JPH0634087B2 - Nuclear power plant - Google Patents

Nuclear power plant

Info

Publication number
JPH0634087B2
JPH0634087B2 JP61118028A JP11802886A JPH0634087B2 JP H0634087 B2 JPH0634087 B2 JP H0634087B2 JP 61118028 A JP61118028 A JP 61118028A JP 11802886 A JP11802886 A JP 11802886A JP H0634087 B2 JPH0634087 B2 JP H0634087B2
Authority
JP
Japan
Prior art keywords
iron
condensate
water supply
pipe
iron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61118028A
Other languages
Japanese (ja)
Other versions
JPS62274299A (en
Inventor
小林  実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP61118028A priority Critical patent/JPH0634087B2/en
Publication of JPS62274299A publication Critical patent/JPS62274299A/en
Publication of JPH0634087B2 publication Critical patent/JPH0634087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は原子力発電設備に係り、とりわけ原子炉中のイ
オン状放射能濃度および原子炉配管の置換性線源を低減
して放射線被ばくを低減することができる原子力発電設
備に関する。
The present invention relates to a nuclear power plant, and more particularly to reducing the ionic activity concentration in a nuclear reactor and the replaceable radiation source in a reactor pipe. The present invention relates to a nuclear power generation facility capable of reducing radiation exposure.

(従来の技術) 復水浄化系にろ過装置と脱塩装置をともに備えたいわゆ
る二重化した沸騰水型原子力発電設備では、ろ過装置お
よび脱塩装置によって復水内の酸化鉄が捕集され、給水
系からの酸化鉄濃度が極端に低下し、原子炉への酸化鉄
持込量が激減した。そのため、酸化鉄が原子炉内にて放
射化されて生じる放射性物質(以下沈積性線源と略す)
は激減し、それによる被ばく量も減少した。しかし、酸
化鉄が減少したために給水系及び原子炉系のステンレス
鋼等からの腐食溶出するニッケル、コバルトを酸化鉄で
捕かくして燃料棒表面上に付着しつづけることができな
くなった。このため、原子炉水中のイオン状放射性物質
を高めることになり、それらが原子炉一次系配管の運転
中に形成される酸化皮膜にとり込まれ(以下置換性線源
と略す)放射線量率を上昇させることになった。
(Prior Art) In a so-called dual boiling water nuclear power plant equipped with both a filtering device and a desalting device in a condensate purification system, iron oxide in the condensate is collected by the filtering device and the desalting device, and water is supplied. The concentration of iron oxide from the system was drastically reduced, and the amount of iron oxide carried into the reactor was drastically reduced. Therefore, radioactive material generated by the activation of iron oxide in the reactor (hereinafter abbreviated as sedimentation source)
Has been drastically reduced, and the resulting exposure has been reduced. However, since the amount of iron oxide has decreased, nickel and cobalt that are corroded and eluted from stainless steel of the water supply system and the reactor system cannot be caught by the iron oxide and continue to adhere to the surface of the fuel rod. For this reason, ionic radioactive substances in the reactor water will be increased, and these will be incorporated into the oxide film formed during the operation of the reactor primary system piping (hereinafter abbreviated as a replaceable radiation source) to increase the radiation dose rate. I was allowed to do it.

この対策として、復水ろ過装置として粉末イオン交換樹
脂(以下FDと略す)を用いている沸騰水型原子力発電
設備では、FDのバイパスまたはFDの粉末イオン交換
樹脂のルーズプリコート等を行ない復水脱塩装置への酸
化鉄負荷を高め、復水脱塩装置出口から復水系酸化鉄を
リークする状態にしている。このようにして酸化鉄濃度
を給水系においてニッケル対鉄濃度比が1/2以下とな
るようコントロールし、給水系から原子炉へ酸化鉄を注
入している。
As a countermeasure against this, in a boiling water nuclear power generation facility that uses a powder ion exchange resin (hereinafter abbreviated as FD) as a condensate filtration device, FD bypass or loose precoat of FD powder ion exchange resin is performed to remove the condensate. The iron oxide load on the salt equipment is increased, and the condensed iron oxide is leaked from the outlet of the condensate desalination equipment. In this way, the iron oxide concentration is controlled so that the nickel-to-iron concentration ratio is 1/2 or less in the water supply system, and iron oxide is injected into the reactor from the water supply system.

