JPS642919B2 - - Google Patents

Info

Publication number
JPS642919B2
JPS642919B2 JP57188964A JP18896482A JPS642919B2 JP S642919 B2 JPS642919 B2 JP S642919B2 JP 57188964 A JP57188964 A JP 57188964A JP 18896482 A JP18896482 A JP 18896482A JP S642919 B2 JPS642919 B2 JP S642919B2
Authority
JP
Japan
Prior art keywords
condensate
pipe
water
crud
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57188964A
Other languages
Japanese (ja)
Other versions
JPS5979193A (en
Inventor
Michoshi Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57188964A priority Critical patent/JPS5979193A/en
Publication of JPS5979193A publication Critical patent/JPS5979193A/en
Publication of JPS642919B2 publication Critical patent/JPS642919B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Bidet-Like Cleaning Device And Other Flush Toilet Accessories (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、沸騰水型原子力発電プラントの放射
能低減、特に給水からの鉄クラツドの持ち込み量
の低減を可能にした給水加熱器の洗浄装置に関す
る。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a cleaning device for a feed water heater that makes it possible to reduce radioactivity in a boiling water nuclear power plant, and in particular to reduce the amount of iron crud carried in from the water supply. .

〔従来技術〕[Prior art]

従来技術を第1図によつて説明する。原子炉1
で発生した蒸気は主蒸気配管2を経由して、ター
ビン3に送られ、発電機を回わす。タービンの排
気は、主復水器4で復水となり、低圧復水ポンプ
5により、復水ろ過脱塩器6に送られ、復水中の
不純物を除去する。イオン状の不純物は、その下
流にある復水脱塩装置7にて浄化、除去される。
浄化された復水は高圧復水ポンプ9から低圧給水
加熱器10へ送られ、加温される。また、原子炉
への給水は、給水ポンプ11により更に加圧さ
れ、高圧給水加熱器12で昇温され、給水配管1
3および給水元弁14を経て、原子炉1に注入さ
れる。従来プラントでは給水系の配管機器の腐食
を抑制し、鉄クラツドを低減するために、防食管
理として、酸素注入装置16を設け、配管17よ
り、復水及び給水中に酸素を注入している。
The prior art will be explained with reference to FIG. reactor 1
The steam generated is sent to the turbine 3 via the main steam pipe 2, which turns the generator. The exhaust gas of the turbine becomes condensate in the main condenser 4, and is sent to a condensate filtration demineralizer 6 by a low-pressure condensate pump 5 to remove impurities in the condensate. Ionic impurities are purified and removed by the condensate desalination device 7 located downstream.
The purified condensate is sent from the high pressure condensate pump 9 to the low pressure feed water heater 10 and heated. In addition, the water supplied to the reactor is further pressurized by the water supply pump 11, heated by the high-pressure feed water heater 12, and heated by the water supply pipe 1.
3 and the water supply valve 14, and is injected into the nuclear reactor 1. In conventional plants, an oxygen injection device 16 is installed to inject oxygen into condensate water and water supply through piping 17 as anti-corrosion control in order to suppress corrosion of piping equipment in the water supply system and reduce iron crud.

また、プラントを停止した期間中は、復水系お
よび給水系は、大気開放条件となり、大気飽和濃
度の溶存酸素が存在することとなり、腐食上好ま
しくない。したがつて、停止中の系統保管水の水
質を管理する手法が考えられており、例えば、復
水再循環ライン8および給水再循環ライン15を
使用して、系統内に堆積または、溶出した腐食生
成物(クラツド)を一担、主復水器4のホツトウ
エルに回収し、復水ろ過脱塩装置6および復水脱
塩装置により除去している。なお、給水弁14は
閉となつている。
Further, during the period when the plant is shut down, the condensate system and the water supply system are exposed to the atmosphere, and dissolved oxygen exists at an atmospheric saturation concentration, which is unfavorable in terms of corrosion. Therefore, methods have been devised to manage the water quality of stored water in the system during shutdown, for example, by using the condensate recirculation line 8 and the feed water recirculation line 15 to prevent corrosion deposited or leached in the system. A portion of the product (crud) is collected in a hot well of the main condenser 4 and removed by a condensate filtration and desalination device 6 and a condensate desalination device. Note that the water supply valve 14 is closed.

