄膜やAg薄膜の厚さは、透過
型電子顕微鏡、走査型電子顕微鏡、オージェ電子分光分
析等により測定することができ、また、結晶構造等はX
線回折等によっても確認することができる。
The thickness of the magnetic thin film and the Ag thin film can be measured by a transmission electron microscope, a scanning electron microscope, Auger electron spectroscopy, etc., and the crystal structure etc. is X.
It can also be confirmed by line diffraction or the like.

【0033】本発明の磁性積層体において、磁性薄膜の
積層数および磁性薄膜/Ag薄膜ユニットのくり返し回
数に特に制限はなく、目的とする磁気抵抗変化率等に応
じて適宜選定すればよいが、十分な磁気抵抗変化率を得
るためには、くり返し回数を2回以上、特に8回以上と
することが好ましい。くり返し回数が多いほど自由電子
が散乱される割合が多くなり好ましい。また、くり返し
回数をあまりに多くすると膜質の劣化が大きくなり、特
性の向上が望めなくなるので、500回以下、特に20
0回以下とすることが好ましい。なお、長周期構造は、
小角X線回折パターンにて、くり返し周期に応じた1
次、2次ピーク等の出現により確認することができる。
In the magnetic laminated body of the present invention, the number of laminated magnetic thin films and the number of repetitions of the magnetic thin film / Ag thin film unit are not particularly limited and may be appropriately selected according to the target magnetoresistance change rate and the like. In order to obtain a sufficient rate of change in magnetic resistance, the number of repetitions is preferably 2 or more, particularly 8 or more. The larger the number of repetitions, the larger the proportion of free electrons scattered, which is preferable. Also, if the number of times of repetition is too large, the deterioration of the film quality becomes large and the improvement of the characteristics cannot be expected.
It is preferably 0 times or less. The long-period structure is
Small angle X-ray diffraction pattern, 1 according to the repetition cycle
It can be confirmed by the appearance of secondary and secondary peaks.

【0034】このような積層体は、磁性薄膜の層間の反
強磁性的結合の結果、反強磁性を示すものである。反強
磁性は、例えば偏極中性子線回折によって容易に確認す
ることができる。また、反強磁性を示す結果、振動型磁
力計やB−Hトレーサーにて、積層体面内の印加磁場−
磁化曲線ないしB−Hループを測定すると、角形比Br
/Bsは0.5以下、特に0.3以下の値となり、場合
によってはBr/Bsはほぼ0となる。この際、印加磁
場−磁化曲線やB−Hループの減磁カーブと昇磁カーブ
とはきわめて近接する。そして、振動型磁力計やB−H
トレーサーやトルク計で、面内および面内法線方向面の
磁化のしやすさ、あるいは異方性エネルギーを測定する
と、磁化容易軸は面内に存在する。なお、図3には、曲
線Aおよび曲線Bとして、それぞれ、積層体面内および
法線面の印加磁場−磁化曲線が示される。面内のBr/
Bsが0.5を越えると積層体の内部において反強磁性
を示す割合が急激に減少してしまい、その結果、MR変
化率が減少してしまう。
Such a laminate exhibits antiferromagnetism as a result of antiferromagnetic coupling between the layers of the magnetic thin film. Antiferromagnetism can be easily confirmed by polarized neutron diffraction, for example. In addition, as a result of showing antiferromagnetism, the applied magnetic field in the plane of the laminate was measured by a vibrating magnetometer or BH tracer
When the magnetization curve or the BH loop is measured, the squareness ratio Br
/ Bs becomes a value of 0.5 or less, particularly 0.3 or less, and Br / Bs becomes almost 0 in some cases. At this time, the applied magnetic field-magnetization curve and the BH loop demagnetization curve and the magnetization curve are extremely close to each other. And vibration type magnetometer and B-H
When the easiness of magnetization of the in-plane surface and the in-plane normal direction surface or the anisotropic energy is measured with a tracer or a torque meter, the easy magnetization axis exists in the surface. Note that, in FIG. 3, the applied magnetic field-magnetization curves in the plane of the laminate and the normal plane are shown as a curve A and a curve B, respectively. Br / in plane
If Bs exceeds 0.5, the ratio of antiferromagnetism inside the laminated body is rapidly reduced, and as a result, the MR change rate is reduced.

