JPS5953517B2 - Reactor coolant sampling device - Google Patents

Reactor coolant sampling device

Info

Publication number
JPS5953517B2
JPS5953517B2 JP56177089A JP17708981A JPS5953517B2 JP S5953517 B2 JPS5953517 B2 JP S5953517B2 JP 56177089 A JP56177089 A JP 56177089A JP 17708981 A JP17708981 A JP 17708981A JP S5953517 B2 JPS5953517 B2 JP S5953517B2
Authority
JP
Japan
Prior art keywords
pipe
sampling
water
reactor
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56177089A
Other languages
Japanese (ja)
Other versions
JPS5879193A (en
Inventor
邦夫 宮丸
邦夫 工藤
市太郎 三浦
良昭 八木
勇 渡辺
忠昭 川野
義弘 小沢
正男 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tohoku Electric Power Co Inc
Tokyo Electric Power Co Inc
Chubu Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Tokyo Electric Power Co Inc, Chubu Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP56177089A priority Critical patent/JPS5953517B2/en
Publication of JPS5879193A publication Critical patent/JPS5879193A/en
Publication of JPS5953517B2 publication Critical patent/JPS5953517B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、原子炉冷却材サンプリング装置に係り、特に
、放射性イオンの付着を減少させるのに好適な原子炉冷
却材サンプリング装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear reactor coolant sampling device, and more particularly to a nuclear reactor coolant sampling device suitable for reducing adhesion of radioactive ions.

原子炉、例えば、沸騰水型原子炉の一次冷却系の構造材
から金属不純物が溶出する。
Metal impurities are leached from the structural materials of the primary cooling system of a nuclear reactor, for example a boiling water reactor.

この金属不純物は、原子炉圧力容器内に搬入されて放射
性腐食生成物になる。
This metal impurity is carried into the reactor pressure vessel and becomes radioactive corrosion products.

放射性腐食生成物には、冷却水に溶解した成分(以下、
イオンと称する)と、不溶成の固体成分(酸化鉄が主で
あり、以下、クラッドと称する)とがある。
Radioactive corrosion products include components dissolved in cooling water (hereinafter referred to as
There are ions (referred to as ions) and insoluble solid components (mainly iron oxide, hereinafter referred to as cladding).

クラッドは、主として原子炉圧力容器内で、イオンが酸
化されて生成する。
Crud is mainly generated by oxidation of ions in the reactor pressure vessel.

このようにして、生成した60CO1”Mn等の長半減
期の放射性腐食生成物は、再循環系配管および炉浄化系
配管等の内面に付着し、それらの配管の表面線量率の増
加をもたらす。
In this way, long-half-life radioactive corrosion products such as 60CO1''Mn are deposited on the inner surfaces of recirculation system piping, furnace purification system piping, etc., resulting in an increase in the surface dose rate of these piping.

このような配管等の表面線量率の上昇度合を予測するた
めに、冷却水中の放射性腐食生成物の放射能濃度および
化学濃度の測定が行なわれている。
In order to predict the degree of increase in the surface dose rate of such piping, etc., the radioactive concentration and chemical concentration of radioactive corrosion products in cooling water are measured.

沸騰水型原子炉の冷却水中の放射能濃度や不純物の化学
濃度は、サンプリング配管を通して冷却水の一部を試料
水として採取し、試料水を放射能分析および化学分析す
ることによって求めている。
The radioactivity concentration and chemical concentration of impurities in the cooling water of a boiling water reactor are determined by collecting a portion of the cooling water as a sample water through a sampling pipe and conducting radioactivity and chemical analysis of the sample water.

採取場所の関係で、サンプリング配管は50m以上に及
ぶのが通例である。
Depending on the sampling location, sampling piping is typically over 50 meters long.

そのため、サンプリング配管の管壁に放射性腐食生成物
が付着し、試料水中の放射能濃度および化学濃度を求め
たとしても誤差が大きくなる。
Therefore, radioactive corrosion products adhere to the pipe wall of the sampling pipe, and even if the radioactive concentration and chemical concentration in the sample water are determined, the error becomes large.

本発明の目的は、原子炉冷却材中の放射物質の分析精度
を向上させることにある。
An object of the present invention is to improve the accuracy of analyzing radioactive materials in nuclear reactor coolant.

本発明の特徴は、サンプリングされた原子炉の冷却材中
にpHを低下させる物質を供給し、サンプリングされた
冷却材のpHを所定値以下に調節することにある。
A feature of the present invention is to supply a pH-lowering substance to the sampled coolant of a nuclear reactor, and to adjust the pH of the sampled coolant to a predetermined value or less.

