JPH0140512B2 - - Google Patents

Info

Publication number
JPH0140512B2
JPH0140512B2 JP56037449A JP3744981A JPH0140512B2 JP H0140512 B2 JPH0140512 B2 JP H0140512B2 JP 56037449 A JP56037449 A JP 56037449A JP 3744981 A JP3744981 A JP 3744981A JP H0140512 B2 JPH0140512 B2 JP H0140512B2
Authority
JP
Japan
Prior art keywords
insb
heat treatment
temperature
thin film
magnetoelectric effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56037449A
Other languages
Japanese (ja)
Other versions
JPS57152175A (en
Inventor
Yoshio Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56037449A priority Critical patent/JPS57152175A/en
Publication of JPS57152175A publication Critical patent/JPS57152175A/en
Publication of JPH0140512B2 publication Critical patent/JPH0140512B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/01Manufacture or treatment

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はホール定数及び電気伝導度の温度係
数を小さくすることを可能として半導体磁電効果
素子に関するものである。 ホール効果や磁気抵抗効果を利用する磁電効果
用材料としては、一般にはそのキヤリアの移動度
が大きく、又ホール定数の大きな半導体が使用さ
れている。実際にこの目的に使用される材料とし
てはInSbが最も適当であり一般にはInSbを真空
蒸着等の方法で基板上に薄膜状に生成したものが
磁電効果素子として多く用いられている。InSb
のような化合物を真空蒸着すると、これは一旦成
分元素に分離し、それが再び基板表面で再結合す
るので生成物であるInSbの薄膜の組成は必ずし
も化学式で与えられた通りではない。実際の状態
においてはInSbに近い組成の部分と殆んどInに
近い組成の部分とが混入されたものとなつてい
る。そしてその組成を決定するのは主として蒸着
時の蒸着速度、基板温度及び蒸着時間である。な
お蒸着源としてInSbを用いずInとSbとを別々に
蒸発させる方法もしばしば用いられている。しか
し何れの方法を用いるにしても基板上に得られる
薄膜の組成はInSbにほぼ近い結晶粒の集合とそ
の結晶粒間に介在するほとんどInに近い組成をも
つた結晶との混在したものであることが確認され
ている。 従つて得られるInSb薄膜の実際のキヤリア移
動度の値は約1000〜30000cm2/vsでバルクInSbの
キヤリア移動度の値の1/2もしくはそれ以下の値
をもつている。また得られるInSb薄膜のホール
定数の値も100〜500cm2/CでバルクInSbのホー
ル定数の値よりも小さい。このため得られる
InSb薄膜のキヤリア移動度及びホール定数の値
をバルクInSbのキヤリア移動度及びホール定数
の値に近ずけるためにInSb薄膜作成時の蒸着条
件を種々に変化することが行われている。具体的
には基板の種類とその表面処理条件蒸着等の基板
温度と蒸着物の温度とその割合等を変化すること
によつて、必ずしも化合量論的な組成をもつた
InSbを一様な厚さに着けるというものではなく、
InSbの結晶粒の大きさや形状とこのInSb結晶粒
間に介在するIn結晶との割合を変化させて結果と
して得られる薄膜InSbのキヤリア移動度を大き
くし、ホール定数の値も大きくするような条件が
実験的に求められている。 一方一旦生成したInSb薄膜に対して適当な熱
処理を施すことによつてキヤリア移動度やホール
定数など諸特性の向上を図るために各種の実験が
行われている。その一つは再結晶法と呼ばれるも
ので生成されたInSb薄膜をInSbの融点(525゜)
以上の温度に加熱してInSbを融解させた後に
徐々に再結晶させることによつてキヤリア移動度
の増大を図る方法である。具体的にはこの場合
InSb薄膜が基板上で融けると島状に凝集して相
互に隔離されないために薄膜表面を無機絶縁膜で
被覆するとか、狭い帯状に融かして表面に沿つて
移動させる等の方法が採用されている。他の方法
は焼鈍法と呼ばれるものでInSbの融点よりかな
り低い温度で長時間InSb薄膜を加熱することに
よつて結晶粒を発達させ安定化させるものである
が実際にはキヤリア移動度やホール定数などの向
上という点では特別な効果は期待し得ない。 この発明は上述の従来の方法を基礎にし、さら
に考察を深めて得られたもので、特にホール定数
の温度係数と電気伝導度の温度係数を常温におい
て小さくすることを可能にしたInSbを主体とす
る熱処理蒸着薄膜よりなる半導体磁電効果素子を
提供するものである。 この発明はこれら従来の方法を基礎にしてさら
に考察を重ねInSb薄膜を所定の雰囲気中におい
てInSbの融点よりも僅かに低い温度において短
時間加熱することによりInSbの結晶組織及び組
成を変化させることによりその電気伝導型を変化
させて伝導的にはp型を実現させ、InSbを主体
とし薄膜全体に占めるInの組成比が原子百分率で
58%よりも大きい熱処理蒸着膜磁電効果素子を提
供することを可能とする。 以下この発明の半導体磁電効果素子をその実施
例に基づき図面を使用して詳細に説明する。 前述のようにこの発明はInSb薄膜を基にして、
このInSb薄膜を所定の雰囲気中でInSbの融点よ
り僅かに低い温度で短時間加熱してInSb薄膜の
結晶組織並びに組成を変化させ、さらにその電気
伝導の型をも変化させて常温におけるホール定数
の温度係数と電気伝導度の温度係数が小さく、薄
膜全体に占めるIn組成比が原子百分率で58%より
も大きい半導体磁電効果素子を提供するものであ
る。発明者はこの発明の半導体磁電効果素子を二
つの実施例に基づいてそれぞれ特性の測定及び考
究を進めたので、これらの実施例に沿つてこの発
明を説明する。 第1の実施例においてはフエライトを蒸着基板
として使用し、このフエライト基板を430℃の温
度下に保持し、この基板上にInSbが蒸着時間5
分で蒸着された第1の蒸着膜試料を使用する。こ
の第1の蒸着膜試料を一気圧のArガス雰囲気に
おいて処理温度510℃の下に2分間熱処理を行い、
その後直ちに冷却速度90℃/minで冷却する。こ
の発明においては蒸着膜試料をInSbの融点より
僅かに低い温度で短時間加熱することが所望の特
性を得るために必要であり、冷却時においても90
℃/min程度の冷却速度で処理することが必要と
される。 第1図はこのような熱処理を経て得られた第1
の実施例におけるこの発明の半導体磁電効果素子
の諸特性を表わし、熱処理の前後における温度に
対するホール定数RH、キヤリア移動度μ、電気
伝導度σの値を示すものである。図中白色の各側
定点は熱処理前の状態を、又黒色の測定点は熱処
理後の状態を示す。又図中C0及びC100はそれぞれ
