JP2957235B2 - Magnetic multilayer film - Google Patents

Magnetic multilayer film

Info

Publication number
JP2957235B2
JP2957235B2 JP2159486A JP15948690A JP2957235B2 JP 2957235 B2 JP2957235 B2 JP 2957235B2 JP 2159486 A JP2159486 A JP 2159486A JP 15948690 A JP15948690 A JP 15948690A JP 2957235 B2 JP2957235 B2 JP 2957235B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
magnetic thin
film
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2159486A
Other languages
Japanese (ja)
Other versions
JPH0449605A (en
Inventor
悟 荒木
義和 成宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15694824&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2957235(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2159486A priority Critical patent/JP2957235B2/en
Publication of JPH0449605A publication Critical patent/JPH0449605A/en
Application granted granted Critical
Publication of JP2957235B2 publication Critical patent/JP2957235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、磁気抵抗効果素子に好適な磁性多層膜に関
する。
Description: TECHNICAL FIELD The present invention relates to a magnetic multilayer film suitable for a magnetoresistive element.

<従来の技術> 金属の原子径オーダーの厚さの薄膜が周期的に積層さ
れた構成をもつ人工格子は、バルク状の金属とは異なっ
た特性を示すために、近年注目されるようになってき
た。
<Prior Art> An artificial lattice having a structure in which thin films having a thickness on the order of the atomic diameter of a metal are periodically stacked has attracted attention in recent years because it has characteristics different from those of a bulk metal. Have been.

このような人工格子の1種として、単結晶基体上に強
磁性金属薄膜と反強磁性金属薄膜とを交互に積層した磁
性多層膜があり、これまで、鉄−クロム型、ニッケル−
クロム型および鉄−マンガン型(特開昭60−189906号公
報)等の磁性多層膜が知られている。
As one type of such artificial lattice, there is a magnetic multilayer film in which a ferromagnetic metal thin film and an antiferromagnetic metal thin film are alternately laminated on a single crystal substrate.
Magnetic multilayer films such as a chromium type and an iron-manganese type (JP-A-60-189906) are known.

また、鉄−クロム型については、極低温(4.2K)にお
いて40%を超える磁気抵抗変化を示すという報告もある
(フィジカル・レビュー・レターズ61巻、2472ページ、
1988年)。
There is also a report that the iron-chromium type exhibits a magnetoresistance change of more than 40% at a very low temperature (4.2 K) (Physical Review Letters, vol. 61, p. 2472,
1988).

これらの磁性多層膜の主な用途は磁気抵抗効果素子
(MR素子)であり、各種磁気センサ(MRセンサ)や磁気
ヘッド(MRヘッド)などへの適用が可能である。
The main application of these magnetic multilayer films is a magnetoresistance effect element (MR element), and can be applied to various magnetic sensors (MR sensors), magnetic heads (MR heads), and the like.

MR素子は、磁場印加による磁性膜の電気抵抗変化を検
出して磁界強度やその変化を測定するものであり、一般
に、室温における磁気抵抗変化率が大きく、動作磁界強
度が小さいことが要求される。
The MR element detects the change in electric resistance of the magnetic film due to the application of a magnetic field and measures the magnetic field strength and its change. Generally, it is required that the magnetoresistance change rate at room temperature is large and the operating magnetic field strength is small. .

MR素子の磁性膜としては、従来、異方性磁気抵抗効果
を利用するFe−Ni合金やCo−Ni合金の単層磁性膜が用い
られている。
Conventionally, as a magnetic film of the MR element, a single-layer magnetic film of an Fe—Ni alloy or a Co—Ni alloy utilizing an anisotropic magnetoresistance effect has been used.

しかし、Fe−Ni合金やCo−Ni合金の単層磁性膜では、
動作磁界強度は小さいが磁気抵抗変化率が2〜3%と小
さい。
However, in a single-layer magnetic film of an Fe-Ni alloy or a Co-Ni alloy,
Although the operating magnetic field strength is small, the rate of change in magnetoresistance is as small as 2-3%.

また、上記した鉄−クロム型磁性多層膜は、磁気抵抗
変化率は大きいものの動作磁界強度が20kOe程度と極め
て大きいため、MR素子としての実用化が困難である。
In addition, although the above-described iron-chromium type magnetic multilayer film has a large magnetoresistance change rate, the operating magnetic field intensity is extremely large at about 20 kOe, so that practical application as an MR element is difficult.

<発明が解決しようとする課題> 本発明は、磁気抵抗変化率が大きく、しかも動作磁界
強度を小さくできる磁性多層膜を提供することを目的と
する。
<Problem to be Solved by the Invention> It is an object of the present invention to provide a magnetic multilayer film having a large magnetoresistance change rate and a small operating magnetic field strength.

<課題を解決するための手段> このような目的は、下記(1)、(2)の本発明によ
り達成される。
<Means for Solving the Problems> Such an object is achieved by the present invention of the following (1) and (2).

(1)磁気抵抗効果を有する磁性多層膜であって、 基体上に、2層以上の磁性薄膜が非磁性薄膜を介して
積層されており、 隣り合う少なくとも一方の磁性薄膜の磁化容易軸の方
位と異なる方位の磁化容易軸を有する磁性薄膜が存在
し、 磁性薄膜の厚さおよび非磁性薄膜の厚さがそれぞれ20
0Å以下である磁性多層膜。
(1) A magnetic multilayer film having a magnetoresistive effect, in which two or more magnetic thin films are laminated on a substrate via a non-magnetic thin film, and the direction of the axis of easy magnetization of at least one adjacent magnetic thin film A magnetic thin film having an easy axis of magnetization different from that of the magnetic thin film exists, and the thickness of the magnetic thin film and the thickness of the nonmagnetic thin film are each 20
A magnetic multilayer film having a thickness of 0 ° or less.

(2)磁化容易軸の方位の相異なる2層の磁性薄膜の保
磁力が相異なるものである上記(1)に記載の磁性多層
膜。
(2) The magnetic multilayer film according to the above (1), wherein the coercive forces of the two magnetic thin films having different directions of the axis of easy magnetization are different.

<作用> 本発明の磁性多層膜は、基体上に、2層以上の磁性薄
膜が非磁性薄膜を介して積層された構成を有し、隣り合
う少なくとも一方の磁性薄膜の磁化容易軸の方位と異な
る方位の磁化容易軸を有する磁性薄膜が存在する。
<Function> The magnetic multilayer film of the present invention has a configuration in which two or more magnetic thin films are laminated on a base via a non-magnetic thin film, and the direction of the axis of easy magnetization of at least one of the adjacent magnetic thin films is determined. There are magnetic thin films having easy axes of different orientations.

このような構成により、極めて大きな磁気抵抗変化が
得られる。
With such a configuration, an extremely large magnetoresistance change can be obtained.

本発明の磁性多層膜における磁気抵抗効果発現の作用
を説明する。
The effect of the magneto-resistance effect in the magnetic multilayer film of the present invention will be described.

説明を簡単にするために、磁性薄膜M1、非磁性薄膜お
よび磁性薄膜M2がこの順に積層されている積層体につい
て考える。
For the sake of simplicity, consider a laminate in which a magnetic thin film M 1 , a non-magnetic thin film and a magnetic thin film M 2 are stacked in this order.