発明者等は、サンプリング配管(ステンレス鋼配管)へ
の放射性イオンの付着係数がサンプリング配管内を流れ
る試料水のpHによって大きく変わることを60COの
放射性同位体である58COを用いた実験で見出した。
The inventors discovered through experiments using 58CO, a radioactive isotope of 60CO, that the adhesion coefficient of radioactive ions to sampling piping (stainless steel piping) varies greatly depending on the pH of sample water flowing inside the sampling piping.

ここで、サンプリング配管への58COの付着係数δ
(cm/h)は以下の式で近似的に表わされる。
Here, the adhesion coefficient δ of 58CO to the sampling pipe is
(cm/h) is approximately expressed by the following formula.

ここで、Pは単位面積あたりの58CO付着量(μCi
/cm”)、tは時間(hr)、Rは試料水中の58C
O濃度(7zCi/ml)である。
Here, P is the amount of 58CO attached per unit area (μCi
/cm”), t is time (hr), R is 58C in the sample water
O concentration (7zCi/ml).

第1図は、58COの付着係数のpH依存性を、試料水
温度280℃の条件下で調べた結果である。
FIG. 1 shows the results of investigating the pH dependence of the adhesion coefficient of 58CO under the condition of a sample water temperature of 280°C.

試料水のpHが7における58COの付着係数を1.0
とした場合、pHが6.3で0.49、pHが5.0で
0.03、およびpHが3.5で0.02になった。
The adhesion coefficient of 58CO when the sample water pH is 7 is 1.0.
In this case, the values were 0.49 when the pH was 6.3, 0.03 when the pH was 5.0, and 0.02 when the pH was 3.5.

したがって、試料水のpHを5.0以下に下げれば、5
8COのサンプリング配管への付着量を通常の冷却水条
件(pH=6〜7)に比べ、約1730に減少できるこ
とが明らかになった。
Therefore, if the pH of the sample water is lowered to below 5.0,
It was revealed that the amount of 8CO attached to the sampling pipe could be reduced to about 1730 compared to normal cooling water conditions (pH = 6 to 7).

第2図は、上記の実験に用いた実験装置の系統図である
FIG. 2 is a system diagram of the experimental apparatus used in the above experiment.

この実験装置を用いて行なった実験の一例を詳細に説明
する。
An example of an experiment conducted using this experimental device will be explained in detail.

11は原子炉模擬タンクで、外周にヒータを設け、模擬
冷却水の温度および圧力を実際の沸騰水型原子炉の条件
、285℃および70気圧に調節できるようになってい
る。
Reference numeral 11 denotes a reactor simulation tank, which is equipped with a heater around its outer periphery so that the temperature and pressure of the simulated cooling water can be adjusted to the conditions of an actual boiling water reactor, 285° C. and 70 atm.

模擬冷却水タンク20で模擬冷却水中の58coの放射
能濃度およびCO化学濃度、さらに模擬冷却水のpHを
所定値に調整した後、バルブ23を開き、昇圧ポンプ2
1の働きで、原子炉模擬タンク11内に模擬冷却水を注
入する。
After adjusting the 58co radioactivity concentration and CO chemical concentration in the simulated cooling water and the pH of the simulated cooling water to predetermined values in the simulated cooling water tank 20, the valve 23 is opened and the booster pump 2
1, the simulated cooling water is injected into the reactor simulated tank 11.

原子炉模擬タンク11内への模擬冷却水の注入が完了し
た後、バルブ23を閉じる。
After injection of the simulated cooling water into the reactor simulated tank 11 is completed, the valve 23 is closed.

この時の模擬冷却水のpHは7、”C。放射能濃度はI
X 10=、cci/mlおよびCO化学濃度は、0
.4ppbである。
The pH of the simulated cooling water at this time is 7,"C.The radioactivity concentration is I
X 10 = cci/ml and CO chemical concentration is 0
.. It is 4 ppb.

循環ポンプ12を作動させ、循環ループ22内に模擬冷
却水を循環させながら、原子炉模擬タンク11の外周ヒ
ータにより、昇温昇圧する。
While the circulation pump 12 is operated and the simulated cooling water is circulated within the circulation loop 22, the temperature and pressure are increased by the outer peripheral heater of the reactor simulation tank 11.

285℃、70気圧に達したところで、昇温昇圧をやめ
、ついで、バルブ24を開き、一定の流量(l l /
min、20℃)で模擬冷却水の一部を試料水としてサ
ンプリングループ14内に導びく。
When the temperature reaches 285°C and 70 atm, the temperature and pressure increase is stopped, and then the valve 24 is opened to maintain a constant flow rate (l l /
A portion of the simulated cooling water is introduced into the sampling loop 14 as sample water.

