JPS62274299A - Nuclear power facility - Google Patents

Nuclear power facility

Info

Publication number
JPS62274299A
JPS62274299A JP61118028A JP11802886A JPS62274299A JP S62274299 A JPS62274299 A JP S62274299A JP 61118028 A JP61118028 A JP 61118028A JP 11802886 A JP11802886 A JP 11802886A JP S62274299 A JPS62274299 A JP S62274299A
Authority
JP
Japan
Prior art keywords
iron
condensate
water supply
iron oxide
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61118028A
Other languages
Japanese (ja)
Other versions
JPH0634087B2 (en
Inventor
実 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP61118028A priority Critical patent/JPH0634087B2/en
Publication of JPS62274299A publication Critical patent/JPS62274299A/en
Publication of JPH0634087B2 publication Critical patent/JPH0634087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (発明の目的〕 (産業上の利用分野) 本発明は原子力発電設備に係り、とりわ【」原子炉中の
イオン状放射能濃度および原子炉配管の置換性線源を低
減して放射線被ばくを低減することができる原子力発電
設備に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Object of the Invention) (Industrial Field of Application) The present invention relates to nuclear power generation equipment, and in particular to the concentration of ionic radioactivity and atoms in a nuclear reactor. The present invention relates to nuclear power generation equipment that can reduce radiation exposure by reducing displaceable radiation sources in reactor piping.

(従来の技術) 復水浄化系にろ過装置と脱塩装置をともに備えたいわゆ
る二重化した。沸騰水型原子ノ〕発電設備では、ろ過装
置および脱塩装置によって復水内の酸化鉄が捕集され、
給水系からの酸化鉄濃度が極端に低下し、原子炉への酸
化鉄持込量が激減した。
(Prior art) The condensate purification system is equipped with both a filtration device and a desalination device, which is a so-called duplex system. In boiling water type atomic power generation equipment, iron oxide in condensate is collected by filtration equipment and desalination equipment,
The concentration of iron oxide from the water supply system decreased dramatically, and the amount of iron oxide carried into the reactor was drastically reduced.

そのため、酸化鉄が原子炉内にて放射化されで生じる放
fj4性物質(以下沈積性線源と略す)は微減し、それ
による被ばく饋も減少した。しかし、酸化鉄が減少した
ために給水系及び原子炉系のステレンス鋼等からの腐食
溶出するニッケル、コバルトを酸化鉄で捕かくして燃料
棒表面上に付着しつづけることができなくなった。この
ため、原子炉水中のイオン状放射性物質を高めることに
なり、それらが原子炉−次系配管の運転中に形成される
酸化皮膜にとり込まれ(以下置換性線源と略す)放射!
!聞率を上昇させることになった。
As a result, the amount of fj4 radioactive materials (hereinafter referred to as deposition sources) generated when iron oxide is activated in the nuclear reactor has decreased slightly, and the resulting radiation exposure has also decreased. However, due to the decrease in iron oxide, it is no longer possible to trap the nickel and cobalt corroded and eluted from the stainless steel of the water supply system and nuclear reactor system with iron oxide and continue to adhere to the surface of the fuel rods. For this reason, the amount of ionic radioactive substances in the reactor water increases, and they are incorporated into the oxide film formed during the operation of the reactor-subsystem piping (hereinafter referred to as a displacement source), causing radiation!
! It was decided to increase the listening rate.

この対策として、復水ろ過装置として粉末イオン交換樹
脂(以下FDと略寸)を用いている沸騰水型原子力発電
設備では、FDのバイパスまたはFDの粉末イオン交換
樹脂のルーズプリコート等を行ない復水脱塩装置への酸
化鉄負荷を高め、復水脱塩@置出口から復水系酸化鉄を
リークする状態にしている。このようにして酸化鉄濃度
を給水系においてニッケル対鉄濃度比が1/2以下とな
るようコントロールし、給水系から原子炉へ酸化鉄を注
入している。
As a countermeasure to this problem, in boiling water nuclear power generation facilities that use powdered ion exchange resin (hereinafter referred to as FD) as a condensate filtration device, bypassing the FD or loosely precoating the FD with powdered ion exchange resin is performed to condensate water. The iron oxide load on the desalination equipment is increased and condensate iron oxide is leaked from the condensate desalination outlet. In this way, the iron oxide concentration is controlled so that the nickel to iron concentration ratio is 1/2 or less in the water supply system, and iron oxide is injected from the water supply system into the reactor.