【0035】なお、日本応用磁気学会誌13,335−
338(1989)には、高周波スパッタ法を用いたC
o/Ag、Fe/Ag系の人工格子磁性積層体が記載さ
れいる。しかし、このものは、極磁気カー効果を利用す
るための積層体であって、垂直磁気異方性をもち、MR
素子としたときには、MR変化率が低い。また、Japane
se Journal of Applied Physics, 26 巻 Supplement 26
-3,1451 ページ、1987年には、やはりスパッタ法に
よるCo/Ag系等の人工格子磁性積層体が報告されて
いるが、この場合は、積層体の電気抵抗(シート抵抗)
とCoとAgの積層周期依存性について主に述べられて
おり、反強磁性を示すとの報告はなく、またMR変化率
についても調べられていない。
The Journal of Applied Magnetics of Japan 13,335-
In 338 (1989), C using a high frequency sputtering method is used.
An artificial lattice magnetic laminate of the o / Ag and Fe / Ag systems is described. However, this is a laminated body for utilizing the polar Kerr effect, has perpendicular magnetic anisotropy, and has MR
When used as an element, the MR change rate is low. Also, Japane
se Journal of Applied Physics, Volume 26 Supplement 26
-3,1451 pages, 1987, Co / Ag based artificial lattice magnetic laminates by sputtering method are also reported. In this case, the electrical resistance (sheet resistance) of the laminates is reported.
And the stacking period dependence of Co and Ag are mainly described, there is no report showing antiferromagnetism, and the MR change rate has not been investigated.

【0036】さらにSuperlattices and Microstructure
s 4巻、1号、45ページ、1988年には、スパッタ
法により作製したFe、CoおよびNiとAgとの磁性
積層体のホール係数や磁気抵抗効果について述べられて
いる。しかしここで述べられているCo/Agの磁気抵
抗効果は弱い印加磁場のときに様々な方向を向いている
Coの磁区構造によってもたらされるものであり、反強
磁性による巨大な磁気抵抗変化とは根本的に異なる。
Further Superlattices and Microstructure
s Vol. 4, No. 1, p. 45, 1988, describes the Hall coefficient and the magnetoresistive effect of a magnetic laminate of Fe, Co, and Ni and Ag produced by the sputtering method. However, the Co / Ag magnetoresistive effect described here is brought about by the magnetic domain structure of Co that is oriented in various directions when a weak applied magnetic field is applied. Fundamentally different.

【0017】さらに、日本応用磁気学会誌13,339
−342(1989)には、分子線エピタキシー法によ
るCo/Au系の人工格子磁性積層体が報告されている
が、このものも垂直磁気異方性をもち、MR変化率は1
%(0.5kOe、室温)と低い。
Furthermore, the Journal of Applied Magnetics of Japan 13,339
-342 (1989), an artificial lattice magnetic laminate of Co / Au system by a molecular beam epitaxy method is reported, which also has perpendicular magnetic anisotropy and an MR change rate of 1
% (0.5 kOe, room temperature), which is low.

【0037】本発明の磁性積層体を製造するには、分子
線エピタキシー(MBE)法を用いることが好ましい。
本発明の場合、形成する磁性薄膜およびAg薄膜の層厚
が極めてうすいため、ゆっくりと被着させることが必要
となる。成膜中の不純物混入を避けるため、超高真空領
域での成膜が必要となる。また、各々の層を生成する際
に相互拡散を起こし、反強磁性が失われることのないよ
う、被着粒子のエネルギーは低い程よい。この目的にも
っとも適しているのは、MBE法である。
In order to produce the magnetic layered product of the present invention, it is preferable to use the molecular beam epitaxy (MBE) method.
In the case of the present invention, since the layer thickness of the magnetic thin film and the Ag thin film to be formed is extremely thin, it is necessary to adhere slowly. In order to avoid mixing of impurities during the film formation, it is necessary to form the film in the ultra-high vacuum region. Further, the energy of the adhered particles is preferably as low as possible so that mutual diffusion does not occur when the respective layers are formed and antiferromagnetism is not lost. The MBE method is most suitable for this purpose.

【0038】MBE法は、超高真空蒸着法の1種であ
り、超高真空中で蒸着源から蒸発した分子ないし物質を
基体表面に付着させて薄膜を成長させる方法である。具
体的には、シャッタの開閉により蒸着源を選択し、膜厚
計で測定しながら磁性薄膜と非磁性薄膜とを交互に蒸着
して多層膜を形成する。
The MBE method is one of ultra-high vacuum vapor deposition methods, and is a method for growing a thin film by adhering molecules or substances evaporated from a vapor deposition source to a substrate surface in ultra-high vacuum. Specifically, the evaporation source is selected by opening and closing the shutter, and the magnetic thin film and the non-magnetic thin film are alternately deposited while measuring with a film thickness meter to form a multilayer film.

【0039】この際、通常、10-11 〜10-9Torr程度
の到達圧力とし、蒸着中の圧力は10-11 〜10-7Tor
r、特に10-10 〜10-7Torr程度とすることが好まし
い。そして、成膜速度は0.01〜1A/sec 、特に0.
05〜0.5A/sec 程度とすることが好ましい。
At this time, the ultimate pressure is usually about 10 -11 to 10 -9 Torr, and the pressure during vapor deposition is 10 -11 to 10 -7 Torr.
It is preferably r, particularly about 10 −10 to 10 −7 Torr. The film forming rate is 0.01 to 1 A / sec, and especially 0.
It is preferably about 05 to 0.5 A / sec.