第1a図は、外部磁界が存在しない状態における磁性薄
膜M1およびM2それぞれの磁化容易軸の方位を表わす模式
図である。第1a図において、各磁性薄膜中に記された矢
印は、各磁性薄膜中におけるスピンの向きを表わし、外
部磁界が存在しない状態では、スピンの向きは磁化容易
軸の方位と一致している。
Figure 1a is a schematic view showing the orientation of the magnetic thin film M 1 and M 2 each easy axis in a state where no external magnetic field exists. In FIG. 1a, the arrow marked in each magnetic thin film indicates the direction of spin in each magnetic thin film, and in the absence of an external magnetic field, the direction of spin matches the direction of the easy axis of magnetization.

第1b図および第1c図は、M1およびM2に外部磁界を印加
した状態を示しており、第1b図における外部磁界H1の強
度よりも第1c図における外部磁界H2の強度の方が大き
い。
Figure 1b and FIG. 1c shows a state in which an external magnetic field is applied to M 1 and M 2, is larger strength of the external magnetic field H2 in FIG. 1c than the intensity of the external magnetic field H1 in Figure 1b .

第1b図および第1c図中の矢印もスピンの向きをあらわ
す。
The arrows in FIGS. 1b and 1c also indicate the spin directions.

第1b図では、各磁性薄膜のスピンが外部磁界の影響に
より回転し、M1のスピンの向きとM2のスピンの向きとの
なす角度が第1a図に比べ小さくなっている。
In Figure 1b, the spin of each magnetic thin film is rotated by the influence of an external magnetic field, the angle between spin direction and M 2 of the spin direction of the M 1 is smaller than in Figure 1a.

また、第1c図では、各磁性薄膜のスピンは、外部磁界
の方向とほぼ平行になっており、M1のスピンの向きとM2
のスピンの向きとはほぼ平行である。
Further, in FIG. 1c, the spin of each magnetic thin film is substantially parallel to the direction of the external magnetic field, the spin direction of the M 1 and M 2
Is almost parallel to the spin direction.

第1a図、第1b図および第1c図にそれぞれ示す状態にお
いて、積層体の電気抵抗には下記のような変化が生じて
いる。
In the states shown in FIGS. 1a, 1b and 1c, the following changes occur in the electrical resistance of the laminate.

第1a図の状態の積層体に電流を流すと、M1のスピンと
M2のスピンとが平行でないため伝導電子がスピン散乱さ
れ、大きな電気抵抗を示す。
When an electric current is applied to the laminate in the state of Figure 1a, and spin M 1
Since the spin of M 2 is not parallel, conduction electrons are spin-scattered and exhibit high electric resistance.

第1b図の状態では、M1のスピンの向きとM2のスピンと
向きとが第1a図の状態に比べ平行に近づいているため、
伝導電子のスピン散乱が減少し、電気抵抗は小さくな
る。
In the state of Figure 1b, since the the spin direction and M 2 spin and orientation of M 1 is approaching parallel compared to the state of Figure 1a,
Spin scattering of conduction electrons is reduced, and electrical resistance is reduced.

そして、第1c図の状態では、M1のスピンの向きとM2
スピンと向きとがほぼ一致しているため、伝導電子は殆
どスピン散乱されず、電気抵抗は極小となる。
Then, in the state of FIG. 1c, since where the spin direction and M 2 spin and orientation of M 1 substantially coincides with the conduction electrons is hardly spin scattering, electrical resistance becomes minimum.

このような作用により、磁化容易軸の方位の相異なる
2層の磁性薄膜の積層体において、磁界印加により電気
抵抗が変わる磁気抵抗効果が発現する。
By such an action, in a laminated body of two magnetic thin films having different directions of the axis of easy magnetization, a magnetoresistive effect in which electric resistance is changed by applying a magnetic field is exhibited.

この場合、積層体の抵抗は外部磁界強度が零のときが
最大であり、外部磁界強度が増加するにつれて抵抗が減
少する。外部磁界強度増加に対する抵抗減少の割合は、
磁性薄膜の磁気異方性エネルギーおよび保磁力に依存
し、磁気異方性エネルギーおよび保磁力が小さいほど磁
性薄膜のスピンが回転し易いため小さな磁界強度で抵抗
が減少する。
In this case, the resistance of the laminate is maximum when the external magnetic field strength is zero, and decreases as the external magnetic field strength increases. The ratio of resistance decrease to external magnetic field strength increase is
Depending on the magnetic anisotropy energy and coercive force of the magnetic thin film, the smaller the magnetic anisotropic energy and coercive force, the easier the spin of the magnetic thin film is to rotate, so that the resistance decreases with a small magnetic field strength.

従って、本発明の磁性多層膜は、動作磁界強度を極め
て小さい範囲に設定することができ、また、外部磁界強
度の微小な変化にも対応することができる。また、磁性
薄膜の磁気異方性エネルギーや保磁力を適宜選択するこ
とにより、様々な特性の磁気抵抗効果を得ることができ
る。
Therefore, the magnetic multilayer film of the present invention can set the operating magnetic field intensity to an extremely small range, and can cope with a minute change in the external magnetic field intensity. In addition, by appropriately selecting the magnetic anisotropic energy and the coercive force of the magnetic thin film, it is possible to obtain a magnetoresistive effect having various characteristics.

M1とM2との間に存在する非磁性薄膜は、M1とM2とに直
接はたらく交換相互作用を調節する役割を果たし、本発
明において必須のものである。
Magnetic thin film exists between M 1 and M 2 plays a role in regulating the exchange interaction acting directly on the M 1 and M 2, is indispensable in the present invention.

非磁性薄膜が存在しないと磁性薄膜同士が接して存在
することになるので、交換相互作用によりあたかも1種
類の磁性薄膜のような振る舞いを示し、外部磁界を印加
しない状態でも第1c図のように両磁性薄膜のスピンの向
きが一致してしまい、上記したような磁気抵抗効果は発
現しない。
If there is no non-magnetic thin film, the magnetic thin films will be in contact with each other, so that they will behave as if they were a single type of magnetic thin film due to exchange interaction, and even if no external magnetic field is applied, as shown in FIG. The spin directions of both magnetic thin films match, and the above-described magnetoresistance effect does not appear.

なお、非磁性薄膜を設けても、通常、M1とM2との間に
は交換相互作用が残存し、その強さは非磁性薄膜の厚さ
に依存して変わるため、磁気抵抗効果を非磁性薄膜の厚
さによって調整することもできる。
Even provided a non-magnetic thin film, usually because the remaining exchange interaction between M 1 and M 2, the strength vary depending on the thickness of the nonmagnetic film, a magnetoresistive It can also be adjusted by the thickness of the non-magnetic thin film.

以上の説明は非磁性薄膜を介して隣接する一対の磁性
薄膜についてのものであるが、3層以上の磁性薄膜が積
層されていて隣り合う磁性薄膜の磁化容易軸の方位が相
異なっている場合、これらの磁性薄膜のペアの全てにお
いて上記したような磁気抵抗効果が生じるので、磁気抵
抗変化率の増強効果が得られる。
The above description is for a pair of magnetic thin films adjacent to each other with a non-magnetic thin film interposed therebetween, but when three or more magnetic thin films are stacked and the directions of the axes of easy magnetization of the adjacent magnetic thin films are different from each other. Since the above-described magnetoresistive effect occurs in all of these pairs of magnetic thin films, an effect of increasing the magnetoresistance change rate can be obtained.

