JPS6179194A - Reactor water feeder - Google Patents

Reactor water feeder

Info

Publication number
JPS6179194A
JPS6179194A JP59200658A JP20065884A JPS6179194A JP S6179194 A JPS6179194 A JP S6179194A JP 59200658 A JP59200658 A JP 59200658A JP 20065884 A JP20065884 A JP 20065884A JP S6179194 A JPS6179194 A JP S6179194A
Authority
JP
Japan
Prior art keywords
reactor
water
iron
nickel
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59200658A
Other languages
Japanese (ja)
Other versions
JPH055077B2 (en
Inventor
五十嵐 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59200658A priority Critical patent/JPS6179194A/en
Publication of JPS6179194A publication Critical patent/JPS6179194A/en
Publication of JPH055077B2 publication Critical patent/JPH055077B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野1 本発明は、軽水冷却型原子炉(以後軽水炉という)例え
ば沸騰水型原子炉を有する発電プラントにおける炉水給
水装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention 1] The present invention relates to a reactor water supply system in a power plant having a light water cooled nuclear reactor (hereinafter referred to as a light water reactor), such as a boiling water reactor.

[発明の技術的背景とその問題点] 沸騰水型原子炉等の軽水炉においては、その運転時間の
増加に伴ない一時冷却水配管あるいは機器の内面に放射
性核種が蓄積し原子炉停止時の放射線量率が増加する傾
向にある、この放射性核種は原子炉内の機器の腐食ある
いは一次冷却水配管の腐食によって炉水内に持込まれた
腐食生成物が原子炉内で中性子照射により放射化したも
のである。
[Technical background of the invention and its problems] In light water reactors such as boiling water reactors, radionuclides accumulate in the temporary cooling water pipes or inside the equipment as the operating time increases, resulting in radiation emitted when the reactor is shut down. These radionuclides, whose quantity rate tends to increase, are corrosion products brought into the reactor water due to corrosion of equipment inside the reactor or corrosion of primary cooling water piping, and are activated by neutron irradiation inside the reactor. It is.

そこで、炉内に持込まれる腐食生成物の聞を低減するこ
とが放射性核種を低減させることになるとの観点から、
長年にわたり種々の対策が研究され実施されてきた。そ
の1つに給水系から持込まれる腐食生成物を低減させる
ため最近の沸騰水型原子炉発電プラントでは復水浄化系
統の能力を増強することが行なわれている。
Therefore, from the viewpoint that reducing the amount of corrosion products brought into the reactor will reduce the amount of radionuclides,
Various countermeasures have been studied and implemented over the years. One of these efforts is to increase the capacity of the condensate purification system in recent boiling water reactor power plants in order to reduce corrosion products brought in from the water supply system.

ところで、放射性腐食生成物には溶解性のものと不溶解
性のものとがあり、これら二種類の放射性腐食生成物は
共に一次系配管表面線量率の上昇原因をなすので、両者
をともに減少させることが被曝低減化のために重要なこ
とである。そして、不溶解性の放射性腐食生成物は微粒
子状態であるため原子炉−次系配管の流速停滞部に溜り
易く、特定の個所に付着する傾向を有し、また、溶解性
の放射性腐食生成物は原子炉−次系配管内を自由に動き
まわり、はぼ均一に付着する傾向を有することが判って
きた。
By the way, there are two types of radioactive corrosion products: soluble and insoluble. Both of these two types of radioactive corrosion products cause an increase in the primary system piping surface dose rate, so both should be reduced. This is important for reducing radiation exposure. Since insoluble radioactive corrosion products are in the form of fine particles, they tend to accumulate in flow velocity stagnation parts of the reactor-subsystem piping and tend to adhere to specific locations. It has been found that these substances move freely within the reactor-subsystem piping and tend to adhere more or less uniformly.

