JPH03267797A - Nuclear reactor stopping method - Google Patents

Nuclear reactor stopping method

Info

Publication number
JPH03267797A
JPH03267797A JP2064006A JP6400690A JPH03267797A JP H03267797 A JPH03267797 A JP H03267797A JP 2064006 A JP2064006 A JP 2064006A JP 6400690 A JP6400690 A JP 6400690A JP H03267797 A JPH03267797 A JP H03267797A
Authority
JP
Japan
Prior art keywords
reactor
primary cooling
water
nuclear reactor
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2064006A
Other languages
Japanese (ja)
Other versions
JP2874943B2 (en
Inventor
Yoshitaka Nishino
由高 西野
Toshio Sawa
俊雄 沢
Takayuki Matsumoto
隆行 松本
Katsumi Osumi
大角 克巳
Naoshi Usui
直志 碓井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP2064006A priority Critical patent/JP2874943B2/en
Publication of JPH03267797A publication Critical patent/JPH03267797A/en
Application granted granted Critical
Publication of JP2874943B2 publication Critical patent/JP2874943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To reduce the radiation exposure of periodic inspection operators greatly by injecting at least one of hydrogen gas, a complexing agent, and a reducing agent into primary cooling water before cooling, and dissolving and removing radioactive materials. CONSTITUTION:Steam generated by a nuclear reactor 1 is condensed 3 into water after a turbine 2 is rotated, sent to a condensate filter 5 by a condensate pump 4, and passed through a condensate demineralizer 6 to remove an iron clad and impurity gold ions from it. Then the condensate is fed to the nuclear reactor 1 by a feed water pump 7 through a feed water heater 8, part of it flows in a nuclear reactor water recirculation system, and further part of it is purified by a reactor water purifying device 10 and circulated to the nuclear reactor 1. At this time, an injecting device 12 for the hydrogen gas, complexing agent, or reducing agent is installed in the nuclear reactor water recirculation system and when the nuclear reactor 1 is at a stop, the hydrogen gas, complexing agent, or reducing agent is injected into the primary cooling water. Consequently, radioactive ions generated by the oxidized film dissolution of the nuclear reactor water recirculation system and purification system are removed by the device from the primary cooling water.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子炉の停止方法に関するものであり、特に
、原子炉水再循環系及び原子炉水浄化系配管の配管表面
線量率を低減させる原子炉停止法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for shutting down a nuclear reactor, and in particular, a method for reducing the pipe surface dose rate of reactor water recirculation system and reactor water purification system piping. Regarding the nuclear reactor shutdown law.

〔従来の技術〕[Conventional technology]

原子力発電プラントの一次冷却水が接する配管・機器等
の接水表面には、放射性物質を含む酸化皮膜が形成され
、配管表面線量率を高とる原因となっている。特に、原
子炉水再循環系及び原子炉水浄化系配管の配管表面線量
率が高くなると、原子炉を停止し年1回程度行われる定
期点検時に、作業員が受ける放射線量(被爆放射線量)
の上昇をもたらし、その低減が重要な課題である。
An oxide film containing radioactive substances is formed on the water-contact surfaces of piping, equipment, etc. that come into contact with the primary cooling water of nuclear power plants, causing high dose rates on piping surfaces. In particular, when the surface dose rate of the reactor water recirculation system and reactor water purification system piping increases, the amount of radiation that workers receive (exposure radiation dose) during periodic inspections that are performed approximately once a year after shutting down the reactor.
, and its reduction is an important issue.

この配管表面線量率には、定常出力運転時の一次冷却水
の放射能濃度のほかにも、定期点検直前の原子炉停止操
作が大きく影響する。これは、原子炉停止操作に伴う急
激な炉圧及び温度の変化が、燃料被覆管表面に付着して
いる、放射性物質を多量に含むクラッドの剥離、及び放
射性イオンの溶解を促進するためである。
In addition to the radioactivity concentration of the primary cooling water during steady-state operation, the pipe surface dose rate is greatly influenced by the reactor shutdown operation immediately before periodic inspections. This is because the rapid changes in reactor pressure and temperature associated with reactor shutdown operations promote the peeling off of the cladding, which contains large amounts of radioactive materials, adhering to the surface of the fuel cladding tubes, and the dissolution of radioactive ions. .

特に、急激な炉圧の低下は、バブル(気泡)の発生とバ
ブル体積の増加による燃料被覆管表面の付着クラッドの
剥離を促進する。燃料被覆管表面の付着クラッドの剥離
により発生した放射能は、原子炉水再循環系及び原子炉
水浄化系配管の接水表面に付着し、配管表面線量率の上
昇をもたらす。燃料被覆管表面の付着クラッドは、配管
材料等の腐食により、一次冷却水中に含まれるクラッド
(主に鉄の酸化物及び水酸化物)と金属イオンが付着・
析出したものであり、配管表面に形成された酸化皮膜に
比べると剥離しやすい。
In particular, a rapid decrease in furnace pressure promotes the generation of bubbles and the increase in bubble volume, which promotes the peeling off of the cladding adhered to the surface of the fuel cladding tube. Radioactivity generated by the peeling of the adhering cladding on the surface of the fuel cladding tube adheres to the water contact surfaces of the reactor water recirculation system and reactor water purification system piping, resulting in an increase in the piping surface dose rate. The deposited crud on the surface of the fuel cladding tube is caused by the adhesion of crud (mainly iron oxides and hydroxides) and metal ions contained in the primary cooling water due to corrosion of piping materials, etc.
It is a precipitated substance that peels off more easily than the oxide film formed on the pipe surface.

日本原子力学会「昭63秋の大会」要旨集、J18.第
■分冊第142頁(1988)によると、原子炉停止時
に燃料棒近傍でのボイド上昇速度を抑える操作を行うこ
とで、燃料被覆管表面の付着クラッドの剥離を抑制でき
るとしている。同文献では、炉水温度降下速度を15℃
/hr以下と低く一定とする方法、及び上記方法に加え
て炉圧を50 kg / cm’で3時間保持する方法
、の二種類の原子炉停止法が示されている。
Atomic Energy Society of Japan "Autumn Conference of 1986" Abstracts, J18. According to Vol. 1, page 142 (1988), it is possible to suppress the peeling of the cladding adhered to the surface of the fuel cladding by performing operations to suppress the rate of rise of voids near the fuel rods when the reactor is shut down. In the same document, the reactor water temperature drop rate is 15℃.
Two methods for shutting down the nuclear reactor are shown: a method in which the reactor pressure is maintained low and constant at 50 kg/cm' or less for 3 hours, and a method in which the reactor pressure is maintained at 50 kg/cm' for 3 hours in addition to the above method.