0℃及び100℃に対応する温度基線である。 第1図から明らかなようにこの発明の半導体磁
電効果素子は前述の熱処理を経ることによつてキ
ヤリア移動度μが数10%増大し電気伝導度σ及び
ホール定数RHの常温附近における温度係数は数
分の1に減少している。 第2の実施例においてはマイカを蒸着基板とし
て使用し、このマイカ基板を430℃の温度下に保
持し、この基板上にInSb+0.1Inが蒸着時間5分
で蒸着された第2の試料を使用する。この第2の
試料を一気圧のArガス雰囲気中において処理温
度500℃下で10分間熱処理を行い、その後直ちに
90℃/minの冷却速度で却冷する。第1の実施例
と同様にこの発明においては蒸着膜試料をInSb
の融点よりも僅かに低い温度において短時間加熱
することが所望の特性を得る上で必要であり、冷
却時においても90℃/min程度の冷却速度で処理
することが必要である。 第2図はこのような熱処理を経て得られた第2
の実施例におけるこの発明の半導体磁電効果素子
の諸特性を示すもので、図中の各符号は第1図の
それと同様である。第2の試料に対して前述の熱
処理を施すことにより、第2の実施例におけるこ
の発明の半導体磁電効果素子は常温附近において
そのキヤリア移動度μは僅かに減少した傾向をと
つているが電気伝導度σ及びホール定数RHの常
温附近における温度係数は数分の1に減少してい
る。 第1の実施例で使用した第1の試料についてそ
の熱処理時間2分、6分、10分をそれぞれパラメ
ータとし熱処理温度T(℃)とその熱処理を施し
て得られる磁電効果素子のキヤリア移動度μとの
関係を示すと第3図に示すような結果が得られ
る。図中μ0は熱処理前のキヤリア移動度を示し、
□、△、□はそれぞれ熱処理時間2分、6分及び
10分を示す符号である。この場合前述のようにそ
の冷却速度は90℃/minに設定されている。 第3図から明らかなように同一熱処理温度に対
してその熱処理温度での熱処理時間を増加させて
行くと磁電効果素子のキヤリア移動度は増加して
行く。又各熱処理時間を一定に保持してその熱処
理温度を変化させて行くと、ほぼ510℃で熱処理
を施した状態でのキヤリア移動度に極大値が存在
する。これはSbを逸脱させるために試料をInSb
の融点に近い高温度で短時間加熱するために実験
条件上得られるそれぞれの加熱時間に対応した最
大値である。この発明に係る熱処理は蒸着薄膜を
InSbの融点に近い高温度で短時間加熱して所望
の特性を得るものであつて、加熱温度は条件が許
す限り高温度であることが望ましい。又加熱時間
も条件が許す限り短かいことが望ましく、加熱時
間を長くすると蒸着薄膜のInSbに近い組成上に
島状に存在するInの組成部分が蒸着膜のInSbに
近い組成部分内に入り込んで特性を害することに
なる。 第2の実施例で使用した第2の試料についてそ
れぞれの熱処理時間2分、6分、10分をそれぞれ
パラメータとし熱処理時間T(℃)とその熱処理
を施して得られる磁電効果素子のキヤリア移動度
μとの関係を示すと、第4図に示すような結果が
得られる。図中μ0は熱処理前のキヤリア移動度を
示し、□、△、□はそれぞれ熱処理時間2分、6
分及び10分を示す符号である。 第4図から明らかなように例えば熱処理温度
510℃において熱処理時間を増加させて行くと磁
電効果素子のキヤリア移動度μは減少して行き、
特に熱処理時間10分においてその減少の割合が大
きい。しかし熱処理温度500℃においては熱処理
時間を2分、6分と増加させて行つた場合に見ら
れる磁電効果素子のキヤリア移動度μの減少傾向
が熱処理時間10分で反転している。これは加熱時
間の増加により蒸着薄膜のInSbに近い組成上に
島状に存在するInの組成部分が蒸着膜のInSbに
近い組成部分内に入り込んで特性が変化するため
で、10分間の加熱時間に対する加熱温度は2分及
び6分の場合の510℃からほぼ500℃に低下してい
ることを示している。2分及び6分という短時間
の加熱時間に対しては第1の試料と逆方向での同
一の温度特性を示している。 このような特性を有するこの発明の第1、第2
の実施例における半導体磁電効果素子についてX
線マイクロアナライザーの手段により直径40μm
の測定領域に対してそれぞれ熱処理の前後におけ
るInとSbの組成比率を測定して第1表の結果が
得られた。表中(1)に示す試料は第1図及び第3図
にそれぞれの特性を示したこの発明の第1の実施
例での半導体磁電効果素子であり、符号A0はそ
の熱処理前の各測定値、符号A1はその熱処理後
の各測定値にそれぞれ対応するものである。又、
表中(2)に示す試料は第2図及び第4図にそれぞれ
その特性を示したこの発明の第2の実施例での半
導体磁電効果素子であり、同様に符号C0はその
熱処理前の各測定値、符号C1はその熱処理後の
各測定値にそれぞれ対応するものである。
The present invention relates to a semiconductor magnetoelectric effect device that allows the Hall constant and the temperature coefficient of electrical conductivity to be reduced. As magnetoelectric effect materials that utilize the Hall effect or magnetoresistive effect, semiconductors are generally used that have high carrier mobility and a large Hall constant. InSb is actually the most suitable material for this purpose, and in general, InSb formed into a thin film on a substrate by a method such as vacuum evaporation is often used as a magnetoelectric effect element. InSb
When a compound such as InSb is vacuum-deposited, it is separated into component elements and then recombined on the substrate surface, so the composition of the resulting InSb thin film is not necessarily as given by the chemical formula. In the actual state, a part with a composition close to InSb and a part with a composition almost close to In are mixed. The composition is mainly determined by the evaporation rate, substrate temperature, and evaporation time during evaporation. Note that a method is often used in which InSb is not used as a deposition source and In and Sb are evaporated separately. However, no matter which method is used, the composition of the thin film obtained on the