また、以上の説明では磁性薄膜として磁化容易軸の方
位の異なる2種類だけを用いているが、磁化容易軸の方
位の相互に異なる3種以上の磁性薄膜を用いれば、より
様々な抵抗変化特性を得ることができる。
Further, in the above description, only two types of magnetic thin films having different directions of easy magnetization axes are used. However, if three or more magnetic thin films having different directions of easy magnetization axes are used, more various resistance change characteristics can be obtained. Can be obtained.

また、上記したような作用による磁気抵抗効果に、各
磁性薄膜そのものに生じる異方性磁気抵抗効果が加わる
ため、磁性薄膜を構成する材料に依存してさらに大きな
磁気抵抗変化率が得られることもある。
In addition, since the anisotropic magnetoresistive effect generated in each magnetic thin film itself is added to the magnetoresistive effect by the above-described action, a higher magnetoresistance change rate can be obtained depending on the material constituting the magnetic thin film. is there.

本発明の磁性多層膜では、各磁性薄膜の磁化容易軸の
方位、磁気異方性エネルギー、保磁力、磁性薄膜の積層
数、非磁性薄膜の厚さ等の各種条件を選択することによ
り、磁気抵抗変化率や動作磁界強度等の磁気抵抗効果特
性を種々のものとできるので、設計の自由度が極めて高
い。
In the magnetic multilayer film of the present invention, by selecting various conditions such as the direction of the axis of easy magnetization of each magnetic thin film, the magnetic anisotropy energy, the coercive force, the number of stacked magnetic thin films, and the thickness of the non-magnetic thin film, Since the magnetoresistance effect characteristics such as the resistance change rate and the operating magnetic field strength can be made various, the degree of freedom in design is extremely high.

なお、本発明では、磁性薄膜M1およびM2それぞれの磁
化容易軸の方位を相異なるものとすれば磁気抵抗効果は
発現するため、両磁性薄膜の組成および厚さは同一であ
ってよい。
In the present invention, for expressing the magnetoresistance effect if the orientation of the magnetic thin film M 1 and M 2 each easy axis different things, the composition and thickness of the two magnetic thin films may be the same.

磁性薄膜および非磁性薄膜は200Å以下と極めて薄
く、後述するように超高真空蒸着法により形成されるこ
とが好ましいが、磁性薄膜の組成が2種類以上である
と、同一真空槽内で連続して3種類以上の蒸着を行なう
ことになる。
The magnetic thin film and the non-magnetic thin film are extremely thin, not more than 200 mm, and are preferably formed by an ultra-high vacuum deposition method as described later. Thus, three or more types of vapor deposition are performed.

3元系以上の蒸着装置は極めて複雑かつ大型化するた
め高価であり、また、3元系以上の蒸着では、それぞれ
の薄膜の膜厚を正確に検出することが困難である。
A ternary or more vapor deposition apparatus is extremely complicated and large-sized, and therefore expensive, and it is difficult to accurately detect the thickness of each thin film in a ternary or more vapor deposition apparatus.

本発明では、両磁性薄膜の組成および厚さを同一とで
きるので、上記した磁気抵抗効果を有する磁性多層膜
が、容易、正確かつ低コストにて製造できる。また、製
造条件が安定するため、歩留りが向上する。
In the present invention, the composition and thickness of both magnetic thin films can be the same, so that a magnetic multilayer film having the above-described magnetoresistance effect can be manufactured easily, accurately, and at low cost. Further, since the manufacturing conditions are stabilized, the yield is improved.

なお、本発明では、隣り合う両磁性薄膜の組成および
/または厚さを相異なるものとすることもでき、この場
合、さらに設計の自由度が増す。
In the present invention, the compositions and / or thicknesses of the two adjacent magnetic thin films may be different from each other, and in this case, the degree of freedom in design is further increased.

<具体的構成> 以下、本発明の具体的構成を詳細に説明する。<Specific Configuration> Hereinafter, a specific configuration of the present invention will be described in detail.

本発明の磁性多層膜は、基体上に、2層以上の磁性薄
膜が非磁性薄膜を介して積層されて構成される。
The magnetic multilayer film of the present invention is formed by laminating two or more magnetic thin films on a base via a non-magnetic thin film.

第2図は、本発明の好適実施例である磁性多層膜1の
断面図である。
FIG. 2 is a sectional view of a magnetic multilayer film 1 according to a preferred embodiment of the present invention.

第2図において、磁性多層膜1は、基体2上に、磁性
薄膜M1、M2、…、Mn-1、Mnを有し、隣接する2層の磁性
薄膜の間に、非磁性薄膜N1、N2、…、Nn-2、Nn-1を有す
る。
In FIG. 2, a magnetic multilayer film 1 has magnetic thin films M 1 , M 2 ,..., M n -1 and M n on a base 2, and a non-magnetic thin film is provided between two adjacent magnetic thin films. It has thin films N 1 , N 2 ,..., N n-2 , N n-1 .

基体2の材質に特に制限はなく、例えば、酸化マグネ
シウム、ガラス、けい素単結晶、ガリウム−ヒ素単結晶
など、通常の人工格子に用いられる基体材質から適宜選
択すればよい。
The material of the base 2 is not particularly limited, and may be appropriately selected from base materials used for ordinary artificial lattices such as magnesium oxide, glass, silicon single crystal, and gallium-arsenic single crystal.

また、基体2の寸法にも特に制限はなく、適用される
素子に応じて適宜選定すればよい。
The size of the base 2 is not particularly limited, and may be appropriately selected according to an element to be applied.

基体2の磁性薄膜が形成される側の表面には、必要に
応じて下地膜が形成されていてもよい。
A base film may be formed on the surface of the base 2 on which the magnetic thin film is formed, if necessary.

下地膜としては、例えば、厚さ200Å程度のAu薄膜が
好ましく、また、このAu薄膜を真空槽中で150℃程度に
て1時間程度熱処理すると表面が原子オーダーで平滑と
なり、人工格子の下地膜としての効果が高くなる。
As the base film, for example, an Au thin film having a thickness of about 200 mm is preferable, and when this Au thin film is heat-treated at about 150 ° C. for about 1 hour in a vacuum chamber, the surface becomes smooth in the atomic order, and the base film of the artificial lattice is formed. The effect becomes higher.

本発明では、隣り合う少なくとも一方の磁性薄膜の磁
化容易軸の方位と異なる方位の磁化容易軸を有する磁性
薄膜が存在する。すなわち、隣り合う2層の磁性薄膜の
ペアのうち、磁化容易軸の方位の相異なるペアが存在す
る。
In the present invention, there is a magnetic thin film having an easy axis having a direction different from the direction of the easy axis of at least one adjacent magnetic thin film. That is, of the pairs of adjacent two magnetic thin films, there are pairs with different directions of the easy axis.

なお、本発明では、非磁性薄膜を介して隣接する磁性
薄膜のペアの全てについてこのような関係が成り立つこ
とが好ましい。
In the present invention, it is preferable that such a relationship is satisfied for all pairs of magnetic thin films adjacent to each other via the nonmagnetic thin film.