後者の方法では、燃料被覆管表面の付着クラッドの剥離
に伴う60Co放射能の発生量が、5Ciから2Ciま
で低減できたことが示されている。
It has been shown that the latter method was able to reduce the amount of 60Co radioactivity generated due to peeling off of the cladding adhered to the surface of the fuel cladding tube from 5Ci to 2Ci.

しかし、依然として原子炉停止操作によって放射能が上
昇し、そのことは配管表面線量率を定常出力運転時より
も、上昇させてしまうという問題が残る。定期点検時に
配管表面線量率を、定常出力運転時と同等またはそれ以
下にするためには、既に配管表面に形成されている放射
性物質を含む酸化皮膜から、放射性物質を原子炉停止操
作にともない除去する必要がある。
However, there still remains the problem that radioactivity increases due to reactor shutdown operations, which causes the pipe surface dose rate to be higher than during steady power operation. In order to make the pipe surface dose rate equal to or lower than that during regular power operation during periodic inspections, radioactive materials must be removed from the oxide film containing radioactive materials that has already formed on the pipe surface during reactor shutdown operations. There is a need to.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、燃料被覆管表面の付着クラッドの剥離
を抑制することにはある程度の効果をもつが、原子炉停
止操作にともない既に配管表面に形成されている放射性
物質を含む酸化皮膜から、放射性物質を除去することは
考慮されていない。
The above-mentioned conventional technology is effective to some extent in suppressing the peeling of adhering cladding on the surface of fuel cladding tubes, but radioactive No consideration is given to removing substances.

本発明は、原子炉停止操作にともない、燃料被覆管表面
の付着クラッドの剥離を抑制するとともに、原子炉水再
循環系及び原子炉水浄化系配管の接水表面に形成されて
いる、放射性物質を除去することを目的としており、さ
らには配管表面線量率を従来より低減することで、定期
点検時の作業員が受ける放射線量を低減することを目的
とする。
The present invention suppresses the peeling of adhering cladding on the surface of fuel cladding tubes during reactor shutdown operations, and prevents radioactive substances formed on the water-contact surfaces of reactor water recirculation system and reactor water purification system piping. The aim is to reduce the radiation dose received by workers during periodic inspections by reducing the radiation dose rate on the surface of pipes compared to conventional methods.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するた島に、本発明では、原子炉停止操
作において、一次冷却水が冷却される前に、水素ガス、
錯化剤又は還元剤の少なくとも1つを一次冷却水中に注
入し、溶解した放射性物質を原子炉水浄化装置で除去す
ることを特徴とする原子炉停止法とし、また、原子炉停
止操作において、原子炉内の圧力をその炉水温度での飽
和蒸気圧よりも高く維持すると共に、水素ガス、錯化剤
又は還元剤の少なくとも1つを一次冷却水中に注入し、
溶解した放射性物質を原子炉水浄化装置で除去すること
を特徴とする原子炉停止法とし、また、原子炉停止操作
において、出力を低下させ原子炉水温度が80℃以下の
温度になるまでの間に、一次冷却水を還元雰囲気に少な
くても1時間以上維持し、溶解した放射性物質を原子炉
水浄化装置で除去することを特徴とする原子炉停止法と
し、更に、原子炉停止操作において、出力を低下させ原
子炉水温度が80℃以下の温度になるまでの間に、原子
炉内の水素ガス分圧を少なくても1時間以上の間0.1
 kg / ctn2以上にし、溶解した放射性物質を
原子炉水浄化装置で除去することを特徴とする原子炉停
止法としたものである。
In order to achieve the above object, the present invention provides hydrogen gas,
A nuclear reactor shutdown method characterized by injecting at least one of a complexing agent or a reducing agent into primary cooling water and removing dissolved radioactive substances with a reactor water purification device, and in the reactor shutdown operation, Maintaining the pressure within the reactor higher than the saturated vapor pressure at the reactor water temperature, and injecting at least one of hydrogen gas, a complexing agent, or a reducing agent into the primary cooling water;
The reactor shutdown method is characterized by removing dissolved radioactive materials with a reactor water purification system, and in the reactor shutdown operation, the power is reduced until the reactor water temperature drops to 80℃ or less. In the meantime, the reactor shutdown method is characterized by maintaining the primary cooling water in a reducing atmosphere for at least one hour or more, and removing dissolved radioactive materials with a reactor water purification system. , the hydrogen gas partial pressure inside the reactor is reduced to 0.1 for at least 1 hour before the power is reduced and the reactor water temperature reaches 80°C or below.
kg/ctn2 or higher, and the dissolved radioactive materials are removed by a reactor water purification system.

上記のように、本発明は、原子炉停止操作において、原
子炉内の圧力をその炉水温度での飽和蒸気圧よりも高く
維持し、炉水の沸騰を抑えることで、燃料被覆管表面に
付着しているクラッドの剥離を抑制するとともに、水素
ガスまたは錯化剤または還元剤の少なくても1つを一次
冷却水中に注入し、原子炉水再循環系及び原子炉水浄化
系配管の接水表面に形成された放射性物質を含む酸化皮
膜の溶解を促進し、溶解した放射性物質を原子炉水浄化
装置で除去し、配管表面線量率を低減させる原子炉停止
方法である。
As described above, the present invention maintains the pressure inside the reactor higher than the saturated steam pressure at the reactor water temperature during reactor shutdown operations, and suppresses boiling of the reactor water, thereby increasing the surface of the fuel cladding tube. In addition to suppressing the peeling of adhered crud, at least one of hydrogen gas, a complexing agent, or a reducing agent is injected into the primary cooling water, and connections between the reactor water recirculation system and reactor water purification system piping are This is a nuclear reactor shutdown method that promotes the dissolution of the oxide film containing radioactive substances formed on the water surface, removes the dissolved radioactive substances with a reactor water purification system, and reduces the pipe surface dose rate.