ここでニッケル対鉄濃度比の1/2以下という数字は、
原子炉内の腐食溶出してイオン状となったニッケル、コ
バルトを酸化鉄が捕獲し燃料棒表面へ十分付着維持する
ことができる値である。このように燃料棒表面へニッケ
ル等を十分付着維持することができれば、原子炉水中の
イオン状放射能m度を低下でき、原子炉配管の酸化皮膜
への放射能とり込みの低減すなわちa換牲線源が低減で
きる。
Here, the number of 1/2 or less of the nickel to iron concentration ratio is
This is a value that allows iron oxide to capture nickel and cobalt that have become ionized due to corrosion elution in the reactor and maintain sufficient adhesion to the fuel rod surface. If it is possible to maintain sufficient adhesion of nickel etc. to the surface of the fuel rods in this way, it is possible to reduce the ionic radioactivity in the reactor water, and to reduce the incorporation of radioactivity into the oxide film of the reactor piping. Radiation sources can be reduced.

<発明が解決しようとする問題点〉 しかし、このようなFDバイパス等によるニッケル対鉄
11痩化コントロールは、個々の原子力発電設備によっ
て復水中の酸化鉄濃度が異なったり、FD、復水脱塩装
置の酸化鉄除去性能が異なることにより、必ずしも任意
に可能となっておらず、かつ復水lB2塩@置装の酸化
鉄負荷を高めた結果、復水脱塩装置の樹脂を汚すという
問題が生じている。
<Problems to be solved by the invention> However, the control of nickel-to-iron 11 thinning through FD bypass, etc. is difficult because the concentration of iron oxide in condensate varies depending on individual nuclear power generation facilities, and when FD and condensate desalination Due to differences in the iron oxide removal performance of the equipment, this is not necessarily possible arbitrarily, and as a result of increasing the iron oxide load on the condensate lB2 salt @ equipment, there is a problem of contamination of the resin in the condensate desalination equipment. It is occurring.

本発明はこのような点を考慮してなされたものであり、
復水脱塩装置に負担をかけることなく、しかも給水系に
おいてニッケル対鉄11r!i比を任意m度に確実にコ
ントロールすることができる原子力発電設備を提供する
ことを目的とする。
The present invention has been made in consideration of these points,
Nickel to iron 11r in the water supply system without putting a burden on the condensate desalination equipment! It is an object of the present invention to provide a nuclear power generation facility that can reliably control the i ratio to an arbitrary m degree.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、原子炉蒸気がタービンを回転させて生じた復
水内の酸化鉄を捕集する復水ろ過フィルタに、復水系配
管を介して復水脱塩装置が接続され、前記復水脱塩装置
に原子炉への給水を送る給水系配管が接続された原子力
発電設備であって、前記復水ろ過フィルタに酸化鉄注入
憬を調整する鉄注入装置を鉄骨配管で接続し、前記鉄注
入装置の鉄注入配管を眞記給水系配管に接続し、前:[
l!復水ろ過フィルタで捕集した酸化鉄を前記給水系配
管に注入するように構成したことを特徴としている。
(Means for Solving the Problems) The present invention provides condensate removal through condensate system piping to a condensate filtration filter that collects iron oxide in condensate generated when reactor steam rotates a turbine. A nuclear power generation facility to which a salt device is connected and a water supply system piping for supplying water to the reactor is connected to the condensate desalination device, the iron injection device adjusting iron oxide injection into the condensate filtration filter. Connect with steel piping, and connect the iron injection piping of the iron injection device to the water supply system piping.
l! The present invention is characterized in that the iron oxide collected by the condensate filter is injected into the water supply system piping.

(作 用) 本発明によれば、鉄注入装置によって酸化鉄を任意m給
水系配管に注入することができるので、給水系における
ニッケル対鉄濃度を任意濃度に確実にコントロールする
ことがひきる。
(Function) According to the present invention, since iron oxide can be injected into any m of water supply system piping using the iron injection device, it is possible to reliably control the nickel-to-iron concentration in the water supply system to any desired concentration.

(実施例) 以下図面を参照して本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

図は本発明による原子力発電設備の一実施例を示す概略
系統図である。
The figure is a schematic system diagram showing an embodiment of nuclear power generation equipment according to the present invention.