酸性溶液タンク15内には、あらかじめ0.001mo
lハの硝酸(HNO3)溶液ヲ入しテおく。
In the acidic solution tank 15, 0.001 mo
Pour in nitric acid (HNO3) solution and set aside.

バルブ25を開くと同時に注入ポンプ16を作動させ、
10m1/minの割合で酸性溶液タンク15内の硝酸
溶液をサンプリングループ14内に供給する。
Activating the injection pump 16 at the same time as opening the valve 25,
The nitric acid solution in the acidic solution tank 15 is supplied into the sampling loop 14 at a rate of 10 ml/min.

この操作によってサンプリングループ14内を流れる試
料水のpHは、約5に調節される。
By this operation, the pH of the sample water flowing within the sampling loop 14 is adjusted to about 5.

サンプリングループ14に設けられる配管付着試験部1
3には、試料配管(ステンレス鋼管)17を入れておく
Piping adhesion test section 1 provided in the sampling loop 14
A sample pipe (stainless steel pipe) 17 is placed in 3.

試料水中の58COの一部は、この試料配管17に付着
する。
A part of 58CO in the sample water adheres to this sample pipe 17.

試料水は、冷却器18で温度50℃前後に冷却された後
、イオン交換樹脂塔19に通水される。
The sample water is cooled to a temperature of around 50° C. by the cooler 18 and then passed through the ion exchange resin tower 19 .

ここで002+イオンや、NO3−イオンが捕集され、
純水が昇圧ポンプ21によって原子炉模擬タンク11中
に戻される。
Here, 002+ ions and NO3- ions are collected,
Pure water is returned into the reactor simulating tank 11 by the boost pump 21.

一定時間通水後、試料配管17を取り出す。After passing water for a certain period of time, the sample pipe 17 is taken out.

試料配管17の放射能をGe (Li)半導体検出器で
計測し、試料配管17への58CO付着量を求めた。
Radioactivity in the sample pipe 17 was measured with a Ge (Li) semiconductor detector, and the amount of 58CO attached to the sample pipe 17 was determined.

また、イオン交換樹脂塔19における58COの放射能
濃度も測定した。
Furthermore, the radioactivity concentration of 58CO in the ion exchange resin tower 19 was also measured.

その結果、試料配管17への58CO付着量は、酸性溶
液注入によるpH調整を行なわなかった場合に比べ、1
720以下に減少する。
As a result, the amount of 58CO attached to the sample pipe 17 was 1
It decreases to 720 or less.

またイオン交換樹脂塔19における放射能濃度から、サ
ンプリングループ14の配管における付着による損失は
、pH調整しなかった場合、20%以上になるのに対し
、わずか1%に過ぎなことが判明した。
Furthermore, it was found from the radioactivity concentration in the ion exchange resin column 19 that the loss due to adhesion in the piping of the sampling loop 14 was only 1%, whereas it would be more than 20% if the pH was not adjusted.

このような実験結果に基づく本発明の好適な一実施例を
第3図に基づいて以下に説明する。
A preferred embodiment of the present invention based on such experimental results will be described below with reference to FIG.

沸騰水型原子炉の原子炉圧力容器31で発生した蒸気は
、主蒸気配管32を通り、タービン33に供給され、タ
ービン33を回転させる。
Steam generated in a reactor pressure vessel 31 of a boiling water reactor passes through a main steam pipe 32, is supplied to a turbine 33, and rotates the turbine 33.

タービン33から排気された蒸気は、復水器34で凝縮
され、冷却水に戻る。
Steam exhausted from the turbine 33 is condensed in the condenser 34 and returned to cooling water.

その後、冷却水は、脱塩器35および給水ヒータ36を
通って原子炉圧力容器31に戻される。
Thereafter, the cooling water is returned to the reactor pressure vessel 31 through the demineralizer 35 and the feedwater heater 36.

一方、原子炉圧力容器1内の冷却水は、再循環系配管3
7内を循環し、その一部が熱交換器38で冷却された後
、脱塩器39にて放射性のイオン等が除去される。
On the other hand, the cooling water in the reactor pressure vessel 1 is transferred to the recirculation system piping 3.
7 and a part of it is cooled in a heat exchanger 38, and then radioactive ions and the like are removed in a demineralizer 39.

48は炉浄化系配管である。48 is a furnace purification system piping.

サンプリング配管40は、熱交換器38と脱塩器39と
を連絡している炉浄化系配管48に接続される。
The sampling pipe 40 is connected to a furnace purification system pipe 48 that connects the heat exchanger 38 and the demineralizer 39.