ところが、最近の沸騰水型原子炉プラントでは給水系か
ら持ち込まれる不溶解性放射性腐食生成物は減少したも
のの溶解性放射性腐食生成物が増加し一次系配管の主要
部分にほぼ均一に放射性腐食生成物が付着しているとい
う現象が見られるようになってきた。そこで、この原因
を調査したところ復水浄化系統の能力増強により、不溶
解性の放射性腐食生成物を除去したために原子炉内で溶
解性の放射性腐食生成物をとり込み微粒子化させる核と
なりつる腐食生成物が少なくなったことが、溶解性の放
射性腐食生成物が多くなった理由であることが判ってき
た。すなわち、復水浄化系統の能力増強により給水系か
ら原子炉内に持込まれる鉄の腐食生成物の壷が大幅に低
減されたが、このことは給水加熱器の初期腐食を増大さ
せるとともに給水加熱器管材のステンレス鋼中のニッケ
ルの溶出もプラント運転初期に多くなることが判ってき
た。しかして、ニッケルは原子炉内で放射性の5′CO
になるため、ニッケルの原子炉内への持込はできるだけ
さけねばならない。特にニッケル/鉄の原子炉内持込濃
度比率が1/2以上となるような場合には炉内で安定な
ニッケルの化合物を生成することになり、より多くのニ
ッケルが中性子照射を受け、その結果、より多くの41
coが生成するという不具合が生ずることになる。
However, in recent boiling water reactor plants, although the number of insoluble radioactive corrosion products brought in from the water supply system has decreased, the amount of soluble radioactive corrosion products has increased, and the main parts of the primary system piping are almost uniformly covered with radioactive corrosion products. We are beginning to see the phenomenon of adhesion. Therefore, we investigated the cause of this problem and found that as the insoluble radioactive corrosion products were removed by increasing the capacity of the condensate purification system, the soluble radioactive corrosion products were captured inside the reactor and turned into fine particles. It has been found that fewer products are the reason for the higher amount of soluble radioactive corrosion products. In other words, although the increased capacity of the condensate purification system has significantly reduced the amount of iron corrosion products brought into the reactor from the feedwater system, this increases the initial corrosion of the feedwater heater and increases the It has been found that the elution of nickel from the stainless steel pipe material increases in the early stages of plant operation. However, nickel becomes radioactive 5'CO in a nuclear reactor.
Therefore, bringing nickel into the reactor must be avoided as much as possible. In particular, if the nickel/iron concentration ratio in the reactor is 1/2 or more, stable nickel compounds will be produced in the reactor, and more nickel will be irradiated with neutrons. As a result, more 41
This will cause a problem that co will be generated.

[発明の目的] 本発明は、上記事情に鑑みてなされたもので、その目的
は、原子炉内で放射性腐食生成物を取込む核となる物質
の不足と給水加熱器管材からの腐食によるニッケルの溶
出増加を解決するための鉄注入系統を備えた炉水給水装
置を提供することにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and its purpose is to reduce the amount of nickel due to the lack of a core substance that takes in radioactive corrosion products in a nuclear reactor and corrosion from feedwater heater pipe materials. An object of the present invention is to provide a reactor water supply system equipped with an iron injection system to solve the problem of increased elution of iron.

[発明の概要] 本発明は、上記目的を達成するために、軽水冷却形原子
炉を有する発電プラントにおいて、前記原子炉への炉水
給水配管に給水又は炉水中の鉄の濃度をニッケルの濃度
の2倍以上10倍以下となるよ゛  うに調整する鉄注
入系を接続した炉水給水装置に関するものである。そし
て、この鉄注入系としては鉄腐食タンク又は薬注タンク
が用いら゛れる。
[Summary of the Invention] In order to achieve the above object, the present invention provides a power plant having a light water-cooled nuclear reactor, in which the concentration of iron in the water supplied to the reactor or in the reactor water is adjusted to the concentration of nickel in the reactor water supply pipe to the reactor. This relates to a reactor water supply system that is connected to an iron injection system that adjusts the water level so that it is at least 2 times and 10 times or less. As this iron injection system, an iron corrosion tank or a chemical injection tank is used.

[発明の実施例] 本発明の一実施例を図面を参照して説明する。[Embodiments of the invention] An embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の沸騰水型原子炉発電プラン
トの炉水給水系統を示すもので、原子炉圧力容器1内に
燃料集合体および制御棒等からなる炉心2が配置される
とともに冷却材(以後炉水という)3が循環されている
。原子炉圧力容器1には再循環ポンプ4を有する再循環
系配管5が接続されて炉水3を強制循環させている。こ
のとき、炉水3は炉心2を下方から上方に向けて上昇し
、その際昇温して水と蒸気の2相流となる。ここで発生
した蒸気は原子炉圧力容器1に接続している主蒸気配管
6を介して蒸気タービン7に送られる。
FIG. 1 shows a reactor water supply system of a boiling water reactor power plant according to an embodiment of the present invention, in which a reactor core 2 consisting of fuel assemblies, control rods, etc. is arranged in a reactor pressure vessel 1. At the same time, a coolant (hereinafter referred to as reactor water) 3 is circulated. A recirculation system piping 5 having a recirculation pump 4 is connected to the reactor pressure vessel 1 to forcefully circulate reactor water 3. At this time, the reactor water 3 rises from the bottom to the top of the reactor core 2, and at this time its temperature increases and becomes a two-phase flow of water and steam. The steam generated here is sent to a steam turbine 7 via a main steam pipe 6 connected to the reactor pressure vessel 1.