ここでニッケル対鉄濃度比の1/2以下という数字は、
原子炉内の腐食溶出してイオン状となったニッケル、コ
バルトを酸化鉄が捕獲し燃料棒表面へ十分付着維持する
ことができる値である。このように燃料棒表面へニッケ
ル等を十分付着維持することができれば、原子炉水中の
イオン状放射能濃度を低下でき、原子炉配管の酸化皮膜
への放射能とり込みの低減すなわち置換性線源が低減で
きる。
Here, the number less than 1/2 of the nickel to iron concentration ratio is
It is a value that allows iron oxide to capture nickel and cobalt that have become ionic due to corrosion elution in the nuclear reactor and sufficiently adhere and maintain them on the fuel rod surface. If nickel etc. can be sufficiently adhered and maintained on the surface of the fuel rods in this way, the concentration of ionic radioactivity in the reactor water can be reduced, reducing the incorporation of radioactivity into the oxide film of the reactor piping, that is, the replaceable radiation source. Can be reduced.

(発明が解決しようとする問題点) しかし、このようなFDバイパス等によるニッケル対鉄
濃度比コントロールは、個々の原子力発電設備によって
復水中の酸化鉄濃度が異なったり、FD、復水脱塩装置
の酸化鉄除去性能が異なることにより、必ずしも任意に
可能となっておらず、かつ復水脱塩装置への酸化鉄負荷
を高めた結果、復水脱塩装置の樹脂を汚すという問題が
生じている。
(Problems to be solved by the invention) However, in the control of the nickel-to-iron concentration ratio by such FD bypass, the iron oxide concentration in the condensate differs depending on the individual nuclear power generation facility, the FD, the condensate demineralizer, etc. This is not always possible due to the different iron oxide removal performance of the above, and as a result of increasing the iron oxide load on the condensate demineralizer, there is a problem of fouling the resin of the condensate demineralizer. There is.

本発明はこのような点を考慮してなされたものであり、
復水脱塩装置に負担をかけることなく、しかも給水系に
おいてニッケル対鉄濃度比を任意濃度に確実にコントロ
ールすることができる原子力発電設備を提供することを
目的とする。
The present invention has been made in consideration of such points,
An object of the present invention is to provide a nuclear power generation facility that can reliably control the concentration ratio of nickel to iron in a water supply system without burdening the condensate demineralizer.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 本発明は、原子炉蒸気がタービンを回転させて生じた復
水内の酸化鉄を捕集する復水ろ過フィルタに、復水系配
管を介して復水脱塩装置が接続され、前記復水脱塩装置
に原子炉への給水を送る給水系配管が接続された原子力
発電設備であって、前記復水ろ過フィルタに酸化鉄注入
量を調整する鉄注入装置を鉄受配管で接続し、前記鉄注
入装置の鉄注入配管を前記給水系配管に接続し、前記復
水ろ過フィルタで捕集した酸化鉄を前記給水系配管に注
入するように構成したことを特徴としている。
(Means for Solving Problems) The present invention relates to a condensate filter for collecting iron oxide in condensate produced by reactor steam rotating a turbine, to a condensate dewatering system via a condensate system pipe. A nuclear power generation facility to which a salt device is connected, and a water supply system pipe for feeding water to a nuclear reactor is connected to the condensate demineralizer, and an iron injection device for adjusting an iron oxide injection amount to the condensate filtration filter. Is connected by an iron receiving pipe, the iron injection pipe of the iron injection device is connected to the water supply system pipe, and the iron oxide collected by the condensate filtration filter is injected into the water supply system pipe. It has a feature.

(作用) 本発明によれば、鉄注入装置によって酸化鉄を任意量給
水系配管に注入することができるので、給水系における
ニッケル対鉄濃度を任意濃度に確実にコントロールする
ことができる。
(Operation) According to the present invention, since an arbitrary amount of iron oxide can be injected into the water supply system pipe by the iron injection device, it is possible to reliably control the concentration of nickel to iron in the water supply system to an arbitrary concentration.

(実施例) 以下図面を参照して本発明の実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

図は本発明による原子力発電設備の一実施例を示す概略
系統図である。
FIG. 1 is a schematic system diagram showing an example of a nuclear power generation facility according to the present invention.