磁化容易軸の方位の相異なる磁性薄膜を積層するため
には、後述するような蒸着法による磁性薄膜形成を、磁
界中で行なえばよい。
In order to stack magnetic thin films having different directions of easy magnetization axes, a magnetic thin film may be formed by a vapor deposition method in a magnetic field as described later.

本発明では、隣り合う磁性薄膜の磁化容易軸の方位の
なす角度が20度以上、特に30度以上であることが好まし
い。この角度が20度未満であると、磁気抵抗変化率が低
くなる。
In the present invention, the angle between the directions of the axes of easy magnetization of the adjacent magnetic thin films is preferably 20 degrees or more, particularly preferably 30 degrees or more. If this angle is less than 20 degrees, the rate of change in magnetoresistance decreases.

この場合、磁性薄膜の磁化容易軸の方位とは、外部磁
界が存在しないときの磁性薄膜のスピンの向きである。
In this case, the direction of the axis of easy magnetization of the magnetic thin film is the spin direction of the magnetic thin film when no external magnetic field exists.

また、両磁性薄膜の磁化容易軸の方位のなす角度の上
限は180度であり、この角度において両磁性薄膜のスピ
ンは反平行となり、抵抗は最大となる。
The upper limit of the angle between the directions of the axes of easy magnetization of the two magnetic thin films is 180 degrees. At this angle, the spins of the two magnetic thin films become antiparallel, and the resistance becomes maximum.

ただし、外部磁界の強度が一方の磁性薄膜の保磁力を
超えると、外部磁界の印加方向によっては一方の磁性薄
膜だけスピンの向きが反転することがある。一方の磁性
薄膜のスピンの向きが反転すると、それぞれの磁性薄膜
のスピンが互いになす角度は、当初の角度の補角となっ
てしまう。
However, when the strength of the external magnetic field exceeds the coercive force of one magnetic thin film, the spin direction of only one magnetic thin film may be reversed depending on the direction of application of the external magnetic field. When the spin direction of one magnetic thin film is reversed, the angle formed by the spins of each magnetic thin film becomes a complement of the initial angle.

従って、安定した磁気抵抗効果を得るためには、外部
磁界の強度およびその印加方向と、各磁性薄膜の保磁力
およびその磁化容易軸の方位との関係を考慮して設計を
行なうことが好ましい。
Therefore, in order to obtain a stable magnetoresistance effect, it is preferable to design in consideration of the relationship between the strength of the external magnetic field and the direction of application of the external magnetic field, the coercive force of each magnetic thin film, and the direction of the axis of easy magnetization.

なお、磁性薄膜の磁化容易軸の方位は、磁性薄膜の面
内方向であってもよく厚さ方向であってもよい。
The azimuth of the axis of easy magnetization of the magnetic thin film may be the in-plane direction or the thickness direction of the magnetic thin film.

本発明において、各磁性薄膜の磁気異方性エネルギー
の程度に特に制限はない。すなわち、異方性エネルギー
が低ければ低磁界強度でスピンの向きが変化し始め、し
かも磁界強度変化に対するスピン変化が大きくなるの
で、動作磁界強度が低く、しかも鋭敏な磁気抵抗効果が
得られる。
In the present invention, the degree of the magnetic anisotropic energy of each magnetic thin film is not particularly limited. That is, if the anisotropic energy is low, the spin direction starts to change at a low magnetic field strength, and the spin change with respect to the magnetic field strength change becomes large, so that the operating magnetic field strength is low and a sharp magnetoresistance effect can be obtained.

また、逆に異方性エネルギーが高ければ動作磁界強度
を高くすることができ、また、動作範囲を広くすること
ができる。
Conversely, if the anisotropic energy is high, the operating magnetic field strength can be increased, and the operating range can be widened.

なお、磁気異方性エネルギーは、通常、10〜108erg/c
m3程度とすればよい。
In addition, the magnetic anisotropy energy is, usually, 10~10 8 erg / c
m 3 about and should be.

磁性多層膜中に磁化容易軸の方位の相異なる磁性薄膜
のペアが複数存在する場合、各ペアにおける磁化容易軸
の方位のなす角度や異方性エネルギー等は同一であって
も異なっていてもよく、目的とする磁気抵抗変化率や動
作磁界強度の範囲等に応じて様々な設計が可能である。
When there are a plurality of pairs of magnetic thin films having different easy-axis directions in the magnetic multilayer film, the angle or anisotropic energy of the easy-axis directions in each pair may be the same or different. Various designs are possible according to the desired rate of change in magnetoresistance and range of operating magnetic field strength.

なお、磁化容易軸の方位および磁気異方性エネルギー
は、トルクメータにより測定することができる。測定
は、円板状の基体上に磁性多層膜形成時と同条件で磁性
薄膜を形成した測定用サンプルに対し行なえばよい。こ
のときの磁性薄膜の厚さは20Å以上であれば十分であ
る。
The azimuth of the easy axis and the magnetic anisotropic energy can be measured by a torque meter. The measurement may be performed on a measurement sample in which a magnetic thin film is formed on a disk-shaped substrate under the same conditions as when forming a magnetic multilayer film. At this time, it is sufficient that the thickness of the magnetic thin film is 20 mm or more.

磁性薄膜M1、M2、…、Mn-1、Mnは、磁性体から構成さ
れる。
The magnetic thin films M 1 , M 2 ,..., M n−1 , M n are made of a magnetic material.

磁性薄膜に用いる磁性体に特に制限はないが、例え
ば、強磁性体、反強磁性体、フェリ磁性体および常磁性
体から選択でき、具体的には、Fe、Ni、Co、Mn、Cr、D
y、Er、Nd、Tb、Tm、Ce等が好ましい。
There is no particular limitation on the magnetic material used for the magnetic thin film, for example, a ferromagnetic material, an antiferromagnetic material, a ferrimagnetic material and a paramagnetic material, and specifically, Fe, Ni, Co, Mn, Cr, D
Preferred are y, Er, Nd, Tb, Tm, Ce and the like.

また、これらの元素を含む合金や化合物も好ましく用
いることができる。合金や化合物としては、例えば、Fe
−Si、Fe−Ni、Fe−Co、Fe−Gd、Fe−Al−Si(センダス
ト等)、Fe−Y、Fe−Mn、Cr−Sb、Co基アモルファス合
金、Co−Pt、Fe−Al、Fe−C、Mn−Sb、Ni−Mn、Co−
O、Ni−O、Fe−O、Ni−F等が好ましい。
Also, alloys and compounds containing these elements can be preferably used. As alloys and compounds, for example, Fe
-Si, Fe-Ni, Fe-Co, Fe-Gd, Fe-Al-Si (such as Sendust), Fe-Y, Fe-Mn, Cr-Sb, Co-based amorphous alloy, Co-Pt, Fe-Al, Fe-C, Mn-Sb, Ni-Mn, Co-
O, Ni-O, Fe-O, Ni-F and the like are preferable.

本発明では、これらの磁性体から1種を選択して、磁
化容易軸の方位の異なる磁性薄膜を形成すればよいが、
2種以上の磁性体を用いてもよい。
In the present invention, one kind may be selected from these magnetic materials to form magnetic thin films having different easy magnetization axis directions.
Two or more magnetic materials may be used.

また、隣り合う磁性薄膜の保磁力を相異なるものとし
てもよい。保磁力を相異なるものとするためには、組成
および/または厚さを異なるものとすればよい。
Further, the coercive forces of adjacent magnetic thin films may be different. In order to make the coercive force different, the composition and / or the thickness may be made different.