substrate is a mixture of a collection of crystal grains almost similar to InSb and crystals with a composition almost similar to In interposed between the crystal grains. This has been confirmed. Therefore, the actual carrier mobility value of the obtained InSb thin film is about 1000 to 30000 cm 2 /vs, which is 1/2 or less of the carrier mobility value of bulk InSb. Further, the Hall constant of the obtained InSb thin film is 100 to 500 cm 2 /C, which is smaller than that of bulk InSb. This results in
In order to bring the values of the carrier mobility and Hall constant of the InSb thin film closer to those of bulk InSb, various changes have been made to the deposition conditions during the formation of the InSb thin film. Specifically, by changing the type of substrate, its surface treatment conditions, the substrate temperature during evaporation, the temperature of the evaporated material, and their proportions, it is possible to achieve a composition that does not necessarily have a stoichiometric composition.
It is not a matter of applying InSb to a uniform thickness;
Conditions that increase the carrier mobility of the resulting thin InSb film by changing the size and shape of InSb crystal grains and the ratio of In crystals interposed between these InSb crystal grains, and also increase the value of the Hall constant. is experimentally required. On the other hand, various experiments are being conducted to improve various properties such as carrier mobility and Hall constant by subjecting the InSb thin film once formed to appropriate heat treatment. One of these is the InSb thin film produced by a method called recrystallization, which is heated to the melting point of InSb (525°)
This is a method of increasing carrier mobility by heating to a temperature above to melt InSb and then gradually recrystallizing it. Specifically in this case
When an InSb thin film melts on a substrate, it aggregates into islands and is not isolated from each other. Therefore, methods such as coating the thin film surface with an inorganic insulating film or melting it into a narrow strip and moving it along the surface have been adopted. ing. Another method is called the annealing method, which develops and stabilizes crystal grains by heating the InSb thin film for a long time at a temperature considerably lower than the melting point of InSb. No special effects can be expected in terms of improvements in such matters. This invention was based on the above-mentioned conventional method and was obtained through further consideration.In particular, the invention is based on InSb, which makes it possible to reduce the temperature coefficient of the Hall constant and the temperature coefficient of electrical conductivity at room temperature. The present invention provides a semiconductor magnetoelectric effect element made of a heat-treated vapor-deposited thin film. This invention is based on these conventional methods and further studies, and by heating an InSb thin film in a predetermined atmosphere for a short time at a temperature slightly lower than the melting point of InSb, the crystal structure and composition of InSb are changed. By changing the electrical conductivity type, we realized p-type conductivity, and the composition ratio of In in the entire thin film is expressed as atomic percent, with InSb as the main component.