【0040】エピタキシャル成長による多層膜の形成に
際しては、基板温度を100℃以下、特に60℃以下に
保つことが好ましい。基板温度が高すぎると、界面部分
で各々の元素が相互拡散をおこし、人工格子の膜質が低
下する。なお、磁性薄膜を磁界中で成膜し、面内磁気異
方性を強めてもよい。
When forming a multilayer film by epitaxial growth, it is preferable to keep the substrate temperature at 100 ° C. or lower, particularly 60 ° C. or lower. If the substrate temperature is too high, each element causes mutual diffusion at the interface portion, and the quality of the artificial lattice film deteriorates. The magnetic thin film may be formed in a magnetic field to enhance the in-plane magnetic anisotropy.

【0041】このような人工格子多層膜を担持するバッ
ファ層の形成に際してもMBE法を用いる。この際、成
膜速度は0.01〜1A/sec 、特に0.05〜0.3A/
secが好ましい。成膜速度が大きすぎると結晶構造が乱
れてしまい、単結晶バッファ層が得られにくくなる。た
だし、余りに遅い成膜速度では、時間やコストの無駄と
なる。なお、バッファ層成膜時の基体温度は200℃以
下、特に100℃以下が好ましい。基体温度が高すぎる
と、島状成長をおこしたり、バッファ表面に起伏や凹凸
を生じたりする。
The MBE method is also used for forming the buffer layer carrying such an artificial lattice multilayer film. At this time, the film forming rate is 0.01 to 1 A / sec, particularly 0.05 to 0.3 A / sec.
sec is preferred. If the film formation rate is too high, the crystal structure is disturbed, and it becomes difficult to obtain a single crystal buffer layer. However, if the film formation rate is too slow, time and cost are wasted. The substrate temperature during film formation of the buffer layer is preferably 200 ° C. or lower, particularly 100 ° C. or lower. If the substrate temperature is too high, island-like growth will occur, and undulations and irregularities will occur on the buffer surface.

【0042】このような成膜を行ったのち、表面平滑な
単結晶バッファ層を得るためアニールを行なうことが好
ましい。アニール圧力は、10-11 〜10-8Torrとし、
アニール温度150〜500℃、アニール時間1〜60
分とすることが好ましい。アニールの温度が高すぎた
り、時間が長すぎたりすると表面に凹凸が生じてしま
う。
After forming such a film, it is preferable to perform annealing in order to obtain a single crystal buffer layer having a smooth surface. The annealing pressure is 10 -11 to 10 -8 Torr,
Annealing temperature 150-500 ° C, annealing time 1-60
It is preferable to set to minutes. If the annealing temperature is too high or the annealing time is too long, the surface becomes uneven.

【0043】そして、この後、このバッファ層上に、前
記のMBE法により、人工格子多層膜のエピタキシャル
成長を行う。
After that, the artificial lattice multilayer film is epitaxially grown on this buffer layer by the MBE method.

【0044】このような磁性積層体は、磁気抵抗センサ
(MRセンサ)や磁気抵抗ヘッド(MRヘッド)などの
各種磁気抵抗素子(MR素子)に用いられる。本発明の
バッファ層を有する磁性積層体から磁気抵抗素子を製造
するには、以下のような手順に従うことが好ましい。
Such a magnetic laminate is used in various magnetoresistive elements (MR elements) such as magnetoresistive sensors (MR sensors) and magnetoresistive heads (MR heads). In order to manufacture a magnetoresistive element from the magnetic laminate having the buffer layer of the present invention, it is preferable to follow the procedure described below.

【0045】まず、図1(a)に示されるように、前記
の方法に従い、単結晶の基体3上にバッファ層1および
多層膜2を有する磁性積層体を得る。次いで、図1
(b)に示されるように、多層膜2に別の基板5を接着
層4を介して一体化する。
First, as shown in FIG. 1A, a magnetic laminate having a buffer layer 1 and a multilayer film 2 on a single crystal substrate 3 is obtained according to the method described above. Then, FIG.
As shown in (b), another substrate 5 is integrated with the multilayer film 2 via the adhesive layer 4.

【0046】用いる基板5の材質に制限はなく、アモル
ファスガラス基板、結晶化ガラス基板の他、通常用いら
れる各種基板、例えば、マグネシア、サファイヤ、シリ
コン、アルミナ、チタン酸ストロンチウム、チタン酸バ
リウム、ニオブ酸リチウム、、チタン酸カルシウ等の各
種酸化物や、アルミナ−チタンカーバイド等の基板はい
ずれも使用可能であるが、特にコストと経時的に多層膜
に悪影響を及ぼさない点で、無アルカリガラスが好まし
い。そして、その厚さは0.3〜1mm程度とすればよ
い。また、用いる接着剤としては、公知の各種接着剤は
いずれも使用可能である。
There is no limitation on the material of the substrate 5 to be used, and in addition to the amorphous glass substrate and the crystallized glass substrate, various substrates usually used, for example, magnesia, sapphire, silicon, alumina, strontium titanate, barium titanate, niobate. Lithium, various oxides such as calcium titanate, and substrates such as alumina-titanium carbide can be used, but non-alkali glass is preferable from the viewpoint that cost and time do not adversely affect the multilayer film. .. The thickness may be about 0.3-1 mm. As the adhesive to be used, any of various known adhesives can be used.

