JPS5983800A - Dissolution of iron oxide adherent on surface - Google Patents

Dissolution of iron oxide adherent on surface

Info

Publication number
JPS5983800A
JPS5983800A JP57194302A JP19430282A JPS5983800A JP S5983800 A JPS5983800 A JP S5983800A JP 57194302 A JP57194302 A JP 57194302A JP 19430282 A JP19430282 A JP 19430282A JP S5983800 A JPS5983800 A JP S5983800A
Authority
JP
Japan
Prior art keywords
piping
iron oxide
anode
dissolving
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57194302A
Other languages
Japanese (ja)
Inventor
Toshio Sawa
沢 俊男
Sankichi Takahashi
燦吉 高橋
Hisao Ito
久雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57194302A priority Critical patent/JPS5983800A/en
Publication of JPS5983800A publication Critical patent/JPS5983800A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To effectively and selectively dissolve away an iron oxide film only adherent onto piping or the like, by circulating a liquid electrolyte containing a complexing agent between the piping or the like for supplying water and a long anode provided in said piping or the like, and applying DC between the piping or the like and the anode. CONSTITUTION:In decontaminating piping 1, the valve of said piping 1 in the vicinity of a part connecting both ends of a recirculating system 2 is closed, and a decontaminating liquid, i.e. a predetermined liquid electrolyte, in a reservoir tank 4 is deaerated and circulated through the interior of the piping 1. As said liquid electrolyte, the solution of a complexing agent such as EDTA is suitable, and it is used by adding a reducing agent to it at need. Thereafter, while circulating said electrolyte, DC is let flow from a DC power source 8 between the piping 1 as a cathode 7 and a long anode provided inside the piping 1 in a manner such that anode potential is lower than the corrosion potential of the matrix metal of the piping 1. Hence, without dissolving the matrix material of the piping 1, an iron oxide film only at its inner surface is dissolved as iron ion and separately captured with an ion-recovering device 3 containing an adsorbent in it. Thereafter, the decontaminating liquid is returned to the reservoir tank 4 and recirculated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は通水される配管等の内面に付着・堆積した酸化
鉄皮膜の溶解法に関するもので、特に原子力発電プラン
トの冷却水の通る酉コ管系内面に付着・堆積した放射能
を有する酸イヒ鉄皮膜を溶)(汗させるに適する方法に
関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a method for dissolving an iron oxide film that has adhered or accumulated on the inner surface of piping through which water is passed, and in particular to a method for dissolving iron oxide coatings that have adhered or accumulated on the inner surface of piping through which water is passed, and in particular to a method for dissolving an iron oxide film that has adhered or accumulated on the inner surface of piping through which water is passed. This invention relates to a method suitable for dissolving and sweating a radioactive ferric acid film attached to and deposited on the inner surface of a pipe system.

〔従来技術〕[Prior art]

原子力発電プラントの一次冷却水に」妾する自己管。 Self-contained pipes used for primary cooling water in nuclear power plants.

弁1機器等の内表面には放射性の酸イヒ鉄皮j!へ力;
蓄積し、これがプラントの表面線量率を高5)る原1因
とガるので、これを除去することカス会費である。
Radioactive acid skin on the inner surface of valve 1 equipment, etc.! power;
This is one of the causes of high surface dose rates in plants, so it is worth removing it.

この皮膜を除去−するのに用いる除染技術は国内のプラ
ントでは未だ実績がなく、−iフず力・にカナダ。
The decontamination technology used to remove this film has not yet been proven in domestic plants, and is currently being used in Canadian plants.

アメリカの原子力発電所で実施されたflJ 75:あ
るにすぎ力い。この除染技術の難しい点は、自己管や機
器の母材である炭素鋼又はステ/レス鋼を溶解させずに
表面の放射能イオンを含む二、三[(ヒ鉄、四、三酸化
鉄の皮膜だけを溶解させなければならないことにあシ、
これに適した除染法を必要とするとともに、除染剤の残
留による母材への影響を考慮する必要がある。
flJ 75 carried out at an American nuclear power plant: It's too powerful. The difficult point of this decontamination technology is that it does not dissolve the carbon steel or stainless steel, which is the base material of the tubes and equipment, and the Unfortunately, only the film of the
In addition to requiring a decontamination method suitable for this purpose, it is also necessary to consider the impact of residual decontamination agents on the base material.