更に、好適な本発明の態様は、原子炉停止操作において
、原子炉内の圧力を少なくても3時間以上その炉水温度
での飽和蒸気圧よりも高く維持し、かつ一次冷却水温度
を200℃以上に3時間以上保持し、水素ガスを一次冷
却水中に注入すると共に、200℃以下では炉水冷却速
度を30℃/hr以下とするとともに錯化剤または還元
剤の少なくても一方を一次冷却水中に注入し、原子炉水
再循環系及び原子炉水浄化系配管及び機器の接水表面に
形成された放射性物質を含む酸化皮膜の溶解を促進し、
溶解した放射性物質を原子炉水浄化装置で除去し配管表
面線量率を低減させる原子炉停止法である。
Furthermore, a preferred aspect of the present invention is to maintain the pressure inside the reactor higher than the saturated steam pressure at the reactor water temperature for at least 3 hours during the reactor shutdown operation, and to maintain the primary cooling water temperature at 200°C. ℃ or higher for 3 hours or more, hydrogen gas is injected into the primary cooling water, and when the temperature is below 200℃, the reactor water cooling rate is set to 30℃/hr or less, and at least one of the complexing agent or reducing agent is injected into the primary cooling water. Injected into cooling water to promote the dissolution of oxide films containing radioactive materials formed on water-contact surfaces of reactor water recirculation system and reactor water purification system piping and equipment.
This is a reactor shutdown method that removes dissolved radioactive materials using a reactor water purification system and reduces the pipe surface dose rate.

本発明において、錯化剤としては、具体的には例えば、
エチレンジアミン四酢! (EDTAと略称される) 
アセチルアセトン、ジチゾン、2.2′−ジピリジル、
エチレンジアミン、8−ヒドロキシキノリン、1.10
−フェナントロリン、N、N’−ジ(2−アミノエチル
)エチレンジアミン、(Trienと略称される) 、
2.2′・2=−)リアミノトリエチルアミン(Tre
n11!:Q称される) シアン化物、しゅう酸塩、オ
キシ酸塩、アミノ酸塩、ピコリン酸塩等のうちから選択
され、また、還元剤としては、具体的には例えば、クロ
ム三価イオン、バナジウム三価イオン、銅一価イオン、
鉄二価イオン、チタン三価イオン、ニオブ三価イオン、
モリブデン三価イオン、モリブデン四価イオンのうちか
ら選択される。
In the present invention, the complexing agent is specifically, for example,
Ethylenediamine four vinegar! (abbreviated as EDTA)
acetylacetone, dithizone, 2,2'-dipyridyl,
Ethylenediamine, 8-hydroxyquinoline, 1.10
-phenanthroline, N,N'-di(2-aminoethyl)ethylenediamine, (abbreviated as Trien),
2.2'・2=-) riaminotriethylamine (Tre
n11! The reducing agent is selected from cyanide, oxalate, oxyacid, amino acid salt, picolinate, etc., and the reducing agent is specifically, for example, chromium trivalent ion, vanadium trivalent ion, etc. valent ions, monovalent copper ions,
divalent iron ion, trivalent titanium ion, trivalent niobium ion,
Selected from trivalent molybdenum ions and tetravalent molybdenum ions.

更に、本発明においては、一次冷却水の流通する配管又
は装置と、一次冷却水との間に電圧を印加して通電する
ことにより、冷却水を還元雰囲気にでき、酸化皮膜の溶
解を促進することができる。
Furthermore, in the present invention, by applying a voltage and energizing between the piping or device through which the primary cooling water flows and the primary cooling water, the cooling water can be made into a reducing atmosphere, which promotes the dissolution of the oxide film. be able to.

〔作 用〕[For production]

燃料被覆管表面に付着しているクラッドの剥離を抑制す
るためには、バブル(気泡)の発生を抑えることが最も
効果的である。原子炉停止時には、炉圧の低下によりバ
ブルが発生しやすい上、発生するバブルは温度低下に伴
う圧力の低下で体積が膨張し、炉水中の上昇速度が大幅
に増大する。バブルの上昇速度の増加は、燃料被覆管表
面付近の炉水の流れを乱すと共に燃料被覆管表面との剪
断力を増し、その表面の付着クラッドの剥離を促進する
In order to suppress the peeling of the cladding attached to the surface of the fuel cladding tube, it is most effective to suppress the generation of bubbles. When a nuclear reactor is shut down, bubbles are likely to be generated due to the drop in reactor pressure, and the bubbles that are generated expand in volume due to the drop in pressure associated with the drop in temperature, significantly increasing the rate of rise in reactor water. An increase in the rising speed of the bubbles disturbs the flow of reactor water near the surface of the fuel cladding tube, increases the shearing force with the surface of the fuel cladding tube, and promotes separation of the cladding adhered to the surface.

本発明は、原子炉停止操作により原子炉圧及び炉水温度
を低下させる間に、炉圧をその炉水温度における飽和蒸
気圧よりも高く維持することで、バブルの発生を抑制す
る作用を有する。
The present invention has the effect of suppressing the generation of bubbles by maintaining the reactor pressure higher than the saturated steam pressure at the reactor water temperature while reducing the reactor pressure and reactor water temperature by reactor shutdown operations. .

炉圧を飽和蒸気圧よりも高く保持する時間は、理想的に
は原子炉停止操作開始から、飽和蒸気圧が大気圧以下に
なる炉水温度100℃以下までが望ましい。もちろん、
その保持時間は短時間でもそれに見合った効果を発揮す
るが、飽和蒸気圧まで炉圧を低下する際に、バブルの発
生を加速するマイナス因子があることから、少なくとも
3時間以上は炉圧を飽和蒸気圧以上に保持する必要があ
る。また、単位時間当たりのバブルの発生量(バブル発
生速度)を低く抑えるためには、炉圧の低下速度をでき
るかぎり低くすることが望ましい。
Ideally, the time period for which the reactor pressure is maintained higher than the saturated steam pressure is from the start of the reactor shutdown operation until the reactor water temperature is 100° C. or lower, at which the saturated steam pressure becomes lower than the atmospheric pressure. of course,
Even if the holding time is short, the effect is commensurate with that, but since there is a negative factor that accelerates the generation of bubbles when reducing the furnace pressure to the saturated vapor pressure, it is necessary to saturate the furnace pressure for at least 3 hours. Must be maintained above vapor pressure. Furthermore, in order to keep the amount of bubbles generated per unit time (bubble generation rate) low, it is desirable to reduce the rate of decrease in furnace pressure as low as possible.