【0047】この後、図1(c)に示されるように、基
体3とバッファ層1とを除去する。より具体的には、ラ
ッピング、ポリッシング等により単結晶基板3、バッフ
ァ層1の順に除去を行なう。この際、バッファ層1は多
層膜2上、dの厚さだけ残存させた方がよい。dはでき
るだけ0に近いことが好ましいが、100A 程度以下と
することが好ましい。dが大きくなると、残存単結晶バ
ッファ層と流れる電流が多くなり、みかけ上の磁気抵抗
変化率が減少してしまう。ただし、dがあまりに小さく
なると、人工格子多層膜にダメージが生じ、磁気抵抗変
化率が減少するので、dは50〜100A であることが
好ましい。
After that, as shown in FIG. 1C, the substrate 3 and the buffer layer 1 are removed. More specifically, the single crystal substrate 3 and the buffer layer 1 are removed in this order by lapping, polishing, or the like. At this time, the buffer layer 1 should be left on the multilayer film 2 by a thickness of d. d is preferably as close to 0 as possible, but is preferably about 100 A or less. When d becomes large, the current flowing through the remaining single crystal buffer layer increases, and the apparent magnetoresistance change rate decreases. However, when d is too small, the artificial lattice multilayer film is damaged and the rate of change in magnetoresistance decreases, so d is preferably 50 to 100A.

【0048】次いで、多層膜2をパターンニングして、
電極付により電極6を形成し、保護層やリード7を形成
して、図2、図3に示される磁気抵抗効果素子が製造さ
れる。
Next, the multilayer film 2 is patterned to
The electrodes 6 are formed by attaching the electrodes, and the protective layer and the leads 7 are formed to manufacture the magnetoresistive effect element shown in FIGS.

【0049】なお、上記ではバッファ層の除去を行なっ
たが、バッファ層の除去を行なわずに磁気抵抗素子を作
製してもよいことは勿論である。
Although the buffer layer is removed in the above, it goes without saying that the magnetoresistive element may be produced without removing the buffer layer.

【0050】[0050]

【実施例】以下、具体的実施例を挙げ、本発明をさらに
詳細に説明する。
EXAMPLES The present invention will be described in more detail with reference to specific examples.

【0051】実施例1 表面を鏡面研磨した0.5mm厚のマグネシアMgO(1
00)単結晶基体上に、MBE法でAg膜を成膜した。
到達圧力は7×10-11 Torr、動作圧力は7×10-10T
orr 、成膜速度は0.1A/sec とし、基体を22℃に保
持して、30rpm で回転させながら蒸着を行い、739
AのAgバッファ層を形成した。
Example 1 Magnesia MgO (1) with a thickness of 0.5 mm whose surface was mirror-polished
00) An Ag film was formed on the single crystal substrate by the MBE method.
Ultimate pressure is 7 × 10 -11 Torr, operating pressure is 7 × 10 -10 T
orr, the film formation rate was 0.1 A / sec, the substrate was kept at 22 ° C., and vapor deposition was performed while rotating at 30 rpm.
An Ag buffer layer of A was formed.

【0052】図4(a)に、成膜直後のバッファ層のR
HEEDパターンを示す。成膜直後のAgバッファ層の
RHEEDパターンは<010>、<011>方向とも
等間隔のストリークが観察されるが、同時にリング状の
回析も観察されている。これは成膜直後のバッファ層の
結晶構造としては、単結晶となっている部分のほかに多
結晶の部分も少し含まれていることを示している。
FIG. 4A shows the R of the buffer layer immediately after the film formation.
The HEED pattern is shown. In the RHEED pattern of the Ag buffer layer immediately after film formation, streaks at equal intervals are observed in both <010> and <011> directions, but at the same time ring-shaped diffraction is also observed. This indicates that the crystal structure of the buffer layer immediately after film formation includes a small amount of a polycrystalline part in addition to the single crystal part.

【0053】バッファ層成膜後、圧力を8×10-9Torr
に維持したまま、350℃にて、15分間アニールを行
った。アニール後のRHEEDパターンを図4(b)に
示す。アニールにより、<010>、<011>方向と
も、ストリークはきわめて明瞭なものとなっており、
(100)単結晶Agバッファ層が形成されていること
がわかる。バッファ層形成時の基体温度を100℃以下
の温度に低く保つことにより平坦な表面が得られる。し
かし結晶構造が多少乱れてしまい、多少多結晶の部分が
含まれてしまう。そこでこのバッファ層を超高真空槽内
でアニールすることにより、表面を平滑に保ったまま、
結晶構造を改善し、単結晶とすることができる。
After forming the buffer layer, the pressure is adjusted to 8 × 10 -9 Torr.
Annealing was performed for 15 minutes at 350 ° C. The RHEED pattern after annealing is shown in FIG. By annealing, the streak becomes extremely clear in both the <010> and <011> directions.
It can be seen that the (100) single crystal Ag buffer layer is formed. A flat surface can be obtained by keeping the substrate temperature at the time of forming the buffer layer low at 100 ° C. or lower. However, the crystal structure is somewhat disturbed, and a polycrystal part is included. Therefore, by annealing this buffer layer in an ultra-high vacuum chamber, keeping the surface smooth,
A single crystal can be obtained by improving the crystal structure.