この場合、磁化容易軸の方位の違いによる磁気抵抗効
果に加え、保磁力の違いに起因する磁気抵抗効果があら
われる。
In this case, in addition to the magnetoresistance effect due to the difference in the orientation of the easy magnetization axis, a magnetoresistance effect due to the difference in coercive force appears.

隣り合う磁性薄膜の保磁力が相異なると、下記の作用
により磁気抵抗効果が発現する。
When the coercive forces of adjacent magnetic thin films are different, a magnetoresistance effect is exhibited by the following action.

低保磁力の磁性薄膜の保磁力をHc1とし、高保磁力の
磁性薄膜の保磁力をHc2として説明する。
The coercive force of the magnetic thin film having a low coercive force is Hc1, and the coercive force of the magnetic thin film having a high coercive force is Hc2.

まず、両磁性薄膜の磁化方向が平行となるように外部
磁界を印加し、次いで外部磁界の方向を反転させその強
度を増加させていくと、外部磁界強度がHc1付近となっ
たときに低保磁力の磁性薄膜のスピンが先に反転するた
め、Hc1とHc2との間付近で伝導電子のスピン散乱が大き
くなり、電気抵抗が大きくなる。このような磁気抵抗効
果も両磁性薄膜のスピンの相違を利用するので、交換相
互作用を調整するための非磁性薄膜の存在が必須であ
る。
First, an external magnetic field is applied so that the magnetization directions of both magnetic thin films become parallel, and then the direction of the external magnetic field is reversed to increase its strength. Since the spin of the magnetic thin film of magnetic force is reversed first, the spin scattering of conduction electrons increases near Hc1 and Hc2, and the electrical resistance increases. Since such a magnetoresistance effect also utilizes the difference in spin between the two magnetic thin films, the presence of a non-magnetic thin film for adjusting the exchange interaction is essential.

なお、本発明では、磁化容易軸の方位の相異なる磁性
薄膜のペアにおいて両磁性薄膜の保磁力を相異なるもの
としてもよいが、磁化容易軸の方位が同じかあるいは磁
気的に等方性の磁性薄膜のペアを少なくとも1つ磁性多
層膜中に設け、このようなペアにおいて保磁力を違えて
もよい。
In the present invention, the coercive force of the two magnetic thin films may be different in a pair of magnetic thin films having different directions of the easy magnetization axis. At least one pair of magnetic thin films may be provided in the magnetic multilayer film, and such pairs may have different coercive forces.

磁性薄膜の厚さは200Å以下、好ましくは100Å以下と
する。厚さが前記範囲を超えても本発明の効果に向上は
みられず、また、均一な厚さで良質な磁性薄膜を形成す
るためには後述するような方法により比較的遅い速度で
成膜するので、生産性が低くなる。
The thickness of the magnetic thin film is 200 ° or less, preferably 100 ° or less. Even if the thickness exceeds the above range, the effect of the present invention is not improved, and in order to form a good quality magnetic thin film with a uniform thickness, the film is formed at a relatively low speed by a method described later. Therefore, productivity is reduced.

なお、磁性薄膜の厚さの下限は特にないが、厚さを4
Å以上とすれば、膜厚を均一に保つことが容易となり、
膜質も良好となる。また、磁化量が小さくなりすぎるこ
ともなくなる。
There is no particular lower limit on the thickness of the magnetic thin film.
If it is Å or more, it is easy to keep the film thickness uniform,
The film quality is also good. Further, the amount of magnetization does not become too small.

各磁性薄膜の保磁力は、適用される素子における外部
磁界強度や要求される磁気抵抗効果特性等に応じて例え
ば0.001Oe〜10kOe程度の範囲から目的に応じて適宜設定
すればよく、特に制限はない。
The coercive force of each magnetic thin film may be appropriately set according to the purpose, for example, from the range of about 0.001 Oe to 10 kOe according to the external magnetic field strength or the required magnetoresistive effect characteristics of the element to which the element is applied. Absent.

なお、磁性多層膜中に存在する磁性薄膜の保磁力は直
接測定することができないため、通常、下記のようにし
て測定する。
Since the coercive force of the magnetic thin film existing in the magnetic multilayer film cannot be directly measured, it is usually measured as follows.

測定すべき磁性薄膜を、磁性薄膜の合計厚さが200〜4
00Å程度になるまで非磁性薄膜と交互に蒸着して測定用
サンプルを作製し、これについて保磁力を測定する。こ
の際、磁性薄膜の厚さ、非磁性薄膜の厚さおよび非磁性
薄膜の組成は、磁性多層膜中におけるものと同じとす
る。また、測定時の磁界印加方向は、その磁性薄膜形成
時に印加された磁界の方向と同じとする。
The total thickness of the magnetic thin film to be measured is 200 to 4
A sample for measurement is prepared by alternately depositing a non-magnetic thin film until the temperature becomes about 00 °, and the coercive force is measured. At this time, the thickness of the magnetic thin film, the thickness of the nonmagnetic thin film, and the composition of the nonmagnetic thin film are the same as those in the magnetic multilayer film. The direction of application of the magnetic field during measurement is the same as the direction of the magnetic field applied during the formation of the magnetic thin film.

非磁性薄膜は、その両側に存在する磁性薄膜同士の相
互作用を緩和ないし調整するために設けられる。
The non-magnetic thin film is provided for relaxing or adjusting the interaction between the magnetic thin films existing on both sides.

非磁性薄膜は非磁性体から構成される。 The non-magnetic thin film is composed of a non-magnetic material.

用いる非磁性体に特に制限はなく、各種金属ないし半
金属非磁性体や非金属非磁性体から適宜選定すればよ
い。
The non-magnetic material to be used is not particularly limited, and may be appropriately selected from various kinds of metal or metalloid non-magnetic material and non-metallic non-magnetic material.

金属非磁性体としては、Al、Mg、Mo、Zn、Nb、Ta、
V、Hf、Sb、Zr、Ga、Ti、Sn、Pb、Au、Ag、Cu、Ptやこ
れらの合金等が好ましく、半金属非磁性体としては、S
i、Ge、C、B等が好ましく、非金属非磁性体として
は、SiO2、SiO、SiN、Al2O3、ZnO、MgO、TiN等の金属な
いし半金属の化合物が好ましい。
Al, Mg, Mo, Zn, Nb, Ta,
V, Hf, Sb, Zr, Ga, Ti, Sn, Pb, Au, Ag, Cu, Pt and alloys thereof are preferable.
i, Ge, C, B and the like are preferable, and as the nonmetallic nonmagnetic material, a metal or semimetal compound such as SiO 2 , SiO, SiN, Al 2 O 3 , ZnO, MgO, and TiN is preferable.

また、用いる非磁性体の電気抵抗率ρは、4.0μΩ・c
m以上、特に12.0μΩ・cm以上であることが好ましい。
この場合の電気抵抗率は、バルク状態におけるものであ
り、また、20℃にて測定されたものである。
The electrical resistivity ρ of the nonmagnetic material used is 4.0 μΩ · c
m or more, and particularly preferably 12.0 μΩ · cm or more.
The electric resistivity in this case is a value in a bulk state and is measured at 20 ° C.