原子炉1には主蒸気弁2を有する主蒸気管3が接続され
、この主蒸気管3はタービン4に接続され、タービン4
の下方には復水器5が設けられている。復水器5には復
水ポンプ6、復水ろ過フィルタとしての役割を果たす中
空糸膜フィルタ8、および復水脱塩装置9が順次復水系
配管7を介して接続されている。また復水脱塩装置9に
は給水加熱器12が給水系配管10を介して接続され、
またこの給水系配管10は原子炉1に接続されるととも
に、給水系配管10には給水酸素注入装置11および給
水サンプリング袋間14が接続されている。
A main steam pipe 3 having a main steam valve 2 is connected to the reactor 1, and this main steam pipe 3 is connected to a turbine 4.
A condenser 5 is provided below. A condensate pump 6, a hollow fiber membrane filter 8 serving as a condensate filtration filter, and a condensate desalination device 9 are sequentially connected to the condenser 5 via a condensate system piping 7. Further, a feed water heater 12 is connected to the condensate desalination device 9 via a water feed system piping 10.
Further, this water supply system piping 10 is connected to the nuclear reactor 1, and to the water supply system piping 10, a water supply oxygen injection device 11 and a water supply sampling bag gap 14 are connected.

ここで、中空糸膜フィルタ8は、復水中のクラッド(酸
化鉄)を除去するものであり、復水脱塩装置9は、復水
中のイオン不純物を除去するためのものであり、給水酸
素注入装置11は給水加熱器12および給水中の腐食抑
制のために酸素を注入する装置である。給水サンプリン
グ装置14は給水中の鉄Q度およびニッケル濃度を測定
するためのものである。
Here, the hollow fiber membrane filter 8 is for removing crud (iron oxide) in condensate, and the condensate desalination device 9 is for removing ionic impurities in condensate. The device 11 is a feed water heater 12 and a device for injecting oxygen to suppress corrosion in the feed water. The water supply sampling device 14 is for measuring the iron Q degree and nickel concentration in the water supply.

また、中空糸膜フィルタ8に鉄注入装首13が鉄受配管
22を介して接続され、この鉄注入装置13の出側の鉄
注入配管23は給水加熱器12の出側の給水系配管10
に接続されている。この鉄注入装置13は、鉄量タンク
15、循環ポンプ16、循環調整弁18、循環サンプリ
ング装置1つ、および鉄注入調整弁20が循環配管17
によって接続されて構成されている。
Further, an iron injection neck 13 is connected to the hollow fiber membrane filter 8 via an iron receiving pipe 22, and the iron injection pipe 23 on the outlet side of the iron injection device 13 is connected to the water supply system pipe 10 on the outlet side of the feed water heater 12.
It is connected to the. This iron injection device 13 includes an iron amount tank 15, a circulation pump 16, a circulation adjustment valve 18, one circulation sampling device, and an iron injection adjustment valve 20 that is connected to a circulation pipe 17.
are connected and configured by.

次にこのような構成からなる本実施例の作用について説
明する。
Next, the operation of this embodiment having such a configuration will be explained.

原子炉1で発生した蒸気は、主蒸気弁2から主蒸気管3
およびタービン4を経て復水器5′r″復水となる。こ
の復水は復水ポンプ6を経て中空糸膜フィルタ8に流入
し、この中空糸膜フィルタ8によって復水中の酸化鉄は
ほとんど捕集される。その後復水は、復水脱塩装置9を
通り、復水中の酸化鉄がほぼ100%除去されて、給水
系を経て原子炉1に戻る。この間給水系配管10に接続
された給水酸素注入装置による給水への酸素注入によっ
て給水系での腐食が抑制される。
The steam generated in the reactor 1 is transferred from the main steam valve 2 to the main steam pipe 3.
The condensate passes through the turbine 4 and becomes condensate in the condenser 5'r''.This condensate flows into the hollow fiber membrane filter 8 through the condensate pump 6, and the hollow fiber membrane filter 8 removes most of the iron oxide in the condensate. After that, the condensate passes through the condensate desalination device 9, where almost 100% of the iron oxide in the condensate is removed, and returns to the reactor 1 via the water supply system.During this time, the condensate is connected to the water supply system piping 10. Corrosion in the water supply system is suppressed by injecting oxygen into the water supply using a water supply oxygen injection device.