【0054】次いで、槽内を3×10-10 Torrとして、
このバッファ層上に、Co磁性薄膜と、Ag薄膜とを交
互に蒸着し、6AのCoと21AのAgを1単位とし
て、これを30回積層した磁性積層体サンプルを作製し
た。以下において、このような場合を [Co(6)-Ag(21)]30 と表示する。各薄膜の厚さは、透過型電子顕微鏡により
測定した。
Next, the inside of the tank was set to 3 × 10 -10 Torr,
On this buffer layer, a Co magnetic thin film and an Ag thin film were alternately deposited, and 6 A of Co and 21 A of Ag were set as one unit, and this was laminated 30 times to prepare a magnetic laminate sample. In the following, such a case is indicated as [Co (6) -Ag (21)] 30 . The thickness of each thin film was measured by a transmission electron microscope.

【0055】蒸着は、MBE法により行い、動作圧力は
9.7×10-10 Torr、成膜速度はCoの場合0.1A/
sec 、Agの場合0.2A/sec とし、基体を30rpm で
回転させながら蒸着を行なった。蒸着の際の基体温度は
45℃とした。
Deposition is carried out by the MBE method, the operating pressure is 9.7 × 10 -10 Torr, and the film forming rate is 0.1 A /
In the case of sec and Ag, it was set to 0.2 A / sec, and vapor deposition was performed while rotating the substrate at 30 rpm. The substrate temperature during vapor deposition was 45 ° C.

【0056】人工格子多層膜のRHEEDパターンを図
4(c)に示す。<010>、<011>方向とも明瞭
なストリークが観察され、(100)エピタキシャル成
長が良好に行われたことがわかる。
The RHEED pattern of the artificial lattice multilayer film is shown in FIG. Clear streak was observed in both the <010> and <011> directions, indicating that the (100) epitaxial growth was favorably performed.

【0057】印加磁場−磁化曲線を、振動型磁力計によ
り測定した。また、サンプルを0.3mm×1.0mmの短
冊状とし、外部磁界を最大−20〜+20kOe まで変化
させたときの抵抗を4端子法により測定し、実質磁気抵
抗(MR)変化率ΔR/Rを求めた。測定電流は1.0
9μA とし、外部磁界を異なる方向から印加した。MR
変化率ΔR/Rは、最大抵抗値をRmax、最小抵抗値をR
min とし、 ΔR/R=(Rmax −Rmin )/Rmin ×100(%) として計算した。この際としては、積層体全体の抵抗R
tは、バッファ層の抵抗Rbと、多層膜の実質磁気抵抗
Rmの並列結合と仮定し、Rm=Rt×Rb/(Rb−
Rt)、(Rb=5.4Ω)を用いて、それぞれの印加
磁場のときのRtよりRmを算出し、このRmからΔR
/Rを求めた。
The applied magnetic field-magnetization curve was measured by an oscillating magnetometer. In addition, the sample was made into a strip of 0.3 mm x 1.0 mm, and the resistance when the external magnetic field was changed up to -20 to +20 kOe was measured by the 4-terminal method, and the real magnetic resistance (MR) change rate ΔR / R I asked. Measuring current is 1.0
The external magnetic field was applied from different directions. MR
The rate of change ΔR / R is the maximum resistance value Rmax and the minimum resistance value R
and calculated as ΔR / R = (Rmax−Rmin) / Rmin × 100 (%). In this case, the resistance R of the entire laminate is
It is assumed that t is a parallel combination of the resistance Rb of the buffer layer and the substantial magnetic resistance Rm of the multilayer film, and Rm = Rt × Rb / (Rb−
Rt) and (Rb = 5.4Ω) are used to calculate Rm from Rt at each applied magnetic field, and from this Rm, ΔR is calculated.
/ R was calculated.

【0058】MR変化率を図5に示す。図5中、Trans
は試料面内、電流と直角方向に外部磁界を印加した場
合、Longは、試料面内、電流と平行方向に外部磁界を印
加した場合、Normalは、試料法線方向に外部磁界を印加
したときの結果である。Transでは、室温にて、印加磁
界20kOe で29.9%の実質MR変化率が得られた。
また、77Kでは、118.2%を得た。
The MR change rate is shown in FIG. In Figure 5, Trans
Is when an external magnetic field is applied in the sample plane in the direction perpendicular to the current, Long is when an external magnetic field is applied in the sample plane, in the direction parallel to the current, and Normal is when the external magnetic field is applied in the sample normal direction. Is the result of. In Trans, at room temperature, a real MR change rate of 29.9% was obtained with an applied magnetic field of 20 kOe.
Further, at 77K, 118.2% was obtained.