さらに本発明は、原子炉停止操作に伴って、原子炉水再
循環系及び原子炉水浄化系配管表面に形成された放射性
酸化皮膜を選択的に溶解し、溶解した放射性イオンを原
子炉水浄化装置で除去することで、配管表面線量率を低
減する作用を有する。放射能の源である燃料被覆管表面
の付着クラッドの溶解をできるだけ促進せずに、原子炉
水再循環系及び原子炉水浄化系配管表面の酸化皮膜の溶
解を選択的に促進するためには、付着クラッド及び酸化
皮膜の結晶形態(化学形態)の違いに基づく、溶解度(
溶解速度)の違いを活用できる一次冷却水の通境を形成
する。
Furthermore, the present invention selectively dissolves the radioactive oxide film formed on the surface of the reactor water recirculation system and reactor water purification system pipes during reactor shutdown operations, and uses the dissolved radioactive ions to purify the reactor water. By removing it with a device, it has the effect of reducing the pipe surface dose rate. In order to selectively promote the dissolution of the oxide film on the surface of the reactor water recirculation system and reactor water purification system piping, without promoting the dissolution of the adhered cladding on the surface of the fuel cladding tube, which is the source of radioactivity, as much as possible. , the solubility (
Forms a primary cooling water passageway that can take advantage of differences in dissolution rate).

一般に、原子炉水再循環系及び原子炉水浄化系の配管や
機器に形成される酸化皮膜は、マグネタイト (Fe、
04)とへマタイト (αFe2D3)に大別される。
Generally, the oxide film formed on the piping and equipment of the reactor water recirculation system and the reactor water purification system is magnetite (Fe,
04) and hematite (αFe2D3).

放射性物質(例えば”CO+ ”Co)は、これらマグ
ネタイトやヘマタイトの結晶中に取り込まれるが、その
量は極微量なため溶解特性はマグネタイトやヘマタイト
の溶解によって決まる。これら酸化物の純水中での溶解
は、次の反応式によって表される。
Radioactive substances (for example, "CO+" Co) are incorporated into these magnetite and hematite crystals, but since the amount is extremely small, the dissolution characteristics are determined by the dissolution of the magnetite and hematite. The dissolution of these oxides in pure water is expressed by the following reaction formula.

FeJ4+88”+ 2e−→3Fe”+ 4820 
 −  (1)Fez03+68”+2e−→2Fe”
+3820  −  (2)すなわち、マグネタイト及
びヘマタイトの溶解は、プロトン(H“)と電子(e−
)の供与をうける還元反応として進む。従って、一次冷
却水を還元雰囲気にする原子炉停止操作により、配管表
面の酸化皮膜の溶解を促進し配管表面線量率を低減する
ことができる。原子炉停止時に〔1)及び(2)式の還
元反応を促進するためには、上記のクロム二価イオン(
Cr”)、バナジウム二価イオン(■2+)などの還元
剤、またはEDTA、ピコリン酸などの錯化剤を一次冷
却水中に注入することで可能である。特に還元剤はその
効果が大きいが、Cr2+やv2+は、pl(< 7で
はV”/V”、Cr3+/Cr2+の酸化還元電位が水
より卑なため、目的とする酸化皮膜ではなく溶媒である
水を還元してしまう。これを防止するた約には、錯化剤
も添加しキレート化、例えばFe”/ E D T A
 。
FeJ4+88"+ 2e-→3Fe"+ 4820
- (1) Fez03+68"+2e-→2Fe"
+3820 − (2) That is, the dissolution of magnetite and hematite involves protons (H”) and electrons (e-
) proceeds as a reduction reaction. Therefore, by performing a reactor shutdown operation in which the primary cooling water is brought into a reducing atmosphere, it is possible to promote dissolution of the oxide film on the pipe surface and reduce the pipe surface dose rate. In order to promote the reduction reactions of formulas [1) and (2) during reactor shutdown, the above divalent chromium ions (
This can be done by injecting a reducing agent such as Cr''), divalent vanadium ion (■2+), or a complexing agent such as EDTA or picolinic acid into the primary cooling water.Reducing agents are particularly effective, but Cr2+ and v2+ reduce the oxidation-reduction potential of pl (V"/V" when < 7, Cr3+/Cr2+ is less than water, so they reduce the solvent water instead of the desired oxide film. This can be prevented. In addition, a complexing agent is also added to form a chelate, e.g.
.

Cr”/ビピリジル、v2+/ピコリン酸塩とすること
がさらに効果的である。
It is more effective to use Cr''/bipyridyl and v2+/picolinate.

一方、燃料被覆管表面に付着しているクラッドは、近年
の二重の復水浄化装置を採用している沸騰水型原子炉で
は、90%以上がニッケルフェライト(N+FezL)
である。このニッケルフェライトの溶解は次式で表され
る。
On the other hand, in recent boiling water reactors that employ double condensate purification devices, more than 90% of the cladding attached to the surface of the fuel cladding is nickel ferrite (N+FezL).
It is. The dissolution of this nickel ferrite is expressed by the following equation.

N+FeJ< +88” + 2e −Ni”  +  2Fe”  +  4)+20  
−   (3)すなわち、ニッケルフェライトの溶解も
(1)弐及び(2)式と同様に還元反応である。従って
、還元剤または錯化剤の添加により、その溶解が加速さ
れる。しかし、ニッケルフェライトの溶解速度は、マグ
ネタイト及びヘマタイトのそれに比べるとはるかに小さ
い。一般にこれらの溶解速度は次式のようになる。
N+FeJ<+88" + 2e -Ni" + 2Fe" + 4) +20
- (3) That is, the dissolution of nickel ferrite is also a reduction reaction similar to (1) II and (2) equations. Therefore, the addition of a reducing agent or complexing agent accelerates its dissolution. However, the dissolution rate of nickel ferrite is much lower than that of magnetite and hematite. Generally, these dissolution rates are as shown in the following equation.