除染法としては、実績のある化学除染法、及び先に本出
願人の先出願にかかる電気化学的に除染する鉄酸化物皮
膜の溶解法(特願昭57−94407 )がある。化学
除染法は酸化鉄皮膜の特性を考慮して選定した酸、還元
剤、錯化剤、インヒビタを混ぜた除染剤を使用する方法
である。この方法は被゛膜の溶解速度の点では優れてい
るが、母材をも溶解させる危険性及び残留液による腐食
の心配がある。他方、電気化学的方法は二つに大別でき
る。
Decontamination methods include a proven chemical decontamination method and an electrochemical decontamination iron oxide film dissolution method (Japanese Patent Application No. 57-94407), which was previously filed by the present applicant. The chemical decontamination method uses a decontamination agent mixed with an acid, a reducing agent, a complexing agent, and an inhibitor selected in consideration of the characteristics of the iron oxide film. Although this method is superior in terms of the dissolution rate of the coating, there is a risk that the base material will also be dissolved and there is a risk of corrosion due to the residual liquid. On the other hand, electrochemical methods can be roughly divided into two types.

一つはカソード分極法であり、もう一つは還元力を強化
した電解液により電子を酸化物に注入する方法である。
One is a cathode polarization method, and the other is a method in which electrons are injected into an oxide using an electrolyte with enhanced reducing power.

前者は酸化鉄皮膜の電位を調整するために対極との間で
分極する方法であるが、この方法では被溶解皮膜に対向
して対極を必要とするので大規模な除染又は複H々配管
系の除染が難しい。後者の電子注入法は原理的に酸化鉄
皮膜だけの選択的溶解を可能にする優れた方法であるが
、還元力を強化する電解槽とそのカソード材に制約され
、除染性能の安定性、信頼性に問題が残されている。
The former method involves polarizing the iron oxide film with a counter electrode in order to adjust its potential, but this method requires a counter electrode facing the film to be dissolved, so it does not require large-scale decontamination or multi-H piping. Difficult to decontaminate the system. The latter electron injection method is, in principle, an excellent method that enables selective dissolution of only the iron oxide film, but it is limited by the electrolytic bath that strengthens the reducing power and its cathode material, and the stability of decontamination performance and Reliability remains an issue.

〔発明の目的〕[Purpose of the invention]

本発明は、これら訝存又は開発中の方法に比べて、長尺
アノードを配管等内に配置することで配管等の所定長に
わたり母材を溶解せずによシ効果、的に酸化鉄皮膜のみ
を選択的に溶解させることができ、且つ対象配管の曲が
りに対しても変形自在に順応する長尺アノードによシ安
定で信頼し得る配管等内表面の鉄酸化物皮膜の溶解法を
提供することを目的とする。
Compared to these existing methods or methods under development, the present invention provides a protective effect by arranging a long anode inside a pipe, etc. without dissolving the base material over a predetermined length of the pipe, etc., and effectively forming an iron oxide coating. Provides a stable and reliable method for dissolving iron oxide films on the inner surface of piping, etc., using a long anode that can selectively dissolve iron oxide films on the inner surface of piping, etc., and that can deformably adapt to bends in the target piping. The purpose is to

〔発明の概要〕[Summary of the invention]

母材の配管1機器に付着する酸化鉄皮膜の成分は、一般
にマグネタイト(Fe3O4)とへマタイト(α−Fe
203 )に大きく分類される。これら酸化物と母材の
炭素鋼又はステンレス鋼の電子が関与する溶解機構は次
の三つの式で説明される。
The components of the iron oxide film that adheres to the base material piping 1 equipment are generally magnetite (Fe3O4) and hematite (α-Fe
203). The dissolution mechanism involving electrons between these oxides and the base material carbon steel or stainless steel is explained by the following three equations.