前記従来技術においては、復水および給水系内
保有水中に存在するクラツドを除去するには有効
であるが、給水系の大部分の接水面積を占める給
水加熱器伝熱管の表面に付着したクラツドは、除
去できないという問題がある。これは給水再循環
ラインの運転時の復水配管および給水配管内の流
速を運転時よりも大きくできないためである。
Although the above-mentioned conventional technology is effective in removing crud existing in condensate and water contained in the water supply system, it is effective in removing crud that is present in the condensate and water retained in the water supply system, but it is effective in removing crud that has adhered to the surface of the heat exchanger tube of the feed water heater, which occupies the majority of the water contact area of the water supply system. The problem is that it cannot be removed. This is because the flow velocity in the condensate piping and the water supply piping cannot be made higher than when the feed water recirculation line is in operation.

給水加熱器伝熱管への鉄クラツドの付着は、第
2図に示すような現象から明らかになつた。すな
わち、復水中のクラツドは復水脱塩装置7の出口
で約1ppbのクラツドであり、高圧復水ポンプ出
口9でもほぼ同じ濃度である。しかし、低圧給水
加熱器出口11では約0.8〜0.7ppbに減少する傾
向があり、さらに高圧給水加熱器13出口では、
約0.4ppbまで下がる。このことから、給水加熱器
全体では約0.6ppbに相当するクラツドが付着する
ことになり、年間での付着重量は1100MWe級プ
ラントで約30Kgにもなる。これが、第3図に示す
ように年々付着すれば、伝熱効率の低下をもたら
すことになる。また、プラントの出力変動にとも
ない給水流量の変化を生じた際に今まで付着して
いた鉄クラツドが部分的に剥離して、原子炉に流
入してしまうという問題が生じる。
The adhesion of iron cladding to the heat exchanger tubes of the feed water heater became clear from the phenomenon shown in Figure 2. That is, the concentration of crud in the condensate is approximately 1 ppb at the outlet of the condensate desalination device 7, and the concentration is approximately the same at the high-pressure condensate pump outlet 9. However, it tends to decrease to about 0.8 to 0.7 ppb at the low pressure feed water heater outlet 11, and furthermore, at the high pressure feed water heater 13 outlet,
It drops to about 0.4ppb. From this, the total amount of crud deposited on the feed water heater is approximately 0.6 ppb, and the annual deposit weight is approximately 30 kg in a 1100 MWe class plant. If this adheres year after year as shown in FIG. 3, it will lead to a decrease in heat transfer efficiency. Further, when the flow rate of water supply changes due to fluctuations in the output of the plant, there is a problem in that the iron cladding that has been attached to the reactor partially peels off and flows into the reactor.

〔発明の目的〕[Purpose of the invention]

本発明は、従来技術の欠点を補うべく、給水加
熱器伝熱管に付着した鉄クラツドを効果的に除去
するための給水加熱器用の洗浄装置を提供するこ
とにある。
SUMMARY OF THE INVENTION In order to overcome the drawbacks of the prior art, the present invention provides a cleaning device for a feedwater heater for effectively removing iron crud adhering to the heat exchanger tubes of the feedwater heater.

〔発明の概要〕[Summary of the invention]

本発明の(a)沸騰水型原子力プラントにおける給
水加熱器の下流側配管から分岐し、これを該給水
加熱器上流側に接続してなる閉ループの配管であ
つて、かつ該配管の一部に循環用ポンプを備えた
除染用循環配管、(b)前記循環配管中の循環水中へ
除染剤としての還元剤を注入するために該循環配
管の一部に設けられた還元剤注入装置及び(c)前記
循環配管から分岐し、かつ復水ろ過脱塩装置上流
側配管に接続してなる循環水リンス用配管を含む
ことを特徴とする。
(a) A closed-loop piping branched from a downstream piping of a feedwater heater in a boiling water nuclear power plant and connected to an upstream side of the feedwater heater, and a part of the piping. a decontamination circulation pipe equipped with a circulation pump; (b) a reducing agent injection device provided in a part of the circulation pipe for injecting a reducing agent as a decontamination agent into the circulating water in the circulation pipe; (c) It is characterized by including a circulating water rinsing piping branched from the circulation piping and connected to the upstream piping of the condensate filtration and desalination apparatus.

本発明は実機の給水系の水質や付着クラツドの
実態調査により給水加熱器の伝熱管に鉄クラツド
が付着していることを確認し、この付着クラツド
を除去する手段として、還元剤による電子注入を
行い、付着しているクラツドを溶解させ、溶解し
た鉄を、既設のイオン交換樹脂を有する復水脱塩
装置により除去するようにしたものである。
The present invention has confirmed that iron crud has adhered to the heat exchanger tubes of the feed water heater through a survey of the water quality and adhered crud in the water supply system of an actual machine, and has introduced electron injection using a reducing agent as a means to remove this adhered crud. The deposited crud is dissolved, and the dissolved iron is removed using an existing condensate desalination equipment equipped with an ion exchange resin.