そして、蒸気タービン6を駆動させた蒸気は主復水器8
に導かれて復水となり、復水ポンプ9により復水浄化系
10を通過して浄化された後ポンプ11により給水加熱
器12に送水され、加熱された後原子炉給水ポンプ13
により昇圧され給水管14を介して原子炉圧力容器1に
戻される。再循環配管5には浄化系ポンプ16を介して
低温浄化系15が接続されている。この浄化系15は、
再生熱交換器17と非再生熱交換器18とイオン交換樹
脂を充填した脱塩装置19とから構成されている。脱塩
装置19で浄化された水は再生熱交換器11により給水
と同程度の温度(プラント設計によって異なるが通常i
 a o ’c〜220℃程r!1)に再加熱されて給
水配管14に合流する配管20を介して原子炉圧力容器
に戻される。
The steam that drove the steam turbine 6 is then transferred to the main condenser 8
The water is guided to condensate, passed through a condensate purification system 10 and purified by a condensate pump 9, and then sent to a feedwater heater 12 by a pump 11, where it is heated and then reactor feedwater pump 13.
The pressure of the water is increased and the water is returned to the reactor pressure vessel 1 via the water supply pipe 14. A low-temperature purification system 15 is connected to the recirculation pipe 5 via a purification system pump 16 . This purification system 15 is
It is composed of a regenerative heat exchanger 17, a non-regenerative heat exchanger 18, and a desalination device 19 filled with ion exchange resin. The water purified by the desalination equipment 19 is passed through the regenerative heat exchanger 11 to a temperature similar to that of the feed water (this varies depending on the plant design, but usually
ao'c~220℃ r! 1) and is returned to the reactor pressure vessel via a pipe 20 that joins the water supply pipe 14.

沸騰水型原子炉発電プラントの運転中は給水水質、原子
炉水質を監視するためそれぞれ給水加熱器出口側試料採
取系21と原子炉水試料採取系22によって採水し化学
分析を行なって給水、原子炉水中の金属不純物量を測定
する。
During operation of a boiling water reactor power plant, water is sampled by the feed water heater outlet side sampling system 21 and the reactor water sampling system 22 to monitor the feed water quality and reactor water quality, respectively, and chemical analysis is performed to monitor the water supply and reactor water quality. Measure the amount of metal impurities in reactor water.

また、弁23と加圧器注入ポンプ24及び流量計25A
、25B、lli注タンク26A又は鉄腐食タンク26
Bから構成される鉄注入系27を給水加熱器12の入口
側に接続する。この鉄注入系27の運用は、プラント運
転中の給水、原子炉水中の金属不純物の化学分析により
どららかの水中のニッケルと鉄の比率にッケル/鉄比)
が1/2に近づいたとき弁23を開き加圧注入ポンプ2
4を起動して薬注タンク26A内に貯えられた鉄イオン
及び鉄微粒子を含む水又は鉄腐食タンク26B内で自然
に腐食された鉄分を含有する水を給水加熱器12の入口
側に注入する。
In addition, a valve 23, a pressurizer injection pump 24, and a flow meter 25A
, 25B, lli injection tank 26A or iron corrosion tank 26
An iron injection system 27 composed of B is connected to the inlet side of the feed water heater 12. The operation of this iron injection system 27 is based on the chemical analysis of metal impurities in the water supply and reactor water during plant operation, depending on the ratio of nickel and iron in the water (nickel/iron ratio).
When the amount approaches 1/2, the valve 23 is opened and the pressurized injection pump 2
4 to inject water containing iron ions and iron particles stored in the chemical injection tank 26A or water containing naturally corroded iron in the iron corrosion tank 26B into the inlet side of the feed water heater 12. .

このとき、好ましくはニッケル/鉄比が1/4以下とな
るようにする。また、炉水給水中の鉄の濃度をニッケル
濃度の10倍以上にすると炉水中での微粒子が増大して
、原子炉−次系の特定個所に付着する現象がみられるの
で、炉水給水中の鉄の濃度をニッケル濃度の10倍以下
にすることが好ましい。
At this time, the nickel/iron ratio is preferably set to 1/4 or less. Additionally, if the concentration of iron in the reactor water supply is 10 times or more the concentration of nickel, the number of fine particles in the reactor water will increase, and a phenomenon is observed where they adhere to specific parts of the reactor subsystem. It is preferable that the iron concentration is 10 times or less than the nickel concentration.