サンプリング配管40の上流側に、酸性溶液タンク41
.注入ポンプ42および調整バルブ43から成る酸性溶
液注入系46を設ける。
An acidic solution tank 41 is installed on the upstream side of the sampling pipe 40.
.. An acidic solution injection system 46 consisting of an injection pump 42 and a regulating valve 43 is provided.

サンプリング管40の酸性溶液注入系46より下流側に
pHメータ44を設ける。
A pH meter 44 is provided downstream of the acid solution injection system 46 of the sampling tube 40 .

サンプリング配管40に設けられたバルブ47を開くこ
とによって、炉浄化系配管48内を流れる冷却水の一部
がサンプリング配管40内に流入する。
By opening the valve 47 provided in the sampling pipe 40, a portion of the cooling water flowing in the furnace purification system pipe 48 flows into the sampling pipe 40.

この冷却水のpHが、pHメータ44によって測定され
る。
The pH of this cooling water is measured by a pH meter 44.

pHメータ44は試料水のpH信号を調整バルブ43に
伝達する。
The pH meter 44 transmits the pH signal of the sample water to the adjustment valve 43.

試料水のpHは6〜7の範囲にあるため、調整バルブ4
3が開き、酸性溶液タンク41内の0. OO1mol
ハの硝酸溶液がサンプリング配管40内に供給される。
Since the pH of the sample water is in the range of 6 to 7, the adjustment valve 4
3 opens, and the 0. OO1mol
The nitric acid solution (iii) is supplied into the sampling pipe 40.

これによって、サンプリング配管40内を流れる試料水
のpHが5.5以下の所定値に調節される。
As a result, the pH of the sample water flowing through the sampling pipe 40 is adjusted to a predetermined value of 5.5 or less.

ただし、試料水のpHが酸性の領域になると、サンプリ
ング配管40内にもともと付着していた物質が溶出する
危険性があるので、試料水のpHとしては4.5〜5.
5の範囲にすることが望しい。
However, if the pH of the sample water falls into the acidic range, there is a risk that substances originally attached to the sampling pipe 40 will be eluted, so the pH of the sample water should be 4.5 to 5.
It is desirable to set it in the range of 5.

試料水中の放射性イオンである60COは、カチオンペ
ーパまたはイオン交換樹脂からなる捕集器45で捕集さ
れる。
60CO, which is a radioactive ion in the sample water, is collected by a collector 45 made of cation paper or ion exchange resin.

サンプリング配管40の長さは50m近くあるが、試料
水中の60COのサンプリング配管40内面への付着量
が少なく、サンプリング配管40に流入した60COの
ほとんどが捕集器45にて捕集される。
Although the length of the sampling pipe 40 is nearly 50 m, the amount of 60CO in the sample water adhering to the inner surface of the sampling pipe 40 is small, and most of the 60CO flowing into the sampling pipe 40 is collected by the collector 45.

捕集器45を通過した試料水は、液体廃棄物処理系であ
る機器ドレン処理装置にて処理される。
The sample water that has passed through the collector 45 is processed in an equipment drain processing device that is a liquid waste processing system.

試料水を、所定時間、捕集器45を通した後、捕集器4
5の放射能をGe (Li)半導体検出器にて計測する
After passing the sample water through the collector 45 for a predetermined time,
The radioactivity of No. 5 is measured using a Ge (Li) semiconductor detector.

このように試料水のpHを下げることによって、原子炉
の冷却水の放射能や、金属イオンの化学濃度を精度良く
求めることができる。
By lowering the pH of the sample water in this way, the radioactivity of the reactor cooling water and the chemical concentration of metal ions can be determined with high accuracy.

酸性溶液の代りに炭酸ガスを試料水中に注入しても、試
料水のpHを下げることができる。
The pH of the sample water can also be lowered by injecting carbon dioxide gas into the sample water instead of an acidic solution.

本発明は沸騰水型原子炉以外の加圧水型原子炉および新
型転換炉に適用することができる。
The present invention can be applied to pressurized water reactors other than boiling water reactors and new converter reactors.