第3図に示すように、給水加熱器の伝熱管表面
の酸化皮膜および付着クラツドは、形態分析によ
ると、Fe2O3やFe3O4などの鉄酸化物がほとんど
である。すなわち、付着するクラツドは大部分が
鉄酸化物であり、これを効率よく溶解、除去する
には、鉄イオンの還元を促進させる必要がある。
そこで鉄の還元には下式に示すように電子を注入
することによつて行なう。
As shown in FIG. 3, the oxide film and deposited crud on the surface of the heat exchanger tube of the feed water heater are mostly composed of iron oxides such as Fe 2 O 3 and Fe 3 O 4 according to morphological analysis. That is, most of the deposited crud is iron oxide, and in order to efficiently dissolve and remove it, it is necessary to promote the reduction of iron ions.
Therefore, reduction of iron is carried out by injecting electrons as shown in the formula below.

Fe3O4+8H++2e-→3Fe2+ ++4H2O 電子を注入する方法としては、金属材料の母材
を腐食させないように考慮する必要があり、還元
剤を使用する方法が極めて有効である。
Fe 3 O 4 +8H + +2e - →3Fe 2+ + +4H 2 O As a method of injecting electrons, it is necessary to take care not to corrode the base material of the metal material, and the method of using a reducing agent is extremely effective. be.

〔実施例〕〔Example〕

本発明の一実施例を第4図によつて説明する。
ここでは、停止中の給水加熱器の洗浄の例につい
て説明する。
An embodiment of the present invention will be described with reference to FIG.
Here, an example of cleaning the feed water heater while it is stopped will be described.

注入タンク27に、除染剤としてL−アスコル
ビン酸およびローダミンBからなる還元剤混合物
を投入し、さらに、注入ポンプ28により注入配
管29を通して、循環配管20に注入した。給水
加熱器の下流側配管に設けられた分岐管15の元
弁18,19を閉とし、該配管15の上流側より
分岐した配管20により、復水を導入し、弁21
を開とし洗浄用循環ポンプ22を起動して、弁2
3を開にし、配管24を介して復水脱塩装置出口
の復水母管に戻した。注入された還元剤を含む除
染剤はポンプ9、低圧給水加熱器10の伝熱管、
および給水ポンプ11、高圧給水加熱器12の伝
熱管を経て、循環させた。除染液の還元力が劣化
すると、還元剤を追加注入した。このようにして
除染を完了する。次に、弁23を閉、弁25を開
とし、循環水リンス用配管26を通して復水ろ過
脱塩装置6、更に復水脱塩器7に送り、前記循環
水中のFeイオンや不純溶解物を除去した。次い
で、こうして純水になつた前記処理水により給水
系をリンスした。リンスの終点のチエツクは復水
脱塩器出口7で行ない、給水系の導電率計で、
0.1μs/cm以下になつたことを確認して終了した。
A reducing agent mixture consisting of L-ascorbic acid and rhodamine B was put into the injection tank 27 as a decontaminating agent, and further injected into the circulation pipe 20 through the injection pipe 29 by the injection pump 28 . The main valves 18 and 19 of the branch pipe 15 provided in the downstream pipe of the feed water heater are closed, and condensate is introduced through the pipe 20 branched from the upstream side of the pipe 15, and the valve 21 is closed.
Open the valve 2, start the cleaning circulation pump 22, and
3 was opened and the condensate was returned to the condensate main pipe at the outlet of the condensate desalination device via the pipe 24. The injected decontamination agent containing the reducing agent is pumped into the pump 9, the heat exchanger tube of the low-pressure feed water heater 10,
The water was then circulated through the heat exchanger tubes of the water supply pump 11 and the high pressure water heater 12. When the reducing power of the decontamination solution deteriorated, additional reducing agent was injected. In this way, decontamination is completed. Next, the valve 23 is closed, the valve 25 is opened, and the circulating water is sent through the rinsing pipe 26 to the condensate filtration and demineralization device 6, and further to the condensate demineralization device 7 to remove Fe ions and dissolved impurities from the circulating water. Removed. Next, the water supply system was rinsed with the treated water thus purified. Check the end point of rinsing at outlet 7 of the condensate demineralizer, and check with a conductivity meter in the water supply system.
The test was completed after confirming that it was below 0.1μs/cm.