FeJ、>  a−Fe*Gs>  N1Pex04 
 −・・  (4)例えば、E D T A O,1m
ol/ 1.60℃、pH=5の溶液中では、ニッケル
フェライトの溶解速度を1とすると、ヘマタイトは75
、マグネタイトでは100となる。従って、燃料被覆管
表面に付着したクラッドをほとんど溶解させずに、原子
炉水再循環系及び原子炉水浄化系の配管や機器表面の酸
化皮膜の溶解を大幅に促進し、配管表面線量率を低減す
ることが可能となる。
FeJ,>a-Fe*Gs> N1Pex04
-... (4) For example, E D T A O, 1m
ol/1. In a solution at 60°C and pH = 5, if the dissolution rate of nickel ferrite is 1, hematite is 75
, for magnetite it is 100. Therefore, it greatly promotes the dissolution of the oxide film on the surface of piping and equipment in the reactor water recirculation system and the reactor water purification system, while hardly dissolving the crud attached to the surface of the fuel cladding tube, thereby reducing the dose rate on the piping surface. It becomes possible to reduce the amount.

また、一次冷却水を還元雰囲気にしく1)及び〔2〕式
の反応を促進する別の方法としては、配管または機器を
カソードとし、一次冷却水中にアノードを配置し、電圧
を印加し通電することで、配管表面等の酸化皮膜をカソ
ード分極させて溶解させる方法がある。溶解したFe’
+等をFe 2 + /EDTAなどのキレート化する
ために、錯化剤を一次冷却水中に注入させて通電するの
がさらに効果的である。
Another method of creating a reducing atmosphere in the primary cooling water and promoting the reactions of formulas 1) and [2] is to use piping or equipment as a cathode, place an anode in the primary cooling water, and apply a voltage to energize it. Therefore, there is a method of dissolving the oxide film on the surface of the piping by cathodically polarizing it. Dissolved Fe'
In order to chelate + and the like with Fe 2 + /EDTA, it is more effective to inject a complexing agent into the primary cooling water and energize it.

ほかに、原子炉水再循環系及び原子炉水浄化系の配管や
、機器表面の酸化皮膜の溶解を促進する方法としては、
一次冷却水中に水素ガスを注入する方法がある。後述の
実施例として詳述するが、水素ガスを水中に圧入させる
ことで還元雰囲気を形成し、還元反応である酸化皮膜の
溶解を促進することができる。第10図に示すように、
水素ガス圧入の溶解促進効果は高温はど大きく、200
℃では約4倍となる。
In addition, methods for promoting the dissolution of oxide films on the piping and equipment surfaces of the reactor water recirculation system and the reactor water purification system include:
There is a method of injecting hydrogen gas into the primary cooling water. As will be described in detail as an example below, by pressurizing hydrogen gas into water, a reducing atmosphere can be formed and the dissolution of the oxide film, which is a reduction reaction, can be promoted. As shown in Figure 10,
The dissolution promoting effect of hydrogen gas injection is greater at high temperatures;
At ℃, it is about 4 times as large.

〔実施例〕〔Example〕

以下に本発明の実施例について詳述する。 Examples of the present invention will be described in detail below.

実施例1 本実施例は、原子炉停止操作にともなって、水素ガス、
錯化剤または還元剤を一次冷却水中に注入し、原子炉水
再循環系及び原子炉水浄化系の配管や機器表面の酸化皮
膜の溶解を促進する実施例である。
Example 1 In this example, hydrogen gas,
This is an example in which a complexing agent or a reducing agent is injected into the primary cooling water to promote dissolution of oxide films on the surfaces of piping and equipment in the reactor water recirculation system and the reactor water purification system.

第1図は、水素ガス、錯化剤または還元剤の注入装置を
有する沸騰水型原子力発電プラントの一次冷却水循環系
統を示す模式図である。原子炉1で発生した蒸気はター
ビン2を回転させる仕事を行った後、復水器3にふいて
凝縮し復水となる。この復水は、復水ポンプ4によって
復水ろ過器5へ送られ、さらに復水脱塩器6を通過する
ことにより、その中に含まれる鉄クラツドと不純物金属
イオンの除去が行われる。さらに給水ポンプ7により、
圧送され数段に配置された給水ヒーター8を通過するこ
とにより加熱され、原子炉1へと給水される。原子炉内
の炉水の一部は、原子炉水再循環系を流通し、再循環ポ
ンプ9により原子炉1との間で循環し、さらにその一部
は原子炉水浄化系へと導かれ、炉水浄化装置10で浄化
された後、CUWポンプ11によって原子炉1へと循環
する。
FIG. 1 is a schematic diagram showing a primary cooling water circulation system of a boiling water nuclear power plant having an injection device for hydrogen gas, a complexing agent, or a reducing agent. After the steam generated in the nuclear reactor 1 performs the work of rotating the turbine 2, it is blown into the condenser 3 and condensed to become condensed water. This condensate is sent to a condensate filter 5 by a condensate pump 4, and further passes through a condensate demineralizer 6 to remove iron cladding and impurity metal ions contained therein. Furthermore, the water supply pump 7
Water is pumped and heated by passing through feed water heaters 8 arranged in several stages, and is supplied to the nuclear reactor 1. A part of the reactor water in the reactor flows through the reactor water recirculation system, is circulated to and from the reactor 1 by the recirculation pump 9, and further part of it is guided to the reactor water purification system. After being purified by the reactor water purification system 10, it is circulated to the reactor 1 by the CUW pump 11.

上記のような一次冷却水循環系統において、原子炉水再
循環系に水素ガス、錯化剤または還元剤の注入装置12
を設置し、原子炉停止時に水素ガス、錯化剤または還元
剤を一次冷却水中に注入する。
In the primary cooling water circulation system as described above, an injection device 12 for injecting hydrogen gas, a complexing agent, or a reducing agent into the reactor water recirculation system is provided.
and inject hydrogen gas, complexing agent, or reducing agent into the primary cooling water when the reactor is shut down.

水素ガス、錯化剤または還元剤の注入装置の設置位置は
、第2図のように原子炉水再循環系の再循環ポンプの下
流でもよく、また第3図、第4図及び第5図に示すよう
に、原子炉水浄化系の原子炉水浄化装置の上流、CUW
ポンプの上流または下流でもよい。また第6図のように
、原子炉に直接注入してもよい。さらに第7図及び第8
図に示すように給水ヒーターの上流及び下流でもよい。
The installation position of the hydrogen gas, complexing agent, or reducing agent injection device may be downstream of the recirculation pump of the reactor water recirculation system as shown in Figure 2, or as shown in Figures 3, 4, and 5. As shown in the figure, upstream of the reactor water purification system, CUW
It may be upstream or downstream of the pump. Alternatively, as shown in FIG. 6, it may be directly injected into the nuclear reactor. Furthermore, Figures 7 and 8
It may be upstream and downstream of the feedwater heater as shown.