原子炉1には主蒸気弁2を有する主蒸気管3接続され、
この主蒸気管3はタービン4に接続され、タービン4の
下方には復水器5が設けられている。復水器5には復水
ポンプ6、復水ろ過フィルタとしての役割を果たす中空
糸膜フィルタ8、および復水脱塩装置9が順次復水系配
管7を介して接続されている。また復水脱塩装置9には
給水加熱器12が給水系配管10を介して接続され、ま
たこの給水系配管10は原子炉1に接続されるととも
に、給水系配管10には給水酸素注入装置11および給
水サンプリング装置14が接続されている。
A main steam pipe 3 having a main steam valve 2 is connected to the reactor 1,
The main steam pipe 3 is connected to a turbine 4, and a condenser 5 is provided below the turbine 4. A condensate pump 6, a hollow fiber membrane filter 8 serving as a condensate filtration filter, and a condensate demineralizer 9 are sequentially connected to the condenser 5 via a condensate system pipe 7. Further, a feedwater heater 12 is connected to the condensate demineralizer 9 via a water supply system pipe 10, and this water supply system pipe 10 is connected to the reactor 1, and a water supply oxygen injection device is connected to the water supply system pipe 10. 11 and a water supply sampling device 14 are connected.

ここで、中空糸膜フィルタ8は、復水中のクラッド(酸
化鉄)を除去するものであり、復水脱塩装置9は、復水
中のイオン不純物を除去するためのものであり、給水酸
素注入装置11は給水加熱器12および給水中の腐食抑
制のために酸素を注入する装置である。給水サンプリン
グ装置14は給水中の鉄濃度およびニッケル濃度を測定
するためのものである。
Here, the hollow fiber membrane filter 8 is for removing the clad (iron oxide) in the condensate, and the condensate demineralizer 9 is for removing the ionic impurities in the condensate. The apparatus 11 is an apparatus for injecting oxygen in order to suppress corrosion in the feed water heater 12 and feed water. The feed water sampling device 14 is for measuring the iron concentration and the nickel concentration in the feed water.

また、中空糸膜フィルタ8に鉄注入装置13が鉄受配管
22を介して接続され、この鉄注入装置13の出側の鉄
注入配管23は給水加熱器1の出側の給水系配管10に
接続されている。この鉄注入装置13は、鉄受タンク1
5、循環ポンプ16、循環調整弁18、循環サンプリン
グ装置19、および鉄注入調整弁20が循環配管17に
よって接続されて構成されている。
Further, an iron injection device 13 is connected to the hollow fiber membrane filter 8 via an iron receiving pipe 22, and an iron injection pipe 23 on the outlet side of the iron injection device 13 is connected to a water supply system pipe 10 on the outlet side of the feed water heater 1. It is connected. This iron injection device 13 is used for the iron receiving tank 1
5, a circulation pump 16, a circulation regulating valve 18, a circulation sampling device 19, and an iron injection regulating valve 20 are connected by a circulation pipe 17.

次にこのような構成からなる本実施例の作用について説
明する。
Next, the operation of this embodiment having such a configuration will be described.

原子炉1で発生した蒸気は、主蒸気弁2から主蒸気管3
およびタービン4を経て復水器5で復水となる。この復
水は復水ポンプ6を経て中空糸膜フィルタ8に流入し、
この中空糸膜フィルタ8によって復水中の酸化鉄はほと
んど捕集される。その後復水は、復水脱塩装置9を通
り、復水中の酸化鉄がほぼ100%除去されて、給水系
を経て原子炉1に戻る。この間給水系配管10に接続さ
れた給水酸素注入装置による給水への酸素注入によって
給水系での腐食が抑制される。
The steam generated in the reactor 1 flows from the main steam valve 2 to the main steam pipe 3
Condensate is condensed in the condenser 5 via the turbine 4 and the turbine 4. This condensate flows into the hollow fiber membrane filter 8 via the condensate pump 6,
Most of the iron oxide in the condensate is collected by the hollow fiber membrane filter 8. After that, the condensate passes through the condensate demineralizer 9 to remove almost 100% of iron oxide in the condensate, and returns to the reactor 1 via the water supply system. During this time, oxygen is injected into the water supply by the water supply oxygen injecting device connected to the water supply system pipe 10 to suppress corrosion in the water supply system.