このような電気抵抗率を有する非磁性体から非磁性薄
膜を構成すれば、磁性薄膜中を通る電子の割合が増加
し、その結果、散乱される電子の割合が増加して大きな
抵抗変化率が得られる。
When a non-magnetic thin film is formed from a non-magnetic material having such an electrical resistivity, the ratio of electrons passing through the magnetic thin film increases, and as a result, the ratio of scattered electrons increases, resulting in a large rate of resistance change. can get.

非磁性薄膜の厚さは、200Å以下、好ましくは80Å以
下、より好ましくは60Å以下とする。厚さが前記範囲を
超えると磁性多層膜全体としての初期抵抗が増大し、そ
の結果、磁気抵抗変化率が小さくなってしまう。また、
上記した磁性薄膜と同様に生産性が低くなる。
The thickness of the non-magnetic thin film is 200 ° or less, preferably 80 ° or less, more preferably 60 ° or less. If the thickness exceeds the above range, the initial resistance of the entire magnetic multilayer film increases, and as a result, the rate of change in magnetoresistance decreases. Also,
As in the case of the above-described magnetic thin film, the productivity is reduced.

また、非磁性薄膜の厚さは、4Å以上とすることが好
ましく、より好ましくは8Å以上、さらに好ましくは12
Å以上とする。厚さが前記範囲未満であると隣り合う磁
性薄膜間の交換相互作用が強くなり、十分な磁気抵抗変
化率が得られなくなる。
The thickness of the nonmagnetic thin film is preferably 4 mm or more, more preferably 8 mm or more, and still more preferably 12 mm or more.
Å or more. If the thickness is less than the above range, the exchange interaction between adjacent magnetic thin films becomes strong, and a sufficient magnetoresistance change rate cannot be obtained.

なお、磁性多層膜中において、非磁性薄膜の厚さは全
て同じである必要はない。非磁性薄膜の厚さを2種以上
とすることにより、さらに様々な設計が可能となる。
In the magnetic multilayer film, the thicknesses of the non-magnetic thin films need not all be the same. By making the thickness of the non-magnetic thin film two or more, further various designs are possible.

磁性薄膜や非磁性薄膜の厚さは透過型電子顕微鏡、走
査型電子顕微鏡、オージェ電子分光分析等により測定す
ることができ、また、その結晶構造等はX線回折や高速
反射電子線回折等により確認することができる。
The thickness of a magnetic thin film or a non-magnetic thin film can be measured by a transmission electron microscope, a scanning electron microscope, an Auger electron spectroscopic analysis, and the crystal structure thereof is determined by X-ray diffraction or high-speed reflection electron diffraction. You can check.

本発明の磁性多層膜において、磁性薄膜の数nに特に
制限はなく、目的とする磁気抵抗変化率等に応じて適宜
選定すればよいが、十分な磁気抵抗変化率を得るために
は、nを3以上、特に6以上とすることが好ましい。ま
た、積層数を増加するにしたがって抵抗変化率も増加す
るが、上記したように生産性が低くなることから、通
常、nを150以下とすることが好ましい。
In the magnetic multilayer film of the present invention, the number n of the magnetic thin films is not particularly limited, and may be appropriately selected according to a target magnetoresistance change rate. However, in order to obtain a sufficient magnetoresistance change rate, n Is preferably 3 or more, particularly preferably 6 or more. Further, although the resistance change rate increases as the number of layers increases, it is usually preferable to set n to 150 or less because productivity decreases as described above.

なお、最上層の磁性薄膜の表面には、窒化けい素や酸
化けい素等の酸化防止膜が設けられてもよく、電極引き
出しのための金属導電層が設けられてもよい。
Note that an antioxidant film such as silicon nitride or silicon oxide may be provided on the surface of the uppermost magnetic thin film, or a metal conductive layer for leading electrodes may be provided.

また、第2図では最上層および最下層は磁性薄膜とな
っているが、最上層や最下層を非磁性薄膜としてもよ
い。
In FIG. 2, the uppermost layer and the lowermost layer are magnetic thin films, but the uppermost layer and the lowermost layer may be nonmagnetic thin films.

本発明の磁性多層膜の製造方法に特に制限はなく、蒸
着法やスパッタ法等の各種気相成膜法から選択すること
ができるが、前記した程度の厚さの薄膜が均一な厚さで
得られ、しかも良質な膜が得られることから、分子線エ
ピタクシー(MBE)法を用いることが好ましい。
The method for producing the magnetic multilayer film of the present invention is not particularly limited, and can be selected from various vapor deposition methods such as a vapor deposition method and a sputtering method. It is preferable to use a molecular beam epitaxy (MBE) method because a high quality film can be obtained.

MBE法は、超高真空蒸着法の1種であり、超高真空中
で蒸着源から蒸発した分子を基体表面に付着させて薄膜
を成長させる方法である。
The MBE method is a type of ultra-high vacuum deposition method in which molecules evaporated from an evaporation source are attached to the surface of a substrate in an ultra-high vacuum to grow a thin film.

具体的には、シャッタの開閉により蒸着源を選択し、
膜厚計で測定しながら磁性薄膜と非磁性薄膜とを交互に
蒸着する。
Specifically, a vapor deposition source is selected by opening and closing a shutter,
Magnetic thin films and non-magnetic thin films are alternately deposited while measuring with a film thickness meter.

そして、本発明では、磁性薄膜蒸着の際に磁界を印加
し、磁気異方性を付与する。磁界印加手段に制限はな
く、電磁石等の通常の手段を用いればよい。
Then, in the present invention, a magnetic field is applied during the deposition of the magnetic thin film to impart magnetic anisotropy. There is no limitation on the magnetic field applying means, and ordinary means such as an electromagnet may be used.

具体的には、基体ホルダーに保持された基体表面と平
行に磁界を印加しながら磁性薄膜を形成し、各磁性薄膜
の形成が終了するごとに基体ホルダーを所定の角度回転
し、次の磁性薄膜を形成する。また、このように基体を
回転する方法の他、コイル等の磁界印加手段を2個以上
成膜装置内に設置し、各磁性薄膜形成ごとに用いる磁界
印加手段を変更する方法を用いてもよい。
Specifically, a magnetic thin film is formed while applying a magnetic field in parallel with the surface of the substrate held by the substrate holder, and the substrate holder is rotated by a predetermined angle each time the formation of each magnetic thin film is completed. To form In addition to the method of rotating the base in this manner, a method of installing two or more magnetic field applying means such as coils in the film forming apparatus and changing the magnetic field applying means used for each magnetic thin film formation may be used. .

このように、本発明では磁性薄膜形成時に磁界印加方
向を変えるだけで磁気抵抗効果を有する多層膜が得られ
るので、蒸着時に磁性薄膜の組成や厚さを変更する必要
がない。従って、構成の簡単な小型の蒸着装置を用いる
ことができ、また、蒸着時の各種制御も極めて容易であ
る。
As described above, in the present invention, a multilayer film having a magnetoresistance effect can be obtained only by changing the magnetic field application direction at the time of forming the magnetic thin film, so that it is not necessary to change the composition and thickness of the magnetic thin film at the time of vapor deposition. Therefore, a small-sized vapor deposition apparatus having a simple configuration can be used, and various controls during vapor deposition are extremely easy.