他に原子炉内に流入する一次冷却水循環系統であれば、
水素ガス、錯化剤または還元剤の注入装置はどこに配置
してもよい。
If there is another primary cooling water circulation system that flows into the reactor,
The hydrogen gas, complexing agent or reducing agent injection device may be located anywhere.

原子炉停止操作とともに、上記の水素ガス、錯化剤また
は還元剤の注入装置から、水素ガス、錯化剤または還元
剤が注入されたことにより、原子炉水再循環系及び原子
炉水浄化系の配管及び機器表面の酸化皮膜の溶解で発生
した放射性イオンは、原子炉水浄化装置10で一次冷却
水から除去される。
Along with the reactor shutdown operation, hydrogen gas, complexing agent, or reducing agent was injected from the hydrogen gas, complexing agent, or reducing agent injection device described above, and the reactor water recirculation system and reactor water purification system Radioactive ions generated by dissolving the oxide film on the piping and equipment surfaces are removed from the primary cooling water in the reactor water purification system 10.

実施例2 原子炉停止時に一次冷却水を還元雰囲気にする方法の実
施例として、配管及び機器のカソード分極法を第9図に
示す。酸化皮膜を除去したい原子炉水再循環系または原
子炉水浄化系の配管13に、それがカソードとなるよう
に直流電源14を接続し、一次冷却水中にはγノード1
5を設置する。このアノードは、絶縁性で、かつ液の透
過を許す網状のゴムまたは合成樹脂で被覆された白金線
または炭素繊維のような不溶性のアノード材からなる。
Example 2 As an example of a method for bringing primary cooling water into a reducing atmosphere during reactor shutdown, a cathode polarization method for piping and equipment is shown in FIG. 9. Connect the DC power supply 14 to the pipe 13 of the reactor water recirculation system or the reactor water purification system from which you want to remove the oxide film so that it becomes the cathode, and connect the γ node 1 to the primary cooling water.
Install 5. The anode is made of an insoluble anode material such as platinum wire or carbon fiber coated with a mesh rubber or synthetic resin that is insulating and allows liquid to pass through.

原子炉停止操作とともに、配管13の母材金属の自然電
位(腐食電位)より低い電位になるように直流電源14
から直流電源を流す。そうすると、配管13の母材は溶
解せずに、その内面の酸化皮膜のみが溶解する。酸化皮
膜の溶解で発生した放射性イオンは原子炉水浄化装置1
0で一次冷却水から除去される。
Along with the reactor shutdown operation, the DC power supply 14 is turned on so that the potential is lower than the natural potential (corrosion potential) of the base metal of the piping 13.
DC power is applied from the In this case, the base material of the pipe 13 is not dissolved, but only the oxide film on the inner surface thereof is dissolved. Radioactive ions generated by the dissolution of the oxide film are transferred to the reactor water purification system 1.
removed from the primary cooling water at 0.

実施例3 本発明に基づいて実験検討を行った実施例について説明
する。
Example 3 An example in which experimental studies were conducted based on the present invention will be described.

第10図は、オートクレーブ内の純水中にマグネタイ)
 (Fe304)板を入れ、水素ガスを圧入した場合と
しない場合の溶解速度(単位時間、単位Fe、O,表面
積当たりのReイオンの溶解量)を測定したものである
。水素ガスの圧入量は、水素ガス分圧が5kg/cm2
となるようにした。
Figure 10 shows magnetite in pure water inside an autoclave)
(Fe304) plate was inserted, and the dissolution rate (dissolution amount of Re ions per unit time, unit Fe, O, and surface area) was measured with and without pressurizing hydrogen gas. The amount of hydrogen gas injected is hydrogen gas partial pressure of 5 kg/cm2.
I made it so that

図からも明らかなように、水素ガスを圧入した場合(図
中○印)はしなかった場合(図中△印)に比べて、マグ
ネタイトの溶解速度が相当大きい。特に、200℃以上
から定常出力運転時の炉水温度では、4〜10倍程度水
素ガス圧入時の溶解速度は大きい。
As is clear from the figure, the dissolution rate of magnetite is considerably higher when hydrogen gas is pressurized (○ mark in the figure) than when it is not injected (△ mark in the figure). In particular, at reactor water temperatures of 200° C. or higher during steady power operation, the dissolution rate during injection of hydrogen gas is about 4 to 10 times higher.

第11図は、オートクレーブ内の純水中にマグネタイ)
 (Fe30−)板を入れ、さらに錯化剤EDTA−2
NH,を0.002 mol/ 12の濃度になるよう
に入れ、溶解速度を測定した結果である。
Figure 11 shows magnetite in pure water in an autoclave)
(Fe30−) plate was added, and the complexing agent EDTA-2 was added.
These are the results of measuring the dissolution rate by adding NH to a concentration of 0.002 mol/12.

220℃以下の温度では第10図の純水中(図中△印)
に比べて、EDTAを添加したことにより100倍以上
も溶解速度が大きい。ところが、220℃以上の温度で
は、溶解速度は急激に小さくなる。これはEDTAが2
20℃以上では分解してしまうためである。
At temperatures below 220℃, use pure water as shown in Figure 10 (marked △ in the figure).
By adding EDTA, the dissolution rate is more than 100 times higher than that of EDTA. However, at temperatures above 220°C, the dissolution rate decreases rapidly. This is EDTA 2
This is because it decomposes at temperatures above 20°C.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子炉停止操作時に、原子炉内の圧力
をその炉水温度での飽和蒸気圧よりも高く維持し、炉水
の沸騰を抑えることで、燃料被覆管表面に付着している
クラッドの剥離を抑制するとともに、水素ガスまたは錯
化剤または還元剤の少なくとも1つを一次冷却水中に注
入し、原子炉水再循環系及び原子炉水浄化系配管の接木
表面に形成された放射性物質を含む酸化皮膜の溶解を促
進し、溶解した放射性物質を原子炉水浄化装置で除去す
ることで、定期点検時の配管表面線量率を低減させるこ
とができる。
According to the present invention, during a reactor shutdown operation, the pressure inside the reactor is maintained higher than the saturated steam pressure at the reactor water temperature, and boiling of the reactor water is suppressed, so that no fuel adheres to the surface of the fuel cladding tube. At least one of hydrogen gas, a complexing agent, or a reducing agent is injected into the primary cooling water to suppress the peeling of the cladding formed on the grafted surfaces of the reactor water recirculation system and reactor water purification system piping. By promoting the dissolution of the oxide film containing radioactive substances and removing the dissolved radioactive substances using a reactor water purification system, it is possible to reduce the pipe surface dose rate during periodic inspections.