Fe  +Fe、  +2e        ・・・・
・・・・・・・・(1)Fe304 +8H+2e  
−+ 3Fe  +4H20−(2)Fe203 + 
6H++ 2’e−→2Fe  +3H20−(3)即
ち、鉄(母材)では(])式が示すように電子を放出す
る酸化反応が進む。これに対し、マグネタイト及びヘマ
タイトでは(2) 、 (3)式のようにプロトン(H
+)と電子の供給を受ける還元反応が進む。
Fe +Fe, +2e...
・・・・・・・・・(1) Fe304 +8H+2e
−+ 3Fe +4H20−(2)Fe203 +
6H++ 2'e-→2Fe +3H20- (3) That is, in iron (base material), an oxidation reaction that releases electrons proceeds as shown by the formula (]). On the other hand, in magnetite and hematite, protons (H
+) and electrons are supplied, and the reduction reaction proceeds.

このように酸化鉄では還元反応が起ることを利用して、
酸化鉄皮膜を有する母材にカソード反応が起るように母
材が腐食を起す電位(自然電位)より低い電位の下で電
流を流せば母材鉄イオンは溶解せずに酸化鉄皮膜が溶解
する。原子力発電プラントの場合には放射能を帯びた酸
化鉄皮膜はミクロンオーダの非常に薄いものが多いので
、これの溶解には僅かの電流を流すだけでよい。
Taking advantage of the fact that iron oxide undergoes a reduction reaction,
If a current is passed under a potential lower than the potential at which the base material corrodes (natural potential) so that a cathode reaction occurs in the base material that has an iron oxide film, the iron oxide film will dissolve without dissolving the base metal iron ions. do. In the case of nuclear power plants, the radioactive iron oxide film is often extremely thin, on the order of microns, so it is only necessary to apply a small amount of current to dissolve it.

本発明は、原理的に上記の考えに基づくものであり、そ
の特徴は、内面の酸化鉄皮膜を除去しようとする配管等
の内部に長手方向に延びた長尺アノードを配置し、配管
等に錯化剤を含む電解液を循環させると共に、配管等を
カソードとしてこれと該長尺アノードとの間に配管母材
金属の腐食電位より低いカソード電位の下に直流電流を
流すことによシ、配管等の所定長にわたって該酸化鉄皮
膜をカソード電位させて溶解させるもので6って、電解
液としては溶解時にFe2+イオンとのマスキングがで
きるEDTA液のような錯化剤溶液を用いる。
The present invention is based on the above-mentioned idea in principle, and is characterized by arranging a long anode extending in the longitudinal direction inside the pipe, etc. from which the iron oxide film on the inner surface is to be removed. By circulating an electrolytic solution containing a complexing agent and using a pipe as a cathode, a direct current is passed between the cathode and the long anode at a cathode potential lower than the corrosion potential of the base metal of the pipe. The iron oxide film is dissolved by applying cathodic potential over a predetermined length of piping, etc.6, and a complexing agent solution such as EDTA solution, which can mask Fe2+ ions during dissolution, is used as the electrolyte.

この電解液には必要に応じさらに還元剤を添加してもよ
く、また還元反応を起させる際に溶液中の溶存酸素の還
元反応が起らないように十分脱気した溶液を用いること
が望寸しい。上記長尺アノードとしては、網状のゴム又
は合成樹脂の如き液の透過を許す絶縁材で被懐した不溶
性のアノード材、例えば白金線又は炭素繊維を用いるの
がよく、また長尺アノードは、成る程度の剛性を保ちな
がら変形自在なものとして余りにも複雑で々い限り配管
等の曲がりに順応し配管等の中に長く挿入できるもので
ある。
A reducing agent may be further added to this electrolytic solution if necessary, and it is preferable to use a sufficiently degassed solution so that the reduction reaction of dissolved oxygen in the solution does not occur when the reduction reaction occurs. It's small. The elongated anode is preferably an insoluble anode material, such as platinum wire or carbon fiber, covered with an insulating material that allows liquid to pass through, such as a mesh rubber or synthetic resin, and the elongated anode is made of It is too complicated to be deformable while maintaining a certain degree of rigidity, and it can be inserted into piping for a long time by adapting to the bends of piping, etc. as much as possible.