It is possible to provide a heat-treated vapor-deposited film magnetoelectric effect element with a heat treatment deposited film larger than 58%. DESCRIPTION OF THE PREFERRED EMBODIMENTS The semiconductor magnetoelectric effect device of the present invention will be described in detail below based on embodiments thereof with reference to the drawings. As mentioned above, this invention is based on InSb thin film,
This InSb thin film is heated for a short time in a predetermined atmosphere at a temperature slightly lower than the melting point of InSb to change the crystal structure and composition of the InSb thin film, and also to change its electrical conduction type, thereby changing the Hall constant at room temperature. The present invention provides a semiconductor magnetoelectric effect device having a small temperature coefficient and a small temperature coefficient of electrical conductivity, and having an In composition ratio of more than 58% in atomic percentage in the entire thin film. The inventor has proceeded with measurement and study of the characteristics of the semiconductor magnetoelectric effect device of the present invention based on two embodiments, and the present invention will be explained based on these embodiments. In the first embodiment, ferrite was used as the evaporation substrate, this ferrite substrate was maintained at a temperature of 430°C, and InSb was evaporated onto this substrate for 5 hours.
A first deposited film sample deposited in minutes is used. This first vapor-deposited film sample was heat-treated for 2 minutes at a treatment temperature of 510°C in an Ar gas atmosphere at one atmosphere.
Thereafter, it is immediately cooled at a cooling rate of 90°C/min. In this invention, it is necessary to heat the deposited film sample for a short time at a temperature slightly lower than the melting point of InSb in order to obtain the desired properties, and even when cooled,
It is necessary to process at a cooling rate of about °C/min. Figure 1 shows the first sample obtained through such heat treatment.
2 shows various characteristics of the semiconductor magnetoelectric effect device of the present invention in Examples, and shows the values of Hall constant RH, carrier mobility μ, and electrical conductivity σ with respect to temperature before and after heat treatment. In the figure, the white fixed points on each side show the state before heat treatment, and the black measurement points show the state after heat treatment. Further, C 0 and C 100 in the figure are temperature base lines corresponding to 0°C and 100°C, respectively. As is clear from FIG. 1, in the semiconductor magnetoelectric effect device of the present invention, the carrier mobility μ increases by several tens of percent by undergoing the above-mentioned heat treatment, and the temperature coefficients of the electrical conductivity σ and the Hall constant RH at around room temperature are It has decreased to a fraction of that. In the second example, mica was used as the deposition substrate, this mica substrate was maintained at a temperature of 430°C, and a second sample was used on which InSb+0.1In was deposited for 5 minutes. do. This second sample was heat-treated for 10 minutes at a treatment temperature of 500°C in an Ar gas atmosphere of one atmosphere, and then immediately
Cool at a cooling rate of 90℃/min. Similar to the first embodiment, in this invention, the deposited film sample is InSb.
In order to obtain the desired properties, it is necessary to heat the material for a short time at a temperature slightly lower than the melting point of the material, and even during cooling, it is necessary to perform the treatment at a cooling rate of about 90° C./min. Figure 2 shows the second image obtained through such heat treatment.