本発明の磁性多層膜製造には通常のMBE法を用いれば
よく、成膜条件に特に制限はないが、通常、10-11〜10
-9Torr程度の到達圧力とし、蒸着中の圧力10-10〜10-8T
orr程度にて、成膜速度0.2〜1.0Å/sec程度で成膜する
ことが好ましい。
In the production of the magnetic multilayer film of the present invention, a normal MBE method may be used, and the film forming conditions are not particularly limited, but are usually 10 -11 to 10
The ultimate pressure is about -9 Torr, and the pressure during deposition is 10 -10 to 10 -8 T
It is preferable to form a film at a film forming rate of about 0.2 to 1.0 ° / sec at about orr.

また、薄膜の結晶構造を整えるために、必要に応じ、
成膜時に基体を加熱してもよい。加熱温度は、各薄膜間
での拡散を防ぐため800℃以下とすることが好ましい。
In order to adjust the crystal structure of the thin film,
The substrate may be heated during film formation. The heating temperature is preferably set to 800 ° C. or lower to prevent diffusion between the thin films.

本発明の磁性多層膜は、MRセンサやMRヘッドなどの各
種MR素子に好ましく適用される。
The magnetic multilayer film of the present invention is preferably applied to various MR elements such as an MR sensor and an MR head.

なお、通常、使用する際にバイアス磁界は印加しなく
てよいが、必要に応じて印加してもよい。
Normally, a bias magnetic field need not be applied when used, but may be applied as needed.

<実施例> 以下、具体的実施例を挙げ、本発明をさらに詳細に説
明する。
<Example> Hereinafter, the present invention will be described in more detail with reference to specific examples.

[実施例1] マグネシア単結晶基体上に磁性薄膜と非磁性薄膜とを
交互に蒸着し、磁性多層膜サンプルを作製した。
[Example 1] Magnetic thin films and non-magnetic thin films were alternately vapor-deposited on a magnesia single crystal substrate to prepare a magnetic multilayer film sample.

磁性薄膜と非磁性薄膜とからなる多層膜の構成を、下
記表1に示す。
Table 1 below shows the configuration of a multilayer film composed of a magnetic thin film and a non-magnetic thin film.

なお、表1において、例えば [Fe(30)−Zn(20)−Co(30)−Zn(20)]10 と表示されている場合、30Å厚のFe薄膜、20Å厚のZn薄
膜、30Å厚のCo薄膜および20ÅのZn薄膜を順次蒸着する
工程を、10回繰り返したことを意味する。各薄膜の厚さ
は、透過型電子顕微鏡により測定した。
In Table 1, for example, when [Fe (30) -Zn (20) -Co (30) -Zn (20)] 10 is displayed, a 30-mm thick Fe thin film, a 20-mm thick Zn thin film, and a 30-mm thick This means that the step of sequentially depositing a Co thin film and a 20 ° Zn thin film was repeated 10 times. The thickness of each thin film was measured with a transmission electron microscope.

蒸着は、到達圧力10-9〜10-10Torrの真空槽内におい
て、MBE法により行なった。
The vapor deposition was performed by the MBE method in a vacuum chamber at an ultimate pressure of 10 -9 to 10 -10 Torr.

成膜速度は約0.5Å/secとし、基体を30rpmで回転させ
ながら蒸着を行なった。
The deposition rate was about 0.5 ° / sec, and the deposition was performed while rotating the substrate at 30 rpm.

蒸着の際の基体温度は200℃とした。 The substrate temperature during vapor deposition was 200 ° C.

磁性薄膜の蒸着に際しては、100〜900Oeの磁界を基体
の面内方向に印加して磁性薄膜に磁気異方性を付与し
た。磁界印加方向は2方向とし、基体側から奇数番目の
磁性薄膜形成の際は全て同じ方向に磁界を印加し、ま
た、偶数番目の磁性薄膜形成の際の磁界印加方向も統一
した。なお、印加磁界強度は、両方向で同一とした。
When depositing the magnetic thin film, a magnetic field of 100 to 900 Oe was applied in the in-plane direction of the substrate to impart magnetic anisotropy to the magnetic thin film. The magnetic field application direction was set to two directions, the magnetic field was applied in the same direction when forming the odd-numbered magnetic thin films from the substrate side, and the magnetic field application direction was also unified when forming the even-numbered magnetic thin films. The applied magnetic field strength was the same in both directions.

奇数番目の磁性薄膜の磁化容易軸の方位と偶数番目の
磁性薄膜の磁化容易軸の方位とのなす角度を、表1に示
す。
Table 1 shows the angle formed between the direction of the easy axis of the odd-numbered magnetic thin film and the direction of the easy axis of the even-numbered magnetic thin film.

また、これらの磁性薄膜の磁気異方性エネルギーを表
1に示す。
Table 1 shows the magnetic anisotropy energies of these magnetic thin films.

なお、各磁性薄膜の磁化容易軸の方位が磁界印加方向
に一致していることは、トルクメータにより確認した。
また、磁気異方性エネルギーも、トルクメータにより測
定した。これらの測定は、円板状の基体上に磁性薄膜を
厚さ200Åに形成した測定用サンプルについて行なっ
た。
It was confirmed by a torque meter that the direction of the axis of easy magnetization of each magnetic thin film coincided with the direction of application of the magnetic field.
The magnetic anisotropy energy was also measured with a torque meter. These measurements were performed on a measurement sample in which a magnetic thin film was formed to a thickness of 200 mm on a disk-shaped substrate.

また、各サンプルに用いた磁性薄膜の保磁力を表1に
示す。なお、各サンプル中における磁性薄膜の保磁力は
直接測定することができないため、下記のようにして測
定した。
Table 1 shows the coercive force of the magnetic thin film used for each sample. Since the coercive force of the magnetic thin film in each sample cannot be measured directly, it was measured as follows.

測定すべき磁性薄膜とそのサンプルに用いた非磁性薄
膜とを、磁性薄膜の合計厚さが400Åになるまで交互に
蒸着して測定用サンプルを作製し、これについて保磁力
を測定した。なお、磁性薄膜および非磁性薄膜の厚さ
は、そのサンプル中における厚さと同じとした。
The magnetic thin film to be measured and the non-magnetic thin film used for the sample were alternately vapor-deposited until the total thickness of the magnetic thin film became 400 mm to prepare a measurement sample, and the coercive force was measured. The thicknesses of the magnetic thin film and the non-magnetic thin film were the same as the thickness in the sample.

保磁力は、B−Hループトレーサーと振動型磁力計に
より測定した。測定の際の磁界印加方向は、磁化容易軸
方向とした。
The coercive force was measured using a BH loop tracer and a vibrating magnetometer. The direction of application of the magnetic field during the measurement was the direction of the axis of easy magnetization.

さらに、表1に示されるサンプルを0.3mm×1.0mmの短
冊状とし、外部磁界を最大−7〜+7Oeまで変化させた
ときの抵抗を4端子法により測定し、磁気抵抗変化率Δ
R/Rを求めた。
Further, the sample shown in Table 1 was formed into a strip having a size of 0.3 mm × 1.0 mm, and the resistance when the external magnetic field was changed from −7 to +7 Oe at the maximum was measured by a four-terminal method.
R / R was determined.

抵抗変化率ΔR/Rは、最大抵抗値をRmax、最小抵抗値
をRminとし、 として計算した。
The rate of change of resistance ΔR / R is defined as the maximum resistance value is Rmax, the minimum resistance value is Rmin, Calculated as

結果を表1に示す。 Table 1 shows the results.