【0059】さらに、試料面内方向の印加磁場−磁化曲
線が図6(a)に示される。この場合の角形比は0.1
であった。
Further, the applied magnetic field-magnetization curve in the in-plane direction of the sample is shown in FIG. 6 (a). The squareness ratio in this case is 0.1
Met.

【0060】これらから、積層体は面内に磁化容易軸を
もち、角形比は小さく、反強磁性を示すことが推定され
た。実際、偏極中性子線回折の結果も、積層ユニット厚
の2倍周期に対応したブラッグ角に回折線が認められ、
層間の反強磁性的結合が確認された。
From these, it was estimated that the laminate has an easy axis of magnetization in the plane, a small squareness ratio, and exhibits antiferromagnetism. In fact, the polarized neutron diffraction results also show diffraction lines at the Bragg angle corresponding to the double period of the thickness of the laminated unit,
Antiferromagnetic coupling between layers was confirmed.

【0061】なお、基体をアモルファスガラスにかえた
他は、前記と全く同様にAgバッファ層と、[Co
(6)−Ag(21)]30の多層膜との磁性積層体を形
成した。このもののアニール後のバッファ層も、多層膜
もRHEEDパターンには単結晶を示す事実は確認され
なかった。このものの面内Br/Bsは、図6(b)に
示されるように、0.1で面内に磁化容易軸をもち、反
強磁性を示した。
In addition, the Ag buffer layer and [Co
(6) -Ag (21)] 30 multilayer film was formed to form a magnetic laminate. It was not confirmed that neither the buffer layer nor the multilayer film after annealing had a single crystal in the RHEED pattern. As shown in FIG. 6 (b), the in-plane Br / Bs of this material had an easy axis of magnetization in the plane of 0.1 and exhibited antiferromagnetism.

【0062】この積層体は、図7に示されるように、室
温で14%、また77K、20kOeで26.1%のMR
変化率を示した。これらから、本発明の単結晶バッファ
層の効果が明らかである。
This laminate has an MR of 14% at room temperature and 26.1% at 77K and 20 kOe, as shown in FIG.
The rate of change was shown. From these, the effect of the single crystal buffer layer of the present invention is clear.

【0063】実施例2 実施例1において、[Co(6)−Ag(t)]70
て、Ag薄膜の厚さtを種々変えて実験を行なった。
Example 2 An experiment was conducted by changing the thickness t of the Ag thin film in [Co (6) -Ag (t)] 70 in Example 1 to various values.

【0064】Ag薄膜の厚さを変えたときの飽和印加磁
場Hsatを測定したところ、Hsatは、Ag薄膜の
厚さの変化により、周期的に振動して変化していること
が確認された。振動の極大ピークは、t=9A および2
5A にあり、反強磁性結合エネルギーJAFを、 JAF=Hsat・Ms・t(Co)/4 t(Co)はCo層の厚さ から計算すると、9A の1次ピークで0.12erg/cm
2 、25A の2次ピークで0.15erg/cm3 と評価され
た。
When the saturation applied magnetic field Hsat was measured when the thickness of the Ag thin film was changed, it was confirmed that Hsat periodically oscillated and changed due to the change in the thickness of the Ag thin film. The maximum peak of vibration is t = 9A and 2
The antiferromagnetic coupling energy J AF is 5 A, and J AF = Hsat · Ms · t (Co) / 4 t (Co) is calculated from the thickness of the Co layer to 0.12 erg / cm
The secondary peak at 2 and 25 A was estimated to be 0.15 erg / cm 3 .

【0065】なお、以上のような効果は、NiやFeの
磁性薄膜でも、Au、Cuの単結晶バッファ層でも同等
に実現した。
The above-described effects were equally realized in the magnetic thin film of Ni or Fe or the single crystal buffer layer of Au or Cu.

【0066】[0066]

【発明の効果】本発明の多層膜は、従来の反強磁性的結
合による磁気抵抗変化積層体と比較して、より低磁場で
より大きな巨大磁気抵抗変化が得られる。この多層膜
は、単結晶状バッファ層上にエピタキシャル成長させて
形成されているので、磁気抵抗変化比はより一層大きな
ものとなる。そして、磁気結合エネルギーの振動周期変
化を利用して、0.01〜20kOe の任意の動作磁界に
て、1〜150%の任意の磁気変化を得ることができ
る。そして、外部磁場方向によって、異なる磁気抵抗変
化特性を得ることができるという特徴をもつ。さらに、
バッファ層を除去して磁気抵抗素子とすれば、きわめて
大きな感度が得られる。
EFFECT OF THE INVENTION The multilayer film of the present invention can obtain a larger giant magnetoresistance change in a lower magnetic field as compared with the conventional magnetoresistance change laminated body by antiferromagnetic coupling. Since this multilayer film is formed by epitaxial growth on the single crystal buffer layer, the magnetoresistive change ratio is further increased. Then, by utilizing the oscillation cycle change of the magnetic coupling energy, an arbitrary magnetic change of 1 to 150% can be obtained in an arbitrary operating magnetic field of 0.01 to 20 kOe. Further, it is characterized in that different magnetoresistance change characteristics can be obtained depending on the external magnetic field direction. further,
If the buffer layer is removed to form a magnetoresistive element, extremely high sensitivity can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁性積層体を用いて磁気抵抗素子を製
造する際の工程を説明するための正面図である。
FIG. 1 is a front view for explaining a process for manufacturing a magnetoresistive element using the magnetic laminate of the present invention.