この場合、給水内の鉄濃度は給水サンプリング装置14
によって確認することができるが、通常0.5ppb程
度以下の極低レベルに維持されている。
In this case, the iron concentration in the feed water is determined by the feed water sampling device 14.
However, it is usually maintained at an extremely low level of about 0.5 ppb or less.

中空糸膜フィルタ8によって捕集された酸化鉄は、中空
糸膜フィルタ8を逆洗することによって、鉄受配管22
を通って給水鉄注入装置13の鉄量タンク15に収!!
され、この鉄量タンク15で水中に貯えられる。この場
合、循環ポンプ16が運転され、酸化鉄含有水が循環配
管17内を循環する。この循環水の酸化鉄濃度は循環サ
ンプリング装置19で測定される。
The iron oxide collected by the hollow fiber membrane filter 8 is transferred to the iron receiving pipe 22 by backwashing the hollow fiber membrane filter 8.
Through it, it is stored in the iron amount tank 15 of the water supply iron injection device 13! !
The iron content tank 15 stores the iron in water. In this case, the circulation pump 16 is operated, and the iron oxide-containing water circulates in the circulation pipe 17. The iron oxide concentration of this circulating water is measured by a circulation sampling device 19.

一方、給水サンプリング装置14によってニッケルおよ
び鉄濃度を確認し、給水系におけるニッケル対鉄濃度比
が1/2となるよう鉄注入調整弁20を開度調整して、
必要な酸化鉄を給水内に注入する。
On the other hand, the nickel and iron concentrations are confirmed by the water supply sampling device 14, and the opening of the iron injection regulating valve 20 is adjusted so that the nickel to iron concentration ratio in the water supply system is 1/2.
Inject the necessary iron oxide into the water supply.

このように本実施例によれば、給水系におけるニッケル
一対鉄濃度比を1/2以Fに確実にコントロールするこ
とができる。また中空糸膜フィルタ8で捕集した酸化鉄
は、鉄注入装置13に送られるので、復水脱塩装置9に
対する酸化鉄の負荷を減少することができる。さらにま
た、復水ろ過装置として粉末イオン交換樹脂(FD>で
はなく中空糸膜フィルタ8を用いているので、逆洗によ
る酸化鉄の収集が容易にできる。
As described above, according to this embodiment, the ratio of nickel to iron concentration in the water supply system can be reliably controlled to 1/2 or more. Further, since the iron oxide collected by the hollow fiber membrane filter 8 is sent to the iron injection device 13, the load of iron oxide on the condensate desalination device 9 can be reduced. Furthermore, since the hollow fiber membrane filter 8 is used as the condensate filtration device instead of the powdered ion exchange resin (FD), iron oxide can be easily collected by backwashing.

〔発明の効果〕     ゛ 以上説明したように本発明によれば給水系におけるニッ
ケル対鉄濃度比を任意WJ度に確実にコントロールする
ことができる。また復水脱塩装置に対する酸化鉄の負荷
を減少させることができる。
[Effects of the Invention] As explained above, according to the present invention, the nickel to iron concentration ratio in the water supply system can be reliably controlled to any WJ degree. Further, the load of iron oxide on the condensate desalination equipment can be reduced.

このことによって、原子炉水中のイオン状放射能濃度を
低減して、原子炉−次系配管に形成される酸化皮膜にと
り込まれる放射能を低減することができ、置換性線源を
低減できる。
By this, it is possible to reduce the ionic radioactivity concentration in the reactor water, reduce the radioactivity incorporated into the oxide film formed on the sub-reactor system piping, and reduce the amount of displaceable radiation sources.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明による原子力発電設備の一実施例を示す概略
系統図である。 1・・・原子炉、4・・・タービン、5・・・復水器、
7・・・復水系配管、8・・・中空糸膜フィルタ、9・
・・復水脱塩装置、10・・・給水系配管、13・・・
鉄注入装置、15・・・鉄量タンク、16・・・循環ポ
ンプ、17・・・循環配管、18・・・循環調整弁、2
0・・・鉄注入調整弁、22・・・鉄受配管、23・・
・鉄注入配管。
The figure is a schematic system diagram showing an embodiment of nuclear power generation equipment according to the present invention. 1... Nuclear reactor, 4... Turbine, 5... Condenser,
7... Condensate system piping, 8... Hollow fiber membrane filter, 9...
...Condensate desalination equipment, 10...Water supply system piping, 13...
Iron injection device, 15... Iron amount tank, 16... Circulation pump, 17... Circulation piping, 18... Circulation adjustment valve, 2
0... Iron injection adjustment valve, 22... Iron receiving pipe, 23...
・Iron injection piping.