本発明によれば、サンプリング配管内面への放射性物質
の付着量が著しく減少し、原子炉の冷却材中の放射性物
質の量を精度良く測定することができる。
According to the present invention, the amount of radioactive substances adhering to the inner surface of the sampling pipe is significantly reduced, and the amount of radioactive substances in the coolant of a nuclear reactor can be measured with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試料水のpHと58COの付着係数との関係を
示す特性図、第2図は本発明の効果を確認した実験装置
の系統図、第3図は本発明の好適な一実施例である原子
炉冷却材サンプリング装置を適用した沸騰水型原子炉の
系統図である。 31・・・・・・原子炉圧力容器、40・・・・・・サ
ンプリング配管、41・・・・・・酸性溶液タンク、4
3・・・・・・調整バルブ、44・・・・・・pHメー
タ、45・・・・・・捕集器、46・・・・・・酸性溶
液注入系。
Figure 1 is a characteristic diagram showing the relationship between the pH of sample water and the adhesion coefficient of 58CO, Figure 2 is a system diagram of the experimental equipment that confirmed the effects of the present invention, and Figure 3 is a preferred embodiment of the present invention. 1 is a system diagram of a boiling water reactor to which a reactor coolant sampling device is applied. 31... Reactor pressure vessel, 40... Sampling piping, 41... Acidic solution tank, 4
3...Adjustment valve, 44...pH meter, 45...Collector, 46...Acidic solution injection system.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉の冷却材をサンプリングする配管と、前記配
管内を流れるサンプリングした前記冷却材のpHを測定
する手段と、前記配管内に前記冷却材のpHを低下させ
る物質を供給する手段と、前記pH測定手段にて測定さ
れたpH値が所定値以下になるように前記pHを低下さ
せる物質の前記配管中への供給量を制御する手段とから
なる原子炉冷却材サンプリング装置。
1. A pipe for sampling coolant of a nuclear reactor, means for measuring the pH of the sampled coolant flowing within the pipe, means for supplying a substance that lowers the pH of the coolant into the pipe, and A reactor coolant sampling device comprising means for controlling an amount of a substance that lowers the pH to be supplied into the piping so that the pH value measured by the pH measuring means is equal to or less than a predetermined value.
JP56177089A 1981-11-06 1981-11-06 Reactor coolant sampling device Expired JPS5953517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56177089A JPS5953517B2 (en) 1981-11-06 1981-11-06 Reactor coolant sampling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56177089A JPS5953517B2 (en) 1981-11-06 1981-11-06 Reactor coolant sampling device

Publications (2)

Publication Number Publication Date
JPS5879193A JPS5879193A (en) 1983-05-12
JPS5953517B2 true JPS5953517B2 (en) 1984-12-25

Family

ID=16024930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56177089A Expired JPS5953517B2 (en) 1981-11-06 1981-11-06 Reactor coolant sampling device

Country Status (1)

Country Link
JP (1) JPS5953517B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201463A (en) * 1989-01-31 1990-08-09 Ricoh Co Ltd Discharge device
US5208165A (en) * 1991-01-31 1993-05-04 General Electric Company Method for testing the soluble contents of nuclear reactor coolant water

Also Published As

Publication number Publication date
JPS5879193A (en) 1983-05-12

Similar Documents

Publication Publication Date Title
Lister The transport of radioactive corrosion products in high-temperature water II. The activation of isothermal steel surfaces
US4927598A (en) Radioactivity reduction method of a nuclear power plant and a nuclear power plant reduced in radioactivity
JPS5953517B2 (en) Reactor coolant sampling device
JPH0314155B2 (en)
JPH0296693A (en) Method and device for sampling water sample from core for boiling water type reactor
JPS58205893A (en) Method and device for controlling ph of pwr type reactor coolant
JP4340574B2 (en) Reducing nitrogen compound injection operation method for nuclear power plant
JP2011089942A (en) Method for controlling water quality in boiling water reactor plant
Ishida et al. Hydrazine and hydrogen co-injection to mitigate stress corrosion cracking of structural materials in boiling water reactors,(I) temperature dependence of hydrazine reactions
JPS6179194A (en) Reactor water feeder
JPH07119829B2 (en) Reactor coolant PH control system
JP2559527B2 (en) Radionuclide analyzer for nuclear power plant and plant using the same
JPS5844390A (en) Reactor water sampling device prevented adhesion in pipe
JPH0636066B2 (en) Method and apparatus for producing anticorrosion coating for nuclear power plant
JPH0361918B2 (en)
JPH0424434B2 (en)
JPH0249479B2 (en)
JP2865726B2 (en) Nuclear power plant
Arbeau et al. Kinetics of corrosion product release from carbon steel corroding in high-temperature, lithiated water
JPH0721554B2 (en) Control device for hydrogen injection into reactor
JPS6098390A (en) Nuclear power plant
Holmes et al. Sodium technology at EBR-II
JPH08304584A (en) Radioactive concentration reducing method in reactor primary system water
JPH05215892A (en) Feed water iron concentration control device
JPH1048386A (en) Reducing method for chromium concentration in supply water system