【図2】本発明によって得られる磁気抵抗素子の正面図
である。
FIG. 2 is a front view of a magnetoresistive element obtained according to the present invention.

【図3】本発明によって得られる磁気抵抗素子の平面図
である。
FIG. 3 is a plan view of a magnetoresistive element obtained by the present invention.

【図4】本発明の磁性積層体の製造方法における工程終
了ごとの高速反射電子線回折パターンを示す図面代用写
真である。
FIG. 4 is a drawing-substituting photograph showing a high-speed reflection electron beam diffraction pattern after each step in the method for producing a magnetic laminate of the present invention.

【図5】本発明の磁性積層体の印加磁場と磁気抵抗(M
R)変化率との関係を示すグラフである。
FIG. 5: Applied magnetic field and magnetic resistance (M
It is a graph which shows the relationship with R) change rate.

【図6】本発明の磁性積層体の印加磁場−磁化曲線を示
すグラフである。
FIG. 6 is a graph showing an applied magnetic field-magnetization curve of the magnetic layered body of the present invention.

【図7】他の磁性積層体の印加磁場と、磁気抵抗(M
R)変化率との関係を示すグラフである。
FIG. 7 is a diagram showing a magnetic field applied to another magnetic laminated body and a magnetic resistance (M
It is a graph which shows the relationship with R) change rate.

【符号の説明】[Explanation of symbols]

1 バッファ層 2 多層膜 3 基体 4 接着層 5 基板 6 電極 7 リード 1 Buffer Layer 2 Multilayer Film 3 Base 4 Adhesive Layer 5 Substrate 6 Electrode 7 Lead

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Ag、AuおよびCuの少なくとも1種
を含む単結晶状バッファ層上に、Fe、CoおよびNi
の少なくとも1種を含む磁性薄膜と、Ag薄膜とを積層
した多層膜を有することを特徴とする磁性積層体。
1. Fe, Co and Ni are formed on a single crystal buffer layer containing at least one of Ag, Au and Cu.
And a magnetic thin film containing at least one of the above and a Ag thin film.
【請求項2】 前記多層膜が、2〜60A の厚さのF
e、CoおよびNiの1種以上を含む磁性薄膜と、2〜
60A の厚さのAg薄膜とを分子線エピタキシー法によ
ってエピタキシャル成長させながら積層したものである
請求項1に記載の磁性積層体。
2. The multi-layered film having a thickness of 2 to 60 A
a magnetic thin film containing one or more of e, Co and Ni;
The magnetic laminate according to claim 1, which is a laminate of the Ag thin film having a thickness of 60 A and being epitaxially grown by a molecular beam epitaxy method.
【請求項3】 面内に磁化容易軸をもち、面内の角型比
がBr/Bsが0.5以下である請求項1または2に記
載の磁性積層体。
3. The magnetic laminate according to claim 1, which has an easy axis of magnetization in the plane and has an in-plane squareness ratio of 0.5 or less Br / Bs.
【請求項4】 反強磁性を示す請求項1ないし3のいず
れかに記載の磁性積層体。
4. The magnetic laminated body according to claim 1, which exhibits antiferromagnetism.
【請求項5】 前記バッファ層の厚さが100〜200
0A である請求項1ないし4のいずれかに記載の磁性積
層体。
5. The buffer layer has a thickness of 100 to 200.
The magnetic laminated body according to any one of claims 1 to 4, which has an electric current of 0 A.
【請求項6】 基体上に、Ag、AuおよびCuの少な
くとも1種を含む単結晶状のバッファ層を形成し、この
バッファ層上に、請求項1ないし5のいずれかに記載の
多層膜を形成することを特徴とする磁性積層体の製造方
法。
6. A single-crystal buffer layer containing at least one of Ag, Au and Cu is formed on a substrate, and the multilayer film according to claim 1 is formed on the buffer layer. A method of manufacturing a magnetic laminated body, which comprises forming the magnetic laminated body.
【請求項7】 前記バッファ層は、分子線エピタキシー
法によって成膜後、150〜500℃にてアニールして
形成される請求項6に記載の磁性積層体の製造方法。
7. The method for producing a magnetic laminate according to claim 6, wherein the buffer layer is formed by a molecular beam epitaxy method and then annealed at 150 to 500 ° C.
【請求項8】 請求項6または7に記載の方法で磁性積
層体を得、 この磁性積層体の多層膜表面に基板を接着し、 その後、前記基体およびバッファ層を除去し、 前記多層膜をパターニングすることを特徴とする磁気抵
抗効果素子の製造方法。
8. A magnetic laminated body is obtained by the method according to claim 6 or 7, a substrate is adhered to the surface of the multilayer film of the magnetic laminated body, and then the substrate and the buffer layer are removed to form the multilayer film. A method for manufacturing a magnetoresistive effect element, which comprises patterning.
JP3254600A 1991-09-06 1991-09-06 Magnetic laminated body, its manufacture, and manufacture of magneto-resistance effect element Pending JPH0567525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3254600A JPH0567525A (en) 1991-09-06 1991-09-06 Magnetic laminated body, its manufacture, and manufacture of magneto-resistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3254600A JPH0567525A (en) 1991-09-06 1991-09-06 Magnetic laminated body, its manufacture, and manufacture of magneto-resistance effect element