この時点で、給水加熱器の伝熱管の付着鉄クラ
ツドは、完全に除去されていた。尚、ここで、材
料の防食用不働態皮膜を形成するために、酸素注
入装置16より、酸素ガスまたは過酸化水素を注
入し、強制的に不働態皮膜を形成した。次に、酸
素注入を中止し、復水再循環ライン8および給水
再循環ライン15により給水再循環を行うことに
より、余剰分の酸素濃度を除去した。しかる後、
原子炉を起動した。以上の結果、給水系へのクラ
ツドの持ち込みを大幅に低減でき、給水加熱器の
伝熱管への汚れを除去できるので、熱効率を低下
させることなくプラントを運転できた。また、還
元剤による除染を行うことにより、配管機器の腐
食を著しく軽減できるので、プラトンの健全性を
向上できた。また、閉ループで、除染廃液を処理
できるので、廃液の系外処理の必要がなくなつ
た。
At this point, the deposited iron cladding on the feedwater heater heat transfer tubes had been completely removed. Here, in order to form a corrosion-protective passive film on the material, oxygen gas or hydrogen peroxide was injected from the oxygen injection device 16 to forcibly form a passive film. Next, the oxygen injection was stopped and the feed water was recirculated through the condensate recirculation line 8 and the feed water recirculation line 15 to remove the excess oxygen concentration. After that,
Started the reactor. As a result of the above, it was possible to significantly reduce the amount of crud brought into the water supply system, and remove dirt from the heat transfer tubes of the feedwater heater, allowing the plant to operate without reducing thermal efficiency. Additionally, by decontaminating with a reducing agent, corrosion of piping equipment could be significantly reduced, improving the health of Plato. Furthermore, since the decontamination waste liquid can be processed in a closed loop, there is no need to process the waste liquid outside the system.

第5図は、酸化鉄をペレツト状にしたものを1
時間溶解した溶解鉄の量を示している。図中、●
印で示した例は従来の有機酸とキレート剤との混
合除染剤を用いたものである。実線で示したもの
は本発明の実施例であり、0.002規定の還元剤を
用いた場合、PH6以下において、α−Fe2O3に対
する著しい還元効果が認められた。また、破線で
示したものは本発明の他の実施例であり、0.002
規定の還元剤を用いた場合であり、PH6以下にお
いて、Fe3O4に対する著しい還元効果が認められ
た。これらの実施例から還元剤の効果的なPHの範
囲は4〜7であることがわかつた。一方、還元剤
における鉄の自然電位は約−1.0Vあり、平衡電
位約−0.7Vより低いため、還元剤中では鉄の腐
食は生じないことを示している。
Figure 5 shows 1 pellet of iron oxide.
It shows the amount of molten iron dissolved over time. In the figure,●
The example shown with a mark uses a conventional mixed decontamination agent of an organic acid and a chelating agent. The solid line shows an example of the present invention, and when a 0.002 normal reducing agent was used, a remarkable reducing effect on α-Fe 2 O 3 was observed at pH 6 or lower. Moreover, what is shown by a broken line is another example of the present invention, and 0.002
This is a case where a specified reducing agent was used, and a remarkable reducing effect on Fe 3 O 4 was observed at pH 6 or lower. From these Examples, it was found that the effective pH range of the reducing agent was 4-7. On the other hand, the natural potential of iron in the reducing agent is approximately -1.0V, which is lower than the equilibrium potential of approximately -0.7V, indicating that iron corrosion does not occur in the reducing agent.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、給水加熱器伝熱管へのクラツ
ド付着を除去できるので、給水水質の安定化と伝
熱効率の低下を抑制する効果がある。
According to the present invention, since crud adhesion to the feed water heater heat transfer tube can be removed, there is an effect of stabilizing the quality of the feed water and suppressing a decrease in heat transfer efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は沸騰水型原子面プラントの復水給水系
の概要を示す図、第2図は給水系の鉄クラツドの
付着傾向を示す特性図、第3図は伝熱管の表面の
付着クラツドの形態図、第4図は本発明の一実施
例になる洗浄装置を適用したプラントの概略図、
第5図は還元剤によるクラツドの溶解特性を示す
図である。 1……原子炉、6……復水ろ過脱塩装置、7…
…復水脱塩装置、10……低圧給水加熱器、12
……高圧給水加熱器、27……除染剤(還元剤)
注入タンク、22……除染用循環ポンプ、16…
…酸素注入装置、26……循環水リンス用配管。
Figure 1 is a diagram showing an overview of the condensate water supply system of a boiling water type atomic surface plant, Figure 2 is a characteristic diagram showing the adhesion tendency of iron crud in the water supply system, and Figure 3 is a diagram showing the adhesion tendency of iron crud on the surface of heat transfer tubes. Fig. 4 is a schematic diagram of a plant to which a cleaning device according to an embodiment of the present invention is applied;
FIG. 5 is a diagram showing the dissolution characteristics of the cladding by a reducing agent. 1... Nuclear reactor, 6... Condensate filtration desalination equipment, 7...
...Condensate desalination equipment, 10...Low pressure feed water heater, 12
...High pressure water heater, 27...Decontamination agent (reducing agent)
Injection tank, 22... Decontamination circulation pump, 16...
...Oxygen injection device, 26... Piping for circulating water rinse.