This figure shows various characteristics of the semiconductor magnetoelectric effect device of the present invention in Examples, and each reference numeral in the figure is the same as that in FIG. 1. By subjecting the second sample to the heat treatment described above, the semiconductor magnetoelectric effect device of the present invention in the second embodiment has a tendency that its carrier mobility μ slightly decreases at around room temperature, but the electrical conductivity The temperature coefficients of the degree σ and the Hall constant R H near room temperature are reduced to a fraction of a fraction. For the first sample used in the first example, the heat treatment time is 2 minutes, 6 minutes, and 10 minutes as parameters, respectively, and the heat treatment temperature T (℃) and the carrier mobility μ of the magnetoelectric effect element obtained by performing the heat treatment are The results shown in FIG. 3 are obtained. In the figure, μ 0 indicates the carrier mobility before heat treatment,
□, △, □ are heat treatment times of 2 minutes, 6 minutes and
This is a code indicating 10 minutes. In this case, as mentioned above, the cooling rate is set at 90°C/min. As is clear from FIG. 3, when the heat treatment time at the same heat treatment temperature is increased, the carrier mobility of the magnetoelectric effect element increases. Further, when the heat treatment time is held constant and the heat treatment temperature is varied, there is a maximum value in the carrier mobility when the heat treatment is performed at approximately 510°C. This changes the sample to InSb to deviate the Sb
This is the maximum value corresponding to each heating time obtained under experimental conditions due to short heating at a high temperature close to the melting point of. The heat treatment according to this invention
The desired characteristics are obtained by heating for a short time at a high temperature close to the melting point of InSb, and it is desirable that the heating temperature be as high as the conditions allow. It is also desirable that the heating time be as short as the conditions allow; if the heating time is prolonged, the In composition portions that exist in island form on the composition close to InSb of the vapor-deposited thin film will enter into the composition portion of the vapor-deposited film close to InSb. It will damage the characteristics. Regarding the second sample used in the second example, the heat treatment time T (°C) and the carrier mobility of the magnetoelectric effect element obtained by applying the heat treatment using the respective heat treatment times of 2 minutes, 6 minutes, and 10 minutes as parameters. When the relationship with μ is shown, the results shown in FIG. 4 are obtained. In the figure, μ 0 represents the carrier mobility before heat treatment, and □, △, and □ represent heat treatment times of 2 minutes and 6 minutes, respectively.
This is a code indicating minutes and 10 minutes. As is clear from Figure 4, for example, the heat treatment temperature
As the heat treatment time increases at 510°C, the carrier mobility μ of the magnetoelectric effect element decreases.
The rate of decrease is particularly large when the heat treatment time is 10 minutes. However, at a heat treatment temperature of 500° C., the tendency for the carrier mobility μ of the magnetoelectric effect element to decrease, which was observed when the heat treatment time was increased from 2 minutes to 6 minutes, was reversed after the heat treatment time was 10 minutes. This is due to the fact that as the heating time increases, the In composition part that exists in island form on the composition close to InSb of the deposited thin film enters the composition part of the deposited film close to InSb, and the characteristics change. This shows that the heating temperature for 2 minutes and 6 minutes has decreased from 510°C to approximately 500°C. For short heating times of 2 minutes and 6 minutes, the same temperature characteristics in the opposite direction as the first sample are shown. The first and second aspects of this invention having such characteristics
Regarding the semiconductor magnetoelectric effect element in the example of
40 μm in diameter by means of a wire microanalyzer.
The composition ratios of In and Sb before and after heat treatment were measured for each measurement area, and the results shown in Table 1 were obtained. The sample shown in (1) in the table is a semiconductor magnetoelectric effect element according to the first embodiment of the present invention whose characteristics are shown in FIGS. 1 and 3, and the symbol A0 indicates each measured value before heat treatment. , symbol A1 corresponds to each measurement value after the heat treatment. or,