なお、鉄腐食タンク263は例えばステンレス鋼と炭素
鋼を接触させたものを純水中に浸漬しておくもの、ある
いは炭素鋼電極を水中に浸漬して、水中放電によって鉄
イオン、鉄微粒子を生じさせたものなどが用いられる。
The iron corrosion tank 263 is, for example, one in which stainless steel and carbon steel are brought into contact and immersed in pure water, or a carbon steel electrode is immersed in water to generate iron ions and iron particles by underwater discharge. Those that have been made are used.

また、薬注タンク26Aには水酸化鉄溶液に鉄微粉、マ
グネタイト粉末などを添加して貯蔵したものを用いる。
Further, the chemical injection tank 26A uses an iron hydroxide solution to which fine iron powder, magnetite powder, etc. are added and stored.

[発明の効果] 原子炉水または給水中のニッケル/鉄比が1/2に近く
なってきたとき炉水給水に鉄イオンを鉄微粒子とともに
注入しステンレス鋼の溶出を抑制して水中のニッケルを
減少させるとともに鉄濃度を増加させることができるの
で、放射性核種の親核種の1つであるニッケルの炉内持
込を抑制することができる。しかも、炉内に持込まれた
鉄粒子が炉内で生成した放射性核種の取込核となり溶解
性の放射性腐食生成物をも減少させるので、原子炉水を
通水する各種系統の配管内に均一に付着する放射性核種
を減少させることができる。
[Effects of the invention] When the nickel/iron ratio in the reactor water or water supply approaches 1/2, iron ions are injected into the reactor water supply together with iron particles to suppress the elution of stainless steel and remove nickel from the water. Since the iron concentration can be increased while decreasing the iron concentration, it is possible to suppress nickel, which is one of the parent nuclides of radionuclides, from being carried into the reactor. Moreover, the iron particles brought into the reactor act as nuclei for the uptake of radionuclides generated in the reactor, reducing the amount of soluble radioactive corrosion products. It is possible to reduce the amount of radionuclides attached to the

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例の沸騰水型原子炉発電プラントの
炉水給水系統図である。 1・・・原子炉圧力容器 2・・・炉心 3・・・炉水 7・・・蒸気タービン 8・・・主復水器 12・・・給水加熱器 14・・・給水管 15・・・低温浄化系 21.22・・・試料採取系 26A・・・薬注タンク 263・・・鉄腐食タンク 27・・・鉄注入系 (7317)代理人 弁理士 則 近 憲 佑(ほか1
名)
The figure is a reactor water supply system diagram of a boiling water reactor power plant according to an embodiment of the present invention. 1... Reactor pressure vessel 2... Reactor core 3... Reactor water 7... Steam turbine 8... Main condenser 12... Feed water heater 14... Water supply pipe 15... Low-temperature purification system 21.22...Sample collection system 26A...Chemical injection tank 263...Iron corrosion tank 27...Iron injection system (7317) Agent: Patent attorney Noriyuki Chika (and 1 others)
given name)

Claims (2)

【特許請求の範囲】[Claims] (1)軽水冷却型原子炉を有する発電プラントにおいて
、前記原子炉への炉水給水配管に給水又は炉水中の鉄の
濃度をニッケルの濃度の2倍以上10倍以下となるよう
に調整する鉄注入系を接続したことを特徴とする炉水給
水装置。
(1) In a power plant having a light water-cooled nuclear reactor, iron is used to adjust the concentration of iron in the water supplied to the reactor water supply pipe to the reactor or in the reactor water to be at least 2 times the concentration of nickel and no more than 10 times the concentration of nickel. A reactor water supply system characterized by connecting an injection system.
(2)鉄注入系は鉄腐食タンク又は薬注タンクを備えて
いる特許請求の範囲第1項記載の炉水給水装置。
(2) The reactor water supply system according to claim 1, wherein the iron injection system includes an iron corrosion tank or a chemical injection tank.
JP59200658A 1984-09-27 1984-09-27 Reactor water feeder Granted JPS6179194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59200658A JPS6179194A (en) 1984-09-27 1984-09-27 Reactor water feeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59200658A JPS6179194A (en) 1984-09-27 1984-09-27 Reactor water feeder

Publications (2)

Publication Number Publication Date
JPS6179194A true JPS6179194A (en) 1986-04-22
JPH055077B2 JPH055077B2 (en) 1993-01-21