従って、原子力発電プラントの定期点検作業従事者の放
射線被爆量を大幅に低減することが可能である。
Therefore, it is possible to significantly reduce the amount of radiation exposure of personnel engaged in periodic inspection work at nuclear power plants.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一例に用いる沸騰水型原子力発電プ
ラントの一次冷却水の系統図、第2図〜第8図は本発明
の一例に用いる水素ガス、錯化剤または還元剤の添加位
置を表す沸騰水型原子力発電プラントの一次冷却水の部
分系統図、第9図は本発明の一例に用いる原子炉水再循
環系及び原子炉水浄化系の配管の部分断面図、第10図
は本発明に関する水素ガス圧入にあけるマグネタイトの
溶解速度を表すグラフ、第11図は本発明に関するED
TA添加におけるマグネタイトの溶解速度を表すグラフ
である。 1:原子炉、2:タービン、3:復水器、4:復水ポン
プ、5:復水ろ過器、 6:復水脱塩器、7二給水ポンプ、 8:給水ヒーター 9:再循環ポンプ、10:炉水浄化
装置、11:CUWポンプ、12:水素ガス、錯化剤ま
たは還元剤の注入装置、 13:原子炉水再循環系または炉水浄化系の配管、 14:直流電源、15ニアノード
Figure 1 is a system diagram of the primary cooling water of a boiling water nuclear power plant used in an example of the present invention, and Figures 2 to 8 are additions of hydrogen gas, complexing agent, or reducing agent used in an example of the present invention. FIG. 9 is a partial system diagram of the primary cooling water of a boiling water nuclear power plant showing the location; FIG. 9 is a partial sectional view of the piping of the reactor water recirculation system and reactor water purification system used in an example of the present invention; FIG. 10 11 is a graph showing the dissolution rate of magnetite during hydrogen gas injection according to the present invention, and FIG. 11 is an ED concerning the present invention.
It is a graph showing the dissolution rate of magnetite in the addition of TA. 1: Reactor, 2: Turbine, 3: Condenser, 4: Condensate pump, 5: Condensate filter, 6: Condensate demineralizer, 7 Two feed water pumps, 8: Feed water heater 9: Recirculation pump , 10: Reactor water purification system, 11: CUW pump, 12: Hydrogen gas, complexing agent or reducing agent injection device, 13: Reactor water recirculation system or reactor water purification system piping, 14: DC power supply, 15 near node

Claims (1)

【特許請求の範囲】 1、原子炉停止操作において、一次冷却水が冷却される
前に、水素ガス、錯化剤又は還元剤の少なくとも1つを
一次冷却水中に注入し、溶解した放射性物質を原子炉水
浄化装置で除去することを特徴とする原子炉停止法。 2、原子炉停止操作において、原子炉内の圧力をその炉
水温度での飽和蒸気圧よりも高く維持すると共に、水素
ガス、錯化剤又は還元剤の少なくとも1つを一次冷却水
中に注入し、溶解した放射性物質を原子炉水浄化装置で
除去することを特徴とする原子炉停止法。 3、原子炉停止操作において、出力を低下させ原子炉水
温度が80℃以下の温度になるまでの間に、一次冷却水
を還元雰囲気に少なくても1時間以上維持し、溶解した
放射性物質を原子炉水浄化装置で除去することを特徴と
する原子炉停止法。 4、原子炉停止操作において、出力を低下させ原子炉水
温度が80℃以下の温度になるまでの間に、原子炉内の
水素ガス分圧を少なくても1時間以上の間0.1kg/
cm^2以上にし、溶解した放射性物質を原子炉水浄化
装置で除去することを特徴とする原子炉停止法。 5、原子炉停止操作において、原子炉内の圧力を少なく
ても3時間以上その炉水温度での飽和蒸気圧よりも高く
維持し、かつ一次冷却水温度を200℃以上に3時間以
上保持し、水素ガスを一次冷却水中に注入すると共に、 200℃以下では炉水冷却速度を30℃/hr以下とす
るとともに錯化剤または還元剤の少なくても一方を一次
冷却水中に注入し、溶解した放射性物質を原子炉水浄化
装置で除去することを特徴とする原子炉停止法。 6、請求項1、2又は5記載において、錯化剤が、エチ
レンジアミン四酢酸、アセチルアセトン、ジチゾン、2
,2′−ジピリジル、エチレンジアミン、8−ヒドロキ
シキノリン、1,10−フェナントロリン、N,N’−
ジ(2−アミノエチル)エチレンジアミン、2,2′・
2″−トリアミノトリエチルアミン、シアン化物、しゅ
う酸塩、オキシ酸塩、アミノ酸塩、ピコリン酸塩のうち
の少なくとも1つであることを特徴とする原子炉停止法
。 7、請求項1、2、3又は5記載において、還元剤が、
クロム二価イオン、バナジウム二価イオン、銅一価イオ
ン、鉄二価イオン、チタン三価イオン、ニオブ三価イオ
ン、モリブデン三価イオン、モリブデン四価イオンのう
ち少なくとも1つであることを特徴とする原子炉停止法
。 8、請求項1〜5のいずれか1項記載において、一次冷
却水の流通する配管又は装置と一次冷却水の間に、電圧
を印加することを特徴とする原子炉停止法。
[Claims] 1. In a reactor shutdown operation, before the primary cooling water is cooled, at least one of hydrogen gas, a complexing agent, or a reducing agent is injected into the primary cooling water to remove dissolved radioactive substances. A nuclear reactor shutdown method characterized by removal using a reactor water purification system. 2. During reactor shutdown operations, the pressure within the reactor is maintained higher than the saturated steam pressure at the reactor water temperature, and at least one of hydrogen gas, a complexing agent, or a reducing agent is injected into the primary cooling water. , a nuclear reactor shutdown method characterized by removing dissolved radioactive materials with a reactor water purification system. 3. During reactor shutdown operations, the primary cooling water is maintained in a reducing atmosphere for at least one hour until the power is reduced and the reactor water temperature drops to 80°C or less, and dissolved radioactive materials are removed. A nuclear reactor shutdown method characterized by removal using a reactor water purification system. 4. During reactor shutdown operations, reduce the partial pressure of hydrogen gas in the reactor to 0.1 kg/kg for at least 1 hour until the power is reduced and the reactor water temperature reaches 80°C or below.
A method of shutting down a nuclear reactor, which is characterized by reducing the amount of radioactive material to cm^2 or more and removing dissolved radioactive materials using a reactor water purification system. 5. During reactor shutdown operations, maintain the pressure inside the reactor higher than the saturated steam pressure at the reactor water temperature for at least 3 hours, and maintain the primary cooling water temperature at 200°C or higher for 3 hours or more. , hydrogen gas was injected into the primary cooling water, the reactor water cooling rate was kept below 30°C/hr at temperatures below 200°C, and at least one of the complexing agent or reducing agent was injected into the primary cooling water and dissolved. A nuclear reactor shutdown method characterized by removing radioactive materials using a reactor water purification system. 6. Claim 1, 2 or 5, wherein the complexing agent is ethylenediaminetetraacetic acid, acetylacetone, dithizone, 2
, 2'-dipyridyl, ethylenediamine, 8-hydroxyquinoline, 1,10-phenanthroline, N,N'-
Di(2-aminoethyl)ethylenediamine, 2,2'.
A nuclear reactor shutdown method characterized by at least one of 2″-triaminotriethylamine, cyanide, oxalate, oxyacid, amino acid salt, and picolinate. 7. Claims 1 and 2. In description 3 or 5, the reducing agent is
It is characterized by being at least one of divalent chromium ions, divalent vanadium ions, monovalent copper ions, divalent iron ions, trivalent titanium ions, trivalent niobium ions, trivalent molybdenum ions, and tetravalent molybdenum ions. Nuclear reactor shutdown law. 8. A nuclear reactor shutdown method according to any one of claims 1 to 5, characterized in that a voltage is applied between a pipe or device through which primary cooling water flows and the primary cooling water.
JP2064006A 1990-03-16 1990-03-16 Reactor shutdown method Expired - Lifetime JP2874943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2064006A JP2874943B2 (en) 1990-03-16 1990-03-16 Reactor shutdown method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2064006A JP2874943B2 (en) 1990-03-16 1990-03-16 Reactor shutdown method