この場合、給水内の鉄濃度は給水サンプリング装置14
によって確認することができるが、通常0.5ppb程
度以下の極低レベルに維持されている。
In this case, the iron concentration in the water supply is determined by the water supply sampling device 14
Although it can be confirmed by, it is normally maintained at an extremely low level of about 0.5 ppb or less.

中空糸膜フィルタ8によって捕集された酸化鉄は、中空
糸膜フィルタ8を逆流することによって、鉄受配管22
を通って給水鉄注入装置13の鉄受タンク15に収集さ
れ、この鉄受タンク15で水中に貯えられる。この場
合、循環ポンプ16が運転され、酸化鉄含有水が循環配
管17内を循環する。この循環水の酸化鉄濃度は循環サ
ンプリング装置19で測定される。
The iron oxide collected by the hollow fiber membrane filter 8 flows back through the hollow fiber membrane filter 8 so that the iron receiving pipe 22
It is collected in the iron receiving tank 15 of the water supply iron injecting device 13 and is stored in the water in the iron receiving tank 15. In this case, the circulation pump 16 is operated and the iron oxide-containing water circulates in the circulation pipe 17. The iron oxide concentration of this circulating water is measured by the circulating sampling device 19.

一方、給水サイプリング装置14によってニッケルおよ
び鉄濃度を確認し、給水系におけるニッケル対鉄濃度比
が1/2となるように鉄注入調整弁20を開度調整し
て、必要な酸化鉄を給水内に注入する。
On the other hand, the nickel and iron concentrations are confirmed by the water supply sipping device 14, the opening of the iron injection adjusting valve 20 is adjusted so that the nickel to iron concentration ratio in the water supply system is 1/2, and the necessary iron oxide is supplied. Inject into.

このように本実施例によれば、給水系におけるニッケル
対鉄濃度比を1/2以下に確実にコントロールすること
ができる。また中空糸膜フィルタ8で捕集した酸化鉄
は、鉄注入装置13に送られるので、復水脱塩装置9に
対する酸化鉄の負荷を減少することができる。さらにま
た、復水ろ過装置として粉末イオン交換樹脂(FD)で
はなく中空糸膜フィルタ8を用いているので、逆洗によ
る酸化鉄の収集が容易にできる。
As described above, according to this embodiment, the nickel-to-iron concentration ratio in the water supply system can be reliably controlled to 1/2 or less. Further, since the iron oxide collected by the hollow fiber membrane filter 8 is sent to the iron injection device 13, the load of iron oxide on the condensate demineralization device 9 can be reduced. Furthermore, since the hollow fiber membrane filter 8 is used as the condensate filter instead of the powder ion exchange resin (FD), the iron oxide can be easily collected by backwashing.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明によれば給水系におけるニッ
ケル対鉄濃度比を任意濃度に確実にコントロールするこ
とができる。また復水脱塩装置に対する酸化鉄の負荷を
減少させることができる。
As described above, according to the present invention, the nickel to iron concentration ratio in the water supply system can be reliably controlled to an arbitrary concentration. Further, the load of iron oxide on the condensate demineralizer can be reduced.

このことによって、原子炉水中のイオン状放射能濃度を
低減して、原子炉一次系配管に形成される酸化皮膜にと
り込まれる放射能を低減することができ、置換性線源を
低減できる。
As a result, the ionic radioactivity concentration in the reactor water can be reduced, the radioactivity taken into the oxide film formed in the reactor primary system piping can be reduced, and the replaceable radiation source can be reduced.

【図面の簡単な説明】[Brief description of drawings]