Family

ID=16428065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59200658A Granted JPS6179194A (en) 1984-09-27 1984-09-27 Reactor water feeder

Country Status (1)

Country Link
JP (1) JPS6179194A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148394A (en) * 1984-12-21 1986-07-07 株式会社日立製作所 Method and device for controlling condensate purifying system of boiling water type nuclear power plant
JPS61205897A (en) * 1985-03-11 1986-09-12 株式会社日立製作所 Nuclear power plant
JPS6390796A (en) * 1986-10-03 1988-04-21 株式会社日立製作所 Method and device for suppressing elution of radioactive substance into cooling water in nuclear power plant
US4927598A (en) * 1987-09-09 1990-05-22 Hitachi, Ltd. Radioactivity reduction method of a nuclear power plant and a nuclear power plant reduced in radioactivity
US5398269A (en) * 1992-03-19 1995-03-14 Hitachi, Ltd. Water quality control method and device for nuclear power plant, and nuclear power plant
WO1996022605A1 (en) * 1995-01-18 1996-07-25 Hitachi, Ltd. Nuclear power plant and method for operating the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563798A (en) * 1978-11-08 1980-05-14 Hitachi Ltd Corrosion protection method of bwr type power atomic plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563798A (en) * 1978-11-08 1980-05-14 Hitachi Ltd Corrosion protection method of bwr type power atomic plant

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148394A (en) * 1984-12-21 1986-07-07 株式会社日立製作所 Method and device for controlling condensate purifying system of boiling water type nuclear power plant
JPS61205897A (en) * 1985-03-11 1986-09-12 株式会社日立製作所 Nuclear power plant
JPH0431079B2 (en) * 1985-03-11 1992-05-25
JPS6390796A (en) * 1986-10-03 1988-04-21 株式会社日立製作所 Method and device for suppressing elution of radioactive substance into cooling water in nuclear power plant
US4894202A (en) * 1986-10-03 1990-01-16 Hitachi, Ltd. Method of inhibiting radioactive substances from eluting into cooling water in a nuclear plant and an apparatus therefor
US4927598A (en) * 1987-09-09 1990-05-22 Hitachi, Ltd. Radioactivity reduction method of a nuclear power plant and a nuclear power plant reduced in radioactivity
US5398269A (en) * 1992-03-19 1995-03-14 Hitachi, Ltd. Water quality control method and device for nuclear power plant, and nuclear power plant
WO1996022605A1 (en) * 1995-01-18 1996-07-25 Hitachi, Ltd. Nuclear power plant and method for operating the same

Also Published As

Publication number Publication date
JPH055077B2 (en) 1993-01-21

Similar Documents

Publication Publication Date Title
US4927598A (en) Radioactivity reduction method of a nuclear power plant and a nuclear power plant reduced in radioactivity
JPS6179194A (en) Reactor water feeder
JP3069787B2 (en) Method for suppressing adhesion of radioactive corrosion products to the surface of primary cooling water piping in nuclear power plants
US5271052A (en) Enriched boron-10 boric acid control system for a nuclear reactor plant
JPS63103999A (en) Method and device for inhibiting adhesion of radioactive substance
JPS5879196A (en) Method of controlling radioactive ion adhesion
US4981641A (en) Inhibition of nuclear-reactor coolant-circuit contamination
Lister The mechanisms of corrosion product transport and their investigation in high temperature water loops
Burrill Corrosion product transport in water‐cooled nuclear reactors. Part III: Boiling water with indirect cycle operation
JP2523696B2 (en) Direct cycle nuclear power plant
JPS6295498A (en) Constitutional member of nuclear power plant
JPS61245093A (en) Feedwater system of nuclear power generating plant
Uchida et al. Water Quality Control in Primary Cooling System of Crud Concentration Suppressed Boiling Water Reactor,(I) Water Chemistry Experience in Latest Crud Conentration Suppressed BWR
US8798225B2 (en) Radiation exposure reduction method
JP2000162383A (en) Operation method for reactor power plant
JPH0424434B2 (en)
JPH0479439B2 (en)
JPS5953517B2 (en) Reactor coolant sampling device
JPS6312551B2 (en)
JPH0249479B2 (en)
Allison Conditioning of d2O in heavy water power reactors
JPS642919B2 (en)
JPS61186897A (en) Feed water facility for nuclear reactor
JPS61104297A (en) Device for removing radioactivity of nuclear reactor primarycooling system
JPS61175595A (en) Nuclear power plant

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term