The samples shown in (2) in the table are semiconductor magnetoelectric effect devices according to the second embodiment of the present invention, whose characteristics are shown in FIGS. 2 and 4, respectively. Measured values, symbol C1, correspond to each measured value after the heat treatment.

【表】 第1表から明らかなように熱処理によつて常温
においてのホール定数の温度係数と電気伝導度の
温度係数とを小とすることを実現したこの発明の
半導体磁電効果素子は、第1及び第2の実施例に
示される如くInSbを主体とする熱処理蒸着薄膜
全体に占めるIn組成比は原子百分率でほぼ58%以
上となつている。InSbを主体とする熱処理蒸着
薄膜全体に占めるInの組成比がこのように設定さ
れているこの発明の磁電効果素子は前述のように
常温附近においてそのホール定数RHが平坦とな
り、これに伴つて電気伝導度σの温度係数も小さ
くなる。電気伝導度σの温度係数が小さくなる
と、温度に対する安全度を考慮に入れて半導体磁
電効果素子に電流を流す際に取り得る電流値が大
きくなり磁電効果素子の使用上の自由度が向上す
ることになる。 この発明で得られる組成の磁電効果素子は本願
で述べた方法によつてのみ作成可能であり、この
組成を有する磁電効果素子を直接作成することは
できない。 何故ならば蒸着に際してSbの分量を少なくし
ても生成物は先に述べたIn結晶分が減るのみで、
InSb部分の組成は不変となるからである。一般
にこの種の半導体磁電効果素子においてその組成
を蒸着時に制御することは困難であつて、本願に
述べた手段によりその後の熱処理段階においてそ
の組成の制御を行うことによつて高精度且つ容易
に所望の組成の磁電効果素子を得ることができ。 以上第1、第2の実施例に基づきこの発明を説
明したが、実際には蒸着膜を作成する際の蒸着条
件によつて各種の特性をもつた薄膜が得られ、こ
の薄膜それぞれについてその熱処理条件をそれぞ
れ選ぶことによつてさらに優れた電気特性を有す
る磁電効果素子を得ることができる。この発明の
実施例においては熱処理前のキヤリア移動度μ0
10000cm2/v・s以下のものでは熱処理によつて
キヤリア移動度μの値が熱処理前の値に比して数
10%〜数100%増大し、しかも常温付近における
電気伝導度σ並びにホール定数RHの温度係数の
値が数分の1となる。又熱処理前のキヤリア移動
度μ0が10000cm2/v・s以上のものではその熱処
理によつてキヤリア移動度μの値は増大すること
も減少することもある。しかしこの発明の半導体
磁電効果素子においてはいずれの場合においても
常温附近における電気伝導度σ並びにホール定数
RHの温度係数の値は数分の1に減少している。 なおこの発明においての熱処理を行うときの雰
囲気は実施例においてはArの場合を説明したが、
この他にもN2、H2等の中性もしくは還元性のガ
スを使用することができ、この場合には圧力は0
〜数気圧が望ましい。又酸化性のガス雰囲気中で
も低気圧なら熱処理を行うことができる。熱処理
の温度は各実施例で具体的に説明したように
InSbの融点以下の温度、即ち520〜400℃の温度
範囲で行うことが望ましく、又その熱処理時間は
2分〜30分の範囲で行われる。 このようにこの発明の半導体磁電効果素子にお
いて熱処理を施すことによつてInSb薄膜のキヤ
リア移動度μ、電気伝導度σ、ホール定数RH
の値が変化する機構については、以下に述べるよ
うに理論的に説明付けられる。即ちこの発明の半
導体磁電効果素子においてホール定数及び電気伝
導度の温度係数を小さくし得るのは熱処理に際し
ての加熱による結晶粒の発達が行われることも上
げられるが、主要には熱処理によつて結晶中の
Sbを外部へ逸散させることによつて熱処理蒸着
薄膜全体におけるInの組成比率を大とし、ひいて
はアクセプタ不純物とドナー不純物との比を大き
くして伝導的には磁電効果素子がp型半導体に変
換されているためである。一般にInSbにおいて
は電子移動度が正孔移動度にくらべてはるかに大
きいためにたとえドナーにくらべてアクセプタが
多くても高温ではn型半導体として動作し、低温
ではp型半導体として振舞うことが知られてい
る。そしてこの伝導型が変換する附近の温度にお
いては、InSbのホール定数は負値から正値に変
換し、この変換点のやや高温部分においてはホー
ル定数は温度の変化に対して平坦となる。 この発明の半導体磁電効果素子では前述のよう
にしてInSbを主体とする薄膜の不純物量を調整
し組成を変化させることによつて常温附近におい
てのホール定数RHが温度に対して平坦になつて
いる。なお結晶の電気伝導度σはホール定数RH
と逆比例するもので、ホール定数RHの温度係数
が小さければ電気伝導度σの温度係数も小さくな
る。またこの発明の半導体磁電効果素子ではその
キヤリア移動度μは上述の如き熱処理によつて結
晶の組織並びに不純物分布が変化すればほとんど
変化ないか、または増大することも減少すること
もあり得る。 この発明のホール定数RH及び電気伝導度σの
温度変化を小さくした半導体磁電効果素子に関す
るもので、熱処理の温度と熱処理時間とを所定値
に設定した熱処理によつて、不純物分配制御が精
度よく行われていてInSbを主体とする蒸着薄膜
全体に占めるInの組成比がが原子百分率で58%よ
りも大きな値に設定されている。この発明の半導
体磁電効果素子において実施例の説明では熱処理
が施される熱処理蒸着薄膜はInSbを主体として
いるが、InSbに対してGa、As或はGeなどを数%
程度混入した状態においても、この発明は実現可
能である。 以上詳細に説明したようにこの発明によるとホ
ール定数の温度係数及び電気伝導度の温度係数を
常温附近で減少させることが可能で、温度に対す
る安全性を考慮して流し得る電流値を増大させる
ことができるInSbを主体とし、熱処理薄膜全体
に占めるInの組成比率が原子百分率で58%以上の
半導体磁電効果素子を提供することが可能とな
る。
[Table] As is clear from Table 1, the semiconductor magnetoelectric effect device of the present invention is capable of reducing the temperature coefficient of the Hall constant and the temperature coefficient of electrical conductivity at room temperature by heat treatment. As shown in the second embodiment, the In composition ratio in the entire heat-treated vapor deposited thin film mainly composed of InSb is approximately 58% or more in terms of atomic percentage. The magnetoelectric effect element of the present invention, in which the composition ratio of In in the entire heat-treated vapor-deposited film mainly composed of InSb is set as described above, has a flat Hall constant R H at around room temperature as described above. The temperature coefficient of electrical conductivity σ also becomes smaller. When the temperature coefficient of electrical conductivity σ becomes smaller, the current value that can be taken when passing a current through a semiconductor magnetoelectric effect element takes into consideration the safety level against temperature, and the degree of freedom in the use of the magnetoelectric effect element increases. become. The magnetoelectric effect element having the composition obtained in this invention can be produced only by the method described in this application, and the magnetoelectric effect element having this composition cannot be produced directly. This is because even if the amount of Sb is reduced during vapor deposition, the product will only have a reduced amount of In crystal content as mentioned above.
This is because the composition of the InSb portion remains unchanged. In general, it is difficult to control the composition of this type of semiconductor magnetoelectric effect element at the time of vapor deposition, and by controlling the composition in the subsequent heat treatment step using the means described in this application, it is possible to easily achieve the desired effect with high precision. A magnetoelectric effect element with a composition of can be obtained. Although the present invention has been described above based on the first and second embodiments, in reality, thin films with various characteristics can be obtained depending on the vapor deposition conditions when creating the vapor-deposited film, and each thin film is subjected to heat treatment. By selecting the respective conditions, it is possible to obtain a magnetoelectric effect element having even better electrical characteristics. In the embodiment of this invention, the carrier mobility μ 0 before heat treatment is
For materials below 10000cm 2 /v・s, the value of carrier mobility μ decreases by several times compared to the value before heat treatment due to heat treatment.
It increases by 10% to several 100%, and moreover, the values of the temperature coefficient of the electrical conductivity σ and the Hall constant R H near room temperature become several times lower. Further, if the carrier mobility μ 0 before heat treatment is 10000 cm 2 /v·s or more, the value of the carrier mobility μ may increase or decrease depending on the heat treatment. However, in any case, in the semiconductor magnetoelectric effect device of the present invention, the electrical conductivity σ and the Hall constant at around room temperature
The value of the temperature coefficient of R H has been reduced by a factor of several. In addition, although the atmosphere for heat treatment in this invention is Ar in the examples,
In addition, neutral or reducing gases such as N 2 and H 2 can be used, in which case the pressure is 0.
~ several atmospheres is desirable. Further, heat treatment can be performed even in an oxidizing gas atmosphere at low pressure. The heat treatment temperature was as specifically explained in each example.
It is preferable to carry out the heat treatment at a temperature below the melting point of InSb, that is, in the temperature range of 520 to 400°C, and the heat treatment time is in the range of 2 minutes to 30 minutes. The mechanism by which the carrier mobility μ, electrical conductivity σ, Hall constant R H , etc. of the InSb thin film changes as a result of heat treatment in the semiconductor magnetoelectric effect device of the present invention is described below. It can be explained theoretically. In other words, in the semiconductor magnetoelectric effect device of the present invention, the Hall constant and the temperature coefficient of electrical conductivity can be reduced due to the development of crystal grains due to heating during heat treatment, but the main reason is that crystal grains are developed by heat treatment. In
By dissipating Sb to the outside, the composition ratio of In in the entire heat-treated vapor-deposited thin film is increased, which in turn increases the ratio of acceptor impurity to donor impurity, and conductively converts the magnetoelectric effect element into a p-type semiconductor. This is because it has been Generally, in InSb, the electron mobility is much larger than the hole mobility, so even if there are more acceptors than donors, it is known that it behaves as an n-type semiconductor at high temperatures and as a p-type semiconductor at low temperatures. ing. At a temperature near the point where the conductivity type changes, the Hall constant of InSb changes from a negative value to a positive value, and at a slightly higher temperature at this conversion point, the Hall constant becomes flat against temperature changes. In the semiconductor magnetoelectric effect device of the present invention, the Hall constant R H at around room temperature becomes flat with respect to temperature by adjusting the amount of impurities in the thin film mainly composed of InSb and changing the composition as described above. There is. The electrical conductivity σ of the crystal is the Hall constant R H
It is inversely proportional to , and if the temperature coefficient of the Hall constant R H is small, the temperature coefficient of the electrical conductivity σ is also small. Further, in the semiconductor magnetoelectric effect device of the present invention, the carrier mobility μ may hardly change or may increase or decrease if the crystal structure and impurity distribution are changed by the heat treatment as described above. The present invention relates to a semiconductor magnetoelectric effect element in which temperature changes in Hall constant R H and electrical conductivity σ are reduced, and impurity distribution control is achieved with high accuracy through heat treatment in which the heat treatment temperature and heat treatment time are set to predetermined values. The composition ratio of In in the entire deposited thin film mainly composed of InSb is set to a value greater than 58% in atomic percentage. In the description of the embodiments of the semiconductor magnetoelectric effect device of the present invention, the heat-treated vapor-deposited thin film that is heat-treated is mainly composed of InSb, but Ga, As, Ge, etc. are added in a few percent to the InSb.