Claims (1)

【特許請求の範囲】[Claims] 原子炉蒸気がタービンを回転させて生じた復水内の酸化
鉄を捕集する復水ろ過フィルタに、復水系配管を介して
復水脱塩装置が接続され、前記復水脱塩装置に原子炉へ
の給水を送る給水系配管が接続された原子力発電設備に
おいて、前記復水ろ過フィルタに酸化鉄注入量を調整す
る鉄注入装置を鉄受配管で接続し、前記鉄注入装置の鉄
注入配管を前記給水系配管に接続し、前記復水ろ過フィ
ルタで捕集した酸化鉄を前記給水系配管に注入するよう
に構成したことを特徴とした原子力発電設備。
A condensate desalination device is connected via condensate system piping to a condensate filtration filter that collects iron oxide in condensate generated when reactor steam rotates a turbine. In a nuclear power generation facility to which a water supply system piping for supplying water to the reactor is connected, an iron injection device for adjusting the amount of iron oxide injection is connected to the condensate filtration filter by an iron receiving piping, and the iron injection piping of the iron injection device is connected to the iron injection device. is connected to the water supply system piping, and the iron oxide collected by the condensate filtration filter is injected into the water supply system piping.
JP61118028A 1986-05-22 1986-05-22 Nuclear power plant Expired - Lifetime JPH0634087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61118028A JPH0634087B2 (en) 1986-05-22 1986-05-22 Nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61118028A JPH0634087B2 (en) 1986-05-22 1986-05-22 Nuclear power plant

Publications (2)

Publication Number Publication Date
JPS62274299A true JPS62274299A (en) 1987-11-28
JPH0634087B2 JPH0634087B2 (en) 1994-05-02

Family

ID=14726269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61118028A Expired - Lifetime JPH0634087B2 (en) 1986-05-22 1986-05-22 Nuclear power plant

Country Status (1)

Country Link
JP (1) JPH0634087B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126991A (en) * 1991-10-30 1993-05-25 Ebara Corp Injecting method for iron into primary coolant system in bwr type nuclear power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126991A (en) * 1991-10-30 1993-05-25 Ebara Corp Injecting method for iron into primary coolant system in bwr type nuclear power plant

Also Published As

Publication number Publication date
JPH0634087B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
JPS61111500A (en) Method of reducing radioactivity of nuclear power plant
JP2982517B2 (en) Operating method of boiling water nuclear power plant and boiling water nuclear power plant
JP3149738B2 (en) Boiling water nuclear power plant and operating method thereof
JPS62274299A (en) Nuclear power facility
JPS63103999A (en) Method and device for inhibiting adhesion of radioactive substance
JP3156113B2 (en) Water quality control method and device
JP3289679B2 (en) Water quality control method for boiling water nuclear power plant
JPS6179194A (en) Reactor water feeder
JPS63229394A (en) Nuclear power generating facility
JP3083629B2 (en) Nuclear power plant
JP2021120662A (en) Radioactive waste liquid treatment system and method for treating radioactive waste liquid
JPH0631815B2 (en) Nuclear power plant water supply system
JPS63149598A (en) Oxidation processing method after chemical decontamination of nuclear power plant
JP4518695B2 (en) Condensate treatment system and operation method thereof
JPS61213693A (en) Condensate and feedwater system for nuclear power plant
JPH01185493A (en) Boiling water type nuclear power plant
JPH02134596A (en) Chlorine concentration control of feed water for nuclear power station
JPS642919B2 (en)
JPS61186897A (en) Feed water facility for nuclear reactor
JP2005049173A (en) Processing method for radioactive ion-exchange resin and processing apparatus thereby
JPS5855899A (en) Reactor coolant cleanup system
JP3309784B2 (en) Water quality control method for boiling water nuclear power plant
JPH05215892A (en) Feed water iron concentration control device
JP3081149B2 (en) Method for reducing impurity elution from condensate desalination unit of BWR type nuclear power plant
JPH05288893A (en) Control method of concentration of chromium of boiling water nuclear power plant