Claims (1)

【特許請求の範囲】[Claims] 1 (a)沸騰水型原子力プラントにおける給水加熱
器の下流側配管から分岐し、これを該給水加熱器
上流側に接続してなる閉ループの配管であつて、
かつ該配管の一部に循環用ポンプを備えた除染用
循環配管、(b)前記循環配管中の循環水中へ除染剤
としての還元剤を注入するために該循環配管の一
部に設けられた還元剤注入装置及び(c)前記循環配
管から分岐し、かつ復水ろ過脱塩装置上流側配管
に接続してなる循環水リンス用配管を含むことを
特徴とする沸騰水型原子力プラントにおける給水
加熱器の洗浄装置。
1 (a) A closed-loop piping branched from the downstream piping of a feedwater heater in a boiling water nuclear power plant and connected to the upstream side of the feedwater heater,
and (b) a decontamination circulation pipe equipped with a circulation pump in a part of the circulation pipe, (b) a part of the circulation pipe provided in order to inject a reducing agent as a decontamination agent into the circulating water in the circulation pipe. and (c) a circulating water rinsing pipe branched from the circulation pipe and connected to the upstream pipe of the condensate filtration and desalination equipment. Cleaning equipment for water heaters.
JP57188964A 1982-10-29 1982-10-29 Cleaning device of feedwater heater Granted JPS5979193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57188964A JPS5979193A (en) 1982-10-29 1982-10-29 Cleaning device of feedwater heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57188964A JPS5979193A (en) 1982-10-29 1982-10-29 Cleaning device of feedwater heater

Publications (2)

Publication Number Publication Date
JPS5979193A JPS5979193A (en) 1984-05-08
JPS642919B2 true JPS642919B2 (en) 1989-01-19

Family

ID=16233008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57188964A Granted JPS5979193A (en) 1982-10-29 1982-10-29 Cleaning device of feedwater heater

Country Status (1)

Country Link
JP (1) JPS5979193A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4668265A (en) * 1985-06-18 1987-05-26 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy and method of making fibers
US4668266A (en) * 1985-06-18 1987-05-26 Owens-Corning Fiberglas Corporation Corrosion resistant cobalt-base alloy having a high chromium content and method of making fibers

Also Published As

Publication number Publication date
JPS5979193A (en) 1984-05-08

Similar Documents

Publication Publication Date Title
TWI503845B (en) Chemical decontamination method of carbon steel components in nuclear power plant
JP2016161466A (en) Method of suppressing sticking of radioactive nuclide on atomic power plant constitution member
JP2012247322A (en) Method for forming platinum film on plant component
JP3149738B2 (en) Boiling water nuclear power plant and operating method thereof
JPS63103999A (en) Method and device for inhibiting adhesion of radioactive substance
JP5377147B2 (en) Method of forming nickel ferrite film on carbon steel member
US5517539A (en) Method of decontaminating a PWR primary loop
JPS642919B2 (en)
JP7132162B2 (en) Corrosion suppression method for carbon steel piping
JP6322493B2 (en) Method for suppressing radionuclide adhesion to carbon steel components in nuclear power plants
JPH055077B2 (en)
JPS60201296A (en) Reducer for radiation dose
JP2015028432A (en) Method for chemically decontaminating carbon steel members of nuclear power plant
JPS63149598A (en) Oxidation processing method after chemical decontamination of nuclear power plant
JP7475171B2 (en) Chemical decontamination method and chemical decontamination apparatus
JP2019108600A (en) Corrosion suppressing method of carbon steel member of plant
JPS61245093A (en) Feedwater system of nuclear power generating plant
JP2023161666A (en) Chemical decontamination method for carbon steel member of nuclear power plant
JP2000162383A (en) Operation method for reactor power plant
JP4349956B2 (en) Operation method of residual heat removal system
JPH0479439B2 (en)
JP3266485B2 (en) Boiling water nuclear power plant, method of operating the same, and method of forming oxide film on wetted surface of its component
JPS60201298A (en) Nuclear power plant
JPH03267797A (en) Nuclear reactor stopping method
JP2024014833A (en) Improved method for treating metal part of primary circuit of water-cooled nuclear reactor