The present invention can be realized even in a state in which there is some degree of contamination. As explained in detail above, according to the present invention, it is possible to reduce the temperature coefficient of Hall constant and the temperature coefficient of electrical conductivity at around room temperature, and increase the current value that can be passed in consideration of temperature safety. This makes it possible to provide a semiconductor magnetoelectric effect device that is mainly composed of InSb, which can produce a heat-treated thin film, and in which the composition ratio of In in the entire heat-treated thin film is 58% or more in atomic percentage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の半導体磁電効果素子の第1
の実施例の温度に対する諸特性を示す図、第2図
はこの発明の半導体磁電効果素子の第2の実施例
の温度に対する諸特性を示す図、第3図はこの発
明の半導体磁電効果素子の第1の実施例において
加熱時間をパラメータとした熱処理温度とキヤリ
ア移動度との関係を示す図、第4図はこの発明の
半導体磁電効果素子の第2の実施例において加熱
時間をパラメータとした熱処理温度とキヤリア移
動度との関係を示す図である。 T:温度、RH:ホール定数、μ:キヤリア移
動度、σ:伝導度、μ0:熱処理前のキヤリア移動
度。
FIG. 1 shows the first diagram of the semiconductor magnetoelectric effect device of the present invention.
FIG. 2 is a diagram showing various characteristics relative to temperature of the second embodiment of the semiconductor magnetoelectric effect device of the present invention, and FIG. 3 is a diagram showing various characteristics of the semiconductor magnetoelectric effect device of the present invention relative to temperature. A diagram showing the relationship between heat treatment temperature and carrier mobility using heating time as a parameter in the first embodiment, and FIG. FIG. 3 is a diagram showing the relationship between temperature and carrier mobility. T: temperature, R H : Hall constant, μ: carrier mobility, σ: conductivity, μ 0 : carrier mobility before heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 1 InSbを主体とする熱処理蒸着薄膜よりなり、
薄膜全体に占めるInの組成比が原子百分率で58%
よりも大きいことを特徴とする半導体磁電効果素
子。
1 Consisting of a heat-treated vapor-deposited thin film mainly composed of InSb,
The composition ratio of In in the entire thin film is 58% in atomic percentage.
A semiconductor magnetoelectric effect element characterized by being larger than .
JP56037449A 1981-03-16 1981-03-16 Semiconductor magneto-electric effect device Granted JPS57152175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56037449A JPS57152175A (en) 1981-03-16 1981-03-16 Semiconductor magneto-electric effect device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56037449A JPS57152175A (en) 1981-03-16 1981-03-16 Semiconductor magneto-electric effect device

Publications (2)

Publication Number Publication Date
JPS57152175A JPS57152175A (en) 1982-09-20
JPH0140512B2 true JPH0140512B2 (en) 1989-08-29

Family

ID=12497804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56037449A Granted JPS57152175A (en) 1981-03-16 1981-03-16 Semiconductor magneto-electric effect device

Country Status (1)

Country Link
JP (1) JPS57152175A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06105801B2 (en) * 1984-03-19 1994-12-21 株式会社村田製作所 Thick film semiconductor device
JPH0666486B2 (en) * 1988-10-14 1994-08-24 工業技術院長 Recrystallized film for Hall effect element and method of manufacturing the same

Also Published As

Publication number Publication date
JPS57152175A (en) 1982-09-20

Similar Documents

Publication Publication Date Title
US4180596A (en) Method for providing a metal silicide layer on a substrate
EP0146232B1 (en) Resistor materials
US5124779A (en) Silicon carbide semiconductor device with ohmic electrode consisting of alloy
Capers et al. The electrical properties of vacuum deposited tellurium films
US4177298A (en) Method for producing an InSb thin film element
JPH0140512B2 (en)
Sebastian et al. Instability in resistance and variation of activation energy with thickness and deposition temperature of CdSe0. 6Te0. 4 thin films deposited at high substrate temperatures
US3341364A (en) Preparation of thin film indium antimonide from bulk indium antimonide
EP0062818B2 (en) Process of producing a hall element or magnetoresistive element comprising an indium-antimony complex crystal semiconductor
JPH02163363A (en) Production of transparent conductive film
JP3118957B2 (en) Electrode formation method
JP2915935B2 (en) Semiconductor thin film material
Ganesan et al. The influence of gas adsorption and temperature on the electrical resistivity of SnSe thin films
Burvenich Influence of substrate temperature on the electrical properties of thin InSb films flash-evaporated onto glass
US20210164091A1 (en) METHOD FOR FORMING A FILM OF AN OXIDE OF In, Ga, AND Zn
US4539178A (en) Indium-antimony complex crystal semiconductor and process for production thereof
JPS58191427A (en) Impurity doping method
JPH0425718B2 (en)
Ganesan et al. Evidence for the domination of heavy holes and lattice scattering in SnTe from electrical transport measurements on polycrystalline thin films
JPS6372156A (en) Semiconductor device
US5008215A (en) Process for preparing high sensitivity semiconductive magnetoresistance element
Weng Electrical properties of some thin-film semiconductor alloys
JPS6228568B2 (en)
JPH07120573B2 (en) Method for manufacturing amorphous binary alloy thin film resistor
Grigorovici et al. 3.10 Hole injection by junction between amorphous Ge layers an n-type Ge single crystals