なお、抵抗測定に際しての外部磁界の印加方向は、奇
数番目の磁性薄膜の磁化容易軸の方位と偶数番目の磁性
薄膜の磁化容易軸の方位との中間方向とした。
The direction in which the external magnetic field was applied during the resistance measurement was a direction intermediate between the direction of the easy axis of the odd-numbered magnetic thin film and the direction of the easy axis of the even-numbered magnetic thin film.

上記表1に示される結果から、本発明の効果が明らか
である。
From the results shown in Table 1, the effect of the present invention is clear.

すなわち、本発明の磁性多層膜では、隣り合う磁性薄
膜の磁化容易軸の方位を違えることにより磁気抵抗効果
を発現させることができ、また、極めて小さな磁界強度
で動作させることができる。
That is, in the magnetic multilayer film of the present invention, the magnetoresistance effect can be exhibited by changing the direction of the axis of easy magnetization of the adjacent magnetic thin films, and the magnetic thin film can be operated with an extremely small magnetic field strength.

なお、基体として、ガラス、ガリウム−ヒ素単結晶、
シリコン、チタン酸ストロンチウム、チタン酸カルシウ
ムまたはフェライトを用いた場合でも、上記各サンプル
と同等の効果が認められた。
In addition, as a substrate, glass, gallium-arsenic single crystal,
Even when silicon, strontium titanate, calcium titanate or ferrite was used, the same effects as those of the above samples were observed.

<発明の効果> 本発明の磁性多層膜は、磁気抵抗変化率が大きく、し
かも動作磁界強度を小さく設定できるため、MR素子に好
適である。
<Effect of the Invention> The magnetic multilayer film of the present invention is suitable for an MR element because it has a large magnetoresistance change rate and can set a small operating magnetic field strength.

また、動作磁界強度を比較的自由に設定できるなど、
設計の自由度が高いため、MRセンサやMRヘッドなど種々
の用途に適用することができる。
In addition, the operating magnetic field strength can be set relatively freely.
Since it has a high degree of freedom in design, it can be applied to various uses such as MR sensors and MR heads.

【図面の簡単な説明】[Brief description of the drawings]

第1a図、第1b図および第1c図は、それぞれ本発明の作用
を説明する模式図である。 第2図は、本発明の磁性多層膜の一部省略断面図であ
る。 符号の説明 1……磁性多層膜 2……基体 M1、M2、…、Mn-1、Mn……磁性薄膜 N1、N2、…、Nn-2、Nn-1……非磁性薄膜
FIG. 1a, FIG. 1b and FIG. 1c are schematic diagrams for explaining the operation of the present invention. FIG. 2 is a partially omitted cross-sectional view of the magnetic multilayer film of the present invention. REFERENCE NUMERALS 1 ...... magnetic multilayer film 2 ...... base M 1, M 2, ..., M n-1, M n ...... magnetic thin film N 1, N 2, ..., N n-2, N n-1 ... … Non-magnetic thin film

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−91482(JP,A) 特開 平1−300504(JP,A) 特開 平2−116181(JP,A) 特開 平2−249210(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01F 10/08 H01L 43/08 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-1-91482 (JP, A) JP-A-1-300504 (JP, A) JP-A-2-116181 (JP, A) JP-A-2- 249210 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) H01F 10/08 H01L 43/08

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】磁気抵抗効果を有する磁性多層膜であっ
て、 基体上に、2層以上の磁性薄膜が非磁性薄膜を介して積
層されており、 隣り合う少なくとも一方の磁性薄膜の磁化容易軸の方位
と異なる方位の磁化容易軸を有する磁性薄膜が存在し、 磁性薄膜の厚さおよび非磁性薄膜の厚さがそれぞれ200
Å以下である磁性多層膜。
1. A magnetic multilayer film having a magnetoresistive effect, wherein two or more magnetic thin films are laminated on a substrate via a non-magnetic thin film, and an easy axis of magnetization of at least one of the adjacent magnetic thin films is provided. There is a magnetic thin film having an easy axis of magnetization different from that of the magnetic thin film, and the thickness of the magnetic thin film and the thickness of the non-magnetic thin film are 200
磁性 The following magnetic multilayer film.
【請求項2】磁化容易軸の方位の相異なる2層の磁性薄
膜の保磁力が相異なるものである請求項1に記載の磁性
多層膜。
2. The magnetic multilayer film according to claim 1, wherein the coercive forces of the two magnetic thin films having different directions of the axis of easy magnetization are different.
JP2159486A 1990-06-18 1990-06-18 Magnetic multilayer film Expired - Lifetime JP2957235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2159486A JP2957235B2 (en) 1990-06-18 1990-06-18 Magnetic multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2159486A JP2957235B2 (en) 1990-06-18 1990-06-18 Magnetic multilayer film

Publications (2)

Publication Number Publication Date
JPH0449605A JPH0449605A (en) 1992-02-19
JP2957235B2 true JP2957235B2 (en) 1999-10-04

Family

ID=15694824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2159486A Expired - Lifetime JP2957235B2 (en) 1990-06-18 1990-06-18 Magnetic multilayer film

Country Status (1)

Country Link
JP (1) JP2957235B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2871990B2 (en) * 1993-02-16 1999-03-17 日本電気株式会社 Magnetoresistive element thin film

Also Published As

Publication number Publication date
JPH0449605A (en) 1992-02-19

Similar Documents

Publication Publication Date Title
US5315282A (en) Magnetoresistance effect element
JP3320079B2 (en) Magnetic laminate and magnetoresistive element
JP2738312B2 (en) Magnetoresistive film and method of manufacturing the same
US5462795A (en) Magnetoresistance effect element
US5514452A (en) Magnetic multilayer film and magnetoresistance element
US5783284A (en) Magnetic multilayer film, magnetoresistance element, and method for preparing magnetoresistance element
JPH06220609A (en) Magnetoresistance effect film, its production, magnetoresistance effect element using the film and magnetoresistance effect-type magnetic head
JPH08204253A (en) Magnetoresistive effect film
US6004654A (en) Magnetic multilayer film, magnetoresistance element, and method for preparing magnetoresistance element
US5514469A (en) Magnetoresistance effect element
JP2743806B2 (en) Magnetoresistive film and method of manufacturing the same
JP2957236B2 (en) Magnetic multilayer film
JP2961914B2 (en) Magnetoresistive material and method of manufacturing the same
JP2957233B2 (en) Magnetic multilayer film
JP2957235B2 (en) Magnetic multilayer film
US6001430A (en) Magnetoresistance effect film and production process thereof
JP3346787B2 (en) Magnetic laminate and magnetoresistive element
JPH11329882A (en) Manufacture of exchange coupling film and magnetoresistive effect device
JPH0449606A (en) Magnetic multilayer film
JP3100714B2 (en) Magnetic laminate and magnetoresistive element
JPH08316033A (en) Magnetic laminate
JP2964690B2 (en) Magnetoresistive material and method of manufacturing the same
JPH06318749A (en) Magnetoresistive effect element
JPH05275232A (en) Magnetic laminate and magnetic resisting effect element
JPH0590025A (en) Magnetoresistance effect material and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080723

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

EXPY Cancellation because of completion of term