〔発明の実施例〕[Embodiments of the invention]

本発明の方法を実施する酸化鉄皮膜除去フローの1例を
概要的に第1図に示す。酸化鉄皮膜を除去したいプラン
トの配管1に対して除染液を再循環させる系統2が接続
される。再循環系統2の両端間にはイオン回収器3.加
熱源と脱気用散気管を備えた貯槽4.送液ポンプ5が配
置されている。
An example of the iron oxide film removal flow for carrying out the method of the present invention is schematically shown in FIG. 1. A system 2 for recirculating decontamination liquid is connected to piping 1 of a plant whose iron oxide film is to be removed. Between both ends of the recirculation system 2 there is an ion collector 3. Storage tank equipped with a heating source and a diffuser for deaeration4. A liquid feeding pump 5 is arranged.

配管1の内部には形状を肢管の曲がりに合せて任意に曲
げ得る変形自在な長手方向に延びだ長尺アノード6が配
置される。このアノードは、絶縁性で且つ液の透過を許
す網状のゴム又は合成樹脂で被覆された白金線又は炭素
繊維の如き不溶性のアノード材よりなり、例えば適当な
屈撓可能な脚片を設けることで除染対象たる配管1の内
面からなるべく等距離を保つように配置°することが望
ましい。配管1の除染をするときには、再循環系統20
両端接続部近くの配管1の図示の弁を閉じ、除染液たる
所定の電解液を貯槽4に入れ、ここで不活性ガスのバブ
リングで脱気して溶存酸素を低下させると同時に所定温
度まで加熱し、これをボンデ5で配管l内に循環させる
。電解液としてはEDTAのような錯化剤溶液が適して
おり、これに必要に応じ還元剤を添加して用いる。この
ような電解液の循環を行いながら、配管1をカソード7
として、これとアノード6との間にカソード電位が配管
1の母材金属の腐食電位(自然電位)よシ低い電位にな
る様に直流電分8から直流電流を流す。
Inside the pipe 1, a deformable elongated anode 6 extending in the longitudinal direction is arranged, the shape of which can be arbitrarily bent according to the bending of the limb canal. The anode is made of an insoluble anode material such as platinum wire or carbon fiber coated with an insulating and liquid-permeable mesh rubber or synthetic resin, for example by providing suitable flexible legs. It is desirable to arrange them so as to maintain as equal a distance as possible from the inner surface of the pipe 1 to be decontaminated. When decontaminating piping 1, recirculation system 20
Close the valves shown on the piping 1 near the connections at both ends, put a predetermined electrolyte solution as a decontamination liquid into the storage tank 4, and degas it by bubbling with inert gas to lower the dissolved oxygen and at the same time raise the temperature to a predetermined temperature. It is heated and circulated through the pipe 1 using a bonder 5. A complexing agent solution such as EDTA is suitable as the electrolytic solution, and a reducing agent is added thereto as necessary. While circulating the electrolyte in this way, connect the pipe 1 to the cathode 7.
A DC current is passed between this and the anode 6 from a DC current component 8 so that the cathode potential is lower than the corrosion potential (natural potential) of the base metal of the pipe 1.

そうすると配管1の母材は溶解せず、その内面の酸化鉄
皮膜のみ示鉄イオンとして溶解する。この液中に溶解し
た鉄イオンは吸着剤内蔵のイオン回収器3で捕捉除去さ
れ、その後の除染液は貯槽4に戻り、再循環する。
In this case, the base material of the pipe 1 is not dissolved, and only the iron oxide coating on the inner surface thereof is dissolved as iron-indicating ions. The iron ions dissolved in this liquid are captured and removed by an ion collector 3 containing an adsorbent, and the subsequent decontamination liquid is returned to the storage tank 4 and recirculated.