Publications (1)

Publication Number Publication Date
JPH0567525A true JPH0567525A (en) 1993-03-19

Family

ID=17267294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3254600A Pending JPH0567525A (en) 1991-09-06 1991-09-06 Magnetic laminated body, its manufacture, and manufacture of magneto-resistance effect element

Country Status (1)

Country Link
JP (1) JPH0567525A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316549A (en) * 1994-05-02 1996-11-29 Matsushita Electric Ind Co Ltd Magnetoresistive effect element, magnetoresistive effect head, memory device, and amplifying element equipped therewith
EP0779632A1 (en) * 1995-12-15 1997-06-18 Commissariat A L'energie Atomique Multilayer structure and sensor and fabrication process
US5850318A (en) * 1995-06-06 1998-12-15 Seagate Technology, Inc. Slotless spindle motor for disc drive
WO2000003400A1 (en) * 1998-07-08 2000-01-20 Carl Zeiss SiO2 COATED MIRROR SUBSTRATE FOR EUV
US6256222B1 (en) 1994-05-02 2001-07-03 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316549A (en) * 1994-05-02 1996-11-29 Matsushita Electric Ind Co Ltd Magnetoresistive effect element, magnetoresistive effect head, memory device, and amplifying element equipped therewith
US6111782A (en) * 1994-05-02 2000-08-29 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, and magnetoresistance effect type head, memory device, and amplifying device using the same
US6256222B1 (en) 1994-05-02 2001-07-03 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, and magnetoresistaance effect type head, memory device, and amplifying device using the same
US5850318A (en) * 1995-06-06 1998-12-15 Seagate Technology, Inc. Slotless spindle motor for disc drive
EP0779632A1 (en) * 1995-12-15 1997-06-18 Commissariat A L'energie Atomique Multilayer structure and sensor and fabrication process
FR2742571A1 (en) * 1995-12-15 1997-06-20 Commissariat Energie Atomique STRUCTURE AND MULTILAYER SENSOR AND METHOD OF MAKING SAME
WO2000003400A1 (en) * 1998-07-08 2000-01-20 Carl Zeiss SiO2 COATED MIRROR SUBSTRATE FOR EUV

Similar Documents

Publication Publication Date Title
JP3320079B2 (en) Magnetic laminate and magnetoresistive element
US7220498B2 (en) Tunnel magnetoresistance element
JPH04218982A (en) Magnetoresistance element
JP2924798B2 (en) Magnetoresistance thin film
JPH05183212A (en) Magneto-resistance effect element
JP2743806B2 (en) Magnetoresistive film and method of manufacturing the same
US5858455A (en) Method for forming a lateral giant magnetoresistance multilayer for a magnetoresistive sensor
JPH0818119A (en) Thin film of magnetoresistive element and magnetoresistive element using thin film thereof
JPH0567525A (en) Magnetic laminated body, its manufacture, and manufacture of magneto-resistance effect element
JP2000091665A (en) Magnetoresistance effect film and manufacture thereof
US6015632A (en) Self-assembled giant magnetoresistance lateral multilayer for a magnetoresistive sensor
JPH09148132A (en) Exchange bond film and magnetoresistance effect element
Egelhoff Jr et al. Low‐temperature growth of giant magnetoresistance spin valves
JP3226254B2 (en) Exchange coupling film, magnetoresistive element and magnetoresistive head
JP3100714B2 (en) Magnetic laminate and magnetoresistive element
JPH11329882A (en) Manufacture of exchange coupling film and magnetoresistive effect device
JP3346787B2 (en) Magnetic laminate and magnetoresistive element
EP1925946A2 (en) Tunnel magnetoresistance element
JP3532607B2 (en) Magnetoresistance effect element
JPH07263773A (en) Magnetoresistance effect element and its manufacture
JPH05275232A (en) Magnetic laminate and magnetic resisting effect element
Kano et al. Low magnetic field spin flops in giant magnetoresistance multilayers
JPH06251941A (en) Magnetic laminated body and magnetoresistance effect element
JP2957235B2 (en) Magnetic multilayer film
Miyamoto et al. Effects of Ni/sub 81/Fe/sub 19/underlayer and Ar ion bombardment to deposition of (111) oriented Fe/sub 50/Mn/sub 50/layers for spin valve devices

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021022