図は本発明による原子力発電設備の一実施例を示す概略
系統図である。 1……原子炉、4……タービン、5……復水器、7……
復水系配管、8……中空糸膜フィルタ、9……復水脱塩
装置、10……給水系配管、13……鉄注入装置、15
……鉄受タンク、16……循環ポンプ、17……循環配
管、18……循環調整弁、20……鉄注入調整弁、22
……鉄受配管、23……鉄注入配管。
FIG. 1 is a schematic system diagram showing an example of a nuclear power generation facility according to the present invention. 1 ... Reactor, 4 ... Turbine, 5 ... Condenser, 7 ...
Condensate piping, 8 ... Hollow fiber membrane filter, 9 ... Condensate demineralizer, 10 ... Water supply piping, 13 ... Iron injection device, 15
…… Iron receiving tank, 16 …… Circulation pump, 17 …… Circulation piping, 18 …… Circulation adjustment valve, 20 …… Iron injection adjustment valve, 22
…… Iron receiving pipe, 23 …… Iron injection pipe.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】原子炉蒸気がタービンを回転させて生じた
復水内の酸化鉄を捕集する復水ろ過フィルタに、復水系
配管を介して復水脱塩装置が接続され、前記復水脱塩装
置に原子炉への給水を送る給水系配管が接続された原子
力発電設備において、前記復水ろ過フィルタに酸化鉄注
入量を調整する鉄注入装置を鉄受配管で接続し、前記鉄
注入装置の鉄注入配管を前記給水系配管に接続し、前記
復水ろ過フィルタで捕集した酸化鉄を前記給水系配管に
注入するように構成したことを特徴とした原子力発電設
備。
1. A condensate demineralizer is connected via a condensate system pipe to a condensate filtration filter for collecting iron oxide in condensate produced by rotating a turbine by turbine steam. In a nuclear power generation facility to which a water supply pipe for sending water to a nuclear reactor is connected to a desalination device, an iron injection device for adjusting the iron oxide injection amount is connected to the condensate filter by an iron receiving pipe, and the iron injection is performed. A nuclear power generation facility characterized in that an iron injection pipe of the apparatus is connected to the water supply system pipe, and the iron oxide collected by the condensate filtration filter is injected into the water supply system pipe.
JP61118028A 1986-05-22 1986-05-22 Nuclear power plant Expired - Lifetime JPH0634087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61118028A JPH0634087B2 (en) 1986-05-22 1986-05-22 Nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61118028A JPH0634087B2 (en) 1986-05-22 1986-05-22 Nuclear power plant

Publications (2)

Publication Number Publication Date
JPS62274299A JPS62274299A (en) 1987-11-28
JPH0634087B2 true JPH0634087B2 (en) 1994-05-02

Family

ID=14726269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61118028A Expired - Lifetime JPH0634087B2 (en) 1986-05-22 1986-05-22 Nuclear power plant

Country Status (1)

Country Link
JP (1) JPH0634087B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126991A (en) * 1991-10-30 1993-05-25 Ebara Corp Injecting method for iron into primary coolant system in bwr type nuclear power plant

Also Published As

Publication number Publication date
JPS62274299A (en) 1987-11-28

Similar Documents

Publication Publication Date Title
JP2808970B2 (en) Nuclear power plant, its water quality control method and its operation method
US3700550A (en) Process for purifying water utilized in a boiling water reactor
JPH0634087B2 (en) Nuclear power plant
JP3156113B2 (en) Water quality control method and device
JPS61213693A (en) Condensate and feedwater system for nuclear power plant
JPS6179194A (en) Reactor water feeder
JP4518695B2 (en) Condensate treatment system and operation method thereof
JP2543767B2 (en) Condensate desalination method
JPH01185493A (en) Boiling water type nuclear power plant
JPS63229394A (en) Nuclear power generating facility
JPH0631815B2 (en) Nuclear power plant water supply system
JPH0666000B2 (en) Condensate purification system control method for boiling water nuclear power plant
JPH02134596A (en) Chlorine concentration control of feed water for nuclear power station
Swope Mixed bed ion exchange for the removal of radioactivity
JPH07128488A (en) Reactor power plant
JP2003315487A (en) Water treating method for removing iron component from water supply for steam generator, water supply for reactor, water supply for boiler, or heater drain water in electric power plant
JP3017858B2 (en) Reactor organic carbon removal system
JPH05288893A (en) Control method of concentration of chromium of boiling water nuclear power plant
JPS5979193A (en) Cleaning device of feedwater heater
JPH05273388A (en) Nuclear power plant
JP2005049173A (en) Processing method for radioactive ion-exchange resin and processing apparatus thereby
JPH0721549B2 (en) Water quality control system for reactor water supply / water supply system
JPH08152496A (en) Nuclear power generation facilities
JPH0425798A (en) Condensate purification system
JPS59139988A (en) Desalinator for condensed water