次に本発明の方法の有効性を示す実験例を説明する。Next, an experimental example showing the effectiveness of the method of the present invention will be explained.

まず、鉄酸化物と母材の金属との溶解に対する電位依存
性について溶解実験にょシ検討した。供試した試片は、
母材としては炭素鋼板、また酸化鉄としてはマグネタイ
ト及びヘマタイト粉末の夫夫の焼結体である。焼結体は
夫々の粉末を1100tll:前後で焼結したものであ
シ、これをSUS 304ステンレス鋼の基板に導電性
ペーストで付着させ、焼結体表面部以外を絶縁性接着剤
で覆っである。上記三種類の試片のいずれも電極面積は
iJである。
First, the potential dependence of the dissolution of iron oxide and the base metal was investigated through dissolution experiments. The specimens tested were
The base material is a carbon steel plate, and the iron oxide is a sintered body of magnetite and hematite powder. The sintered body was made by sintering around 1100 tll of each powder, which was attached to a SUS 304 stainless steel substrate with conductive paste, and the area other than the surface of the sintered body was covered with an insulating adhesive. be. The electrode area of each of the above three types of specimens was iJ.

溶解実験は第2図に示した構成の装置を用いて行った。The dissolution experiment was conducted using an apparatus having the configuration shown in FIG.

すなわち、恒温槽9の中にガラス容器10を置き、この
容器内に電解液及び試片11゜対極12を入れ、両者1
1.12間に直流電圧をかけて試片11を分極させた。
That is, a glass container 10 is placed in a constant temperature bath 9, and an electrolytic solution and a test piece 11° and a counter electrode 12 are placed in the container.
A DC voltage was applied for a period of 1.12 to polarize the specimen 11.

分極電位は試片11の表面に設置したルギン毛管13か
らの電位を甘こう電極を基準に測定し象。分極には定電
位設定のできるポテンショスタット14を用いた。
The polarization potential is determined by measuring the potential from the Luggin capillary tube 13 installed on the surface of the test piece 11 using the agaric electrode as a reference. A potentiostat 14 capable of setting a constant potential was used for polarization.

電解液の脱気は散気管15から純アルゴンガスを吹込ん
で行なった。
The electrolyte was degassed by blowing pure argon gas through the diffuser tube 15.

この装置による実験の結果、上記三腫類の試片について
液温60℃EDTA −2NH40,002M/を溶液
での分極によるFe溶解速度が第3図の如く得られた。
As a result of an experiment using this apparatus, the rate of dissolution of Fe by polarization in a solution of EDTA-2NH40,002M/solution at a temperature of 60 DEG C. was obtained as shown in FIG.

この図によれば1.α−F e 203及びF e3.
04はカソード分極で溶解し、これに対して炭素鋼はア
ノード分極で溶解することが示される。夫々の試片の自
然電位は炭素鋼がE=−0,73V 、α−Fe 20
3がE = + 0.05 ’V 、 Fe 304が
E=−0,09Vである。これより、炭素鋼板を溶解さ
せないためにはその電位を−0,73V以下に設定する
必要がある。また酸化鉄は夫々電位に対する溶解速度が
異るが、Fe5o4では−0,9V 、 α−Fe20
3fは−3,OV附近にて最大溶解速度が得られる。以
上のことから、母材である炭素鋼を溶解させずに酸化鉄
皮膜だけを溶解させるにはその電位を−0,9v以下に
すればよいことがわかる。
According to this diagram, 1. α-F e 203 and F e3.
It is shown that 04 melts with cathodic polarization, whereas carbon steel melts with anodic polarization. The natural potential of each specimen is E=-0.73V for carbon steel and E=-0.73V for α-Fe 20
3 has E=+0.05'V, and Fe 304 has E=-0.09V. From this, in order to prevent the carbon steel plate from melting, it is necessary to set the potential to -0.73V or less. In addition, iron oxides have different dissolution rates depending on the potential, but Fe5o4 has -0.9V, α-Fe20
3f is -3, the maximum dissolution rate is obtained near OV. From the above, it can be seen that in order to dissolve only the iron oxide film without dissolving the base material carbon steel, the potential should be set to -0.9V or less.