Publications (2)

Publication Number Publication Date
JPH03267797A true JPH03267797A (en) 1991-11-28
JP2874943B2 JP2874943B2 (en) 1999-03-24

Family

ID=13245673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2064006A Expired - Lifetime JP2874943B2 (en) 1990-03-16 1990-03-16 Reactor shutdown method

Country Status (1)

Country Link
JP (1) JP2874943B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098294A (en) * 2001-09-27 2003-04-03 Hitachi Ltd Decontamination method using ozone and apparatus therefor
WO2013145691A1 (en) * 2012-03-26 2013-10-03 日本原子力発電株式会社 Radiation source reducing system and method for atomic power plant
JP2013538336A (en) * 2010-07-21 2013-10-10 アトミック エナジー オブ カナダ リミテッド Reactor decontamination method and decontamination agent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003098294A (en) * 2001-09-27 2003-04-03 Hitachi Ltd Decontamination method using ozone and apparatus therefor
JP2013538336A (en) * 2010-07-21 2013-10-10 アトミック エナジー オブ カナダ リミテッド Reactor decontamination method and decontamination agent
WO2013145691A1 (en) * 2012-03-26 2013-10-03 日本原子力発電株式会社 Radiation source reducing system and method for atomic power plant
US20150085967A1 (en) * 2012-03-26 2015-03-26 The Japan Atomic Power Company Radiation source reducing system and method for nuclear power plant
EP2833366A4 (en) * 2012-03-26 2015-11-25 Japan Atomic Power Radiation source reducing system and method for atomic power plant
JPWO2013145691A1 (en) * 2012-03-26 2015-12-10 日本原子力発電株式会社 Source reduction system and method for nuclear power plant
US9754689B2 (en) * 2012-03-26 2017-09-05 The Japan Atomic Power Company Radiation source reducing system and method for nuclear power plant

Also Published As

Publication number Publication date
JP2874943B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
EP3296999B1 (en) Adhesion method of noble metal to carbon steel material of atomic energy plant and adhesion restraint method of radionuclide to carbon steel material of atomic energy plant
JP2014044190A (en) Method for adhering noble metal to component member of nuclear power plant
JPS5851977A (en) Regeneration of chemical decontaminating liquid
JP2012247322A (en) Method for forming platinum film on plant component
JP6619717B2 (en) Method for adhering noble metals to carbon steel members of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel members of nuclear power plant
JP2011247651A (en) Ferrite film formation method to plant configuration member
JP3149738B2 (en) Boiling water nuclear power plant and operating method thereof
JPH03267797A (en) Nuclear reactor stopping method
JP2004205245A (en) Chemical decontamination method
JP2011111661A (en) Method for forming ferrite film on component of nuclear power, method for suppressing progress of stress corrosion cracking, and apparatus for forming ferrite film
JP6059106B2 (en) Chemical decontamination method for carbon steel components in nuclear power plant
JP6868545B2 (en) Corrosion control method for carbon steel parts of plants
JP2011149764A (en) Method for reducing dose of nuclear power plant component member
JP6088173B2 (en) Method for suppressing radionuclide adhesion to components of nuclear power plant
JP2021113683A (en) Method for depositing noble metal on carbon steel member of nuclear power plant and method for suppressing deposition of radioactive nuclide on carbon steel member of nuclear power plant
JP6894862B2 (en) Method for suppressing radionuclide adhesion to carbon steel components of nuclear power plants
JP7001534B2 (en) Method of suppressing adhesion of radionuclides to structural members of nuclear power plants
JPH0553400B2 (en)
JP2018100836A (en) Method of forming radioactive substance adhesion inhibit coating
JP4959196B2 (en) Nuclear power plant replacement member and nuclear power plant member handling method
JPS5983800A (en) Dissolution of iron oxide adherent on surface
JPS642919B2 (en)
WO2019102768A1 (en) Method for adhering noble metal to carbon steel member of nuclear power plant and method for suppressing radionuclide adhesion to carbon steel member of nuclear power plant
JPH0631815B2 (en) Nuclear power plant water supply system
JP2024014833A (en) Improved method for treating metal part of primary circuit of water-cooled nuclear reactor