上記の溶解試験の他に、実際の酸化鉄皮膜が付着してい
る鋼管の中にナイロン網で被覆した白金線を配置して溶
解特性につき試験した。その結果、皮膜の電位を−1,
Ovに設定すると電流効率80%以上の酸化鉄皮膜溶解
が得られた。
In addition to the above-mentioned dissolution test, a platinum wire covered with a nylon mesh was placed inside a steel pipe to which an actual iron oxide film was attached, and the dissolution characteristics were tested. As a result, the potential of the film was reduced to -1,
When set to Ov, iron oxide film dissolution with a current efficiency of 80% or more was obtained.

このように酸化鉄皮膜の電位を調整することによシ母材
の溶解なしに皮膜のみの良好な選択的溶解が可能々るこ
とか判明した。
It has been found that by adjusting the potential of the iron oxide film in this manner, it is possible to selectively dissolve only the film without dissolving the base material.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、配管等の金属母材の溶解を起さ
ずにその内面の酸化鉄皮膜のみを効率的に溶解させるこ
とができ、且つその除染性能は安定性・信頼性に優れ、
別の電解槽の設置等の制約がなく、残留液による腐食の
心配も著しく少くすることができる。壕だ、除染対象た
る配管に挿入する長尺アノードを該配管の曲がり等にも
順応する変形自在なものとするととによシ、かなシ複雑
な形状の配管系に対しても適用可能である。
According to the method of the present invention, it is possible to efficiently dissolve only the iron oxide film on the inner surface of the metal base material such as piping without dissolving it, and its decontamination performance is stable and reliable. excellent,
There are no restrictions such as installation of a separate electrolytic cell, and concerns about corrosion due to residual liquid can be significantly reduced. It would be especially useful if the long anode inserted into the piping to be decontaminated could be deformed to accommodate bends in the piping, and it would also be applicable to piping systems with complex shapes. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施して配管内面の酸化鉄皮膜
を除去する系統の一例を示す概要図、第2図は本発明の
有効性を実証するために用いた試片の分極特例の試験装
置の概要図、第3図は炭素鋼、マグネタイト及びヘマタ
イト試片の分極下における鉄溶解特性を示す実験グラフ
である。 1:配管、       2:除染液再循環系、3:イ
オン回収器、  4:貯槽、 5;ボンデ、      6;アノード、7;カソード
たる配管、8:直流電源、9:恒温槽、     10
ニガラス容器、11:試片、     12:対極、 J3;ルギン毛管、 14:ポテンショスタッ)・、 15:脱気用散気管。 第1図 第3図
Figure 1 is a schematic diagram showing an example of a system for removing iron oxide film on the inner surface of piping by implementing the method of the present invention, and Figure 2 is a special example of polarization of a specimen used to demonstrate the effectiveness of the present invention. Fig. 3 is an experimental graph showing the iron dissolution characteristics of carbon steel, magnetite, and hematite specimens under polarization. 1: Piping, 2: Decontamination liquid recirculation system, 3: Ion collector, 4: Storage tank, 5: Bonder, 6: Anode, 7: Cathode pipe, 8: DC power supply, 9: Constant temperature chamber, 10
11: Sample, 12: Counter electrode, J3: Lugin capillary, 14: Potentiostat), 15: Diffuser tube for deaeration. Figure 1 Figure 3

Claims (1)

【特許請求の範囲】 1、通水される配管、弁2機器(配管等という)の内表
面に付着しているV(酸化物の溶解法であって、該配管
等の内部に該配管系の形状に従って延びた長尺アノード
を配置し、該配管等に錯化剤を含む電解液を循環させる
と共に、d”′配管等をカソードとし1これと該長尺ア
ノードとの間に該配管等の金属母料の腐食電位より低い
カソード電位を以て直流電流を流すことによシ、該鉄酸
化物をカソード分極させて溶解させることを特徴とする
表面付着鉄酸化物の溶解法。 2 上記アノードは、電解液の透過し得る絶縁材で被覆
された長尺の変形自在な不溶性のアノード相よシなるこ
とを特徴とする特許請求の範囲第1項記載の表面付着鉄
酸化物の溶解法。 3、電解液はさらに還化剤を含むことを特徴とする特許
請求の範囲第1項記載の表面付着鉄酸化物の溶解法。
[Scope of Claims] 1. Pipes and valves through which water flows; 2. A method for dissolving V (oxide) attached to the inner surface of equipment (referred to as piping, etc.). A long anode extending according to the shape of is arranged, and an electrolytic solution containing a complexing agent is circulated through the piping, etc., and the piping, etc. A method for dissolving iron oxide deposited on a surface, characterized in that the iron oxide is cathodically polarized and dissolved by flowing a direct current with a cathode potential lower than the corrosion potential of the metal matrix.2 The above anode is A method for dissolving surface-adhered iron oxide according to claim 1, characterized in that the anode layer is a long deformable insoluble anode coated with an insulating material through which an electrolyte can pass. 2. The method for dissolving surface-adhered iron oxide according to claim 1, wherein the electrolytic solution further contains a reducing agent.
JP57194302A 1982-11-05 1982-11-05 Dissolution of iron oxide adherent on surface Pending JPS5983800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57194302A JPS5983800A (en) 1982-11-05 1982-11-05 Dissolution of iron oxide adherent on surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57194302A JPS5983800A (en) 1982-11-05 1982-11-05 Dissolution of iron oxide adherent on surface

Publications (1)

Publication Number Publication Date
JPS5983800A true JPS5983800A (en) 1984-05-15

Family

ID=16322336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57194302A Pending JPS5983800A (en) 1982-11-05 1982-11-05 Dissolution of iron oxide adherent on surface

Country Status (1)

Country Link
JP (1) JPS5983800A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619271A2 (en) * 1997-09-30 2006-01-25 Larry L. Russell Method and apparatus for lead contamination control
JP2012198027A (en) * 2011-03-18 2012-10-18 Toshiba Corp Method for decontaminating radioactive stainless steel, and device therefor
CN103290464A (en) * 2012-02-24 2013-09-11 比亚迪股份有限公司 Electrochemical deplating method of stainless steel black coating film
JP5721888B1 (en) * 2014-07-04 2015-05-20 三菱日立パワーシステムズ株式会社 Chemical cleaning method and chemical cleaning apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785980A (en) * 1980-11-17 1982-05-28 Hitachi Ltd Method for removal of oxide on metallic surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785980A (en) * 1980-11-17 1982-05-28 Hitachi Ltd Method for removal of oxide on metallic surface

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619271A2 (en) * 1997-09-30 2006-01-25 Larry L. Russell Method and apparatus for lead contamination control
EP1619271A3 (en) * 1997-09-30 2006-02-01 Larry L. Russell Method and apparatus for lead contamination control
JP2012198027A (en) * 2011-03-18 2012-10-18 Toshiba Corp Method for decontaminating radioactive stainless steel, and device therefor
CN103290464A (en) * 2012-02-24 2013-09-11 比亚迪股份有限公司 Electrochemical deplating method of stainless steel black coating film
CN103290464B (en) * 2012-02-24 2015-12-02 比亚迪股份有限公司 A kind of electrochemistry removing plating method of stainless steel black film
JP5721888B1 (en) * 2014-07-04 2015-05-20 三菱日立パワーシステムズ株式会社 Chemical cleaning method and chemical cleaning apparatus

Similar Documents

Publication Publication Date Title
EP2102626B1 (en) Method for the pre-treatment of a fuel rod cladding tube for material testing
KR890003665B1 (en) Process for removing metal surface oxide
JPS5851977A (en) Regeneration of chemical decontaminating liquid
JP4944542B2 (en) Method for suppressing elution of nickel and cobalt from structural materials
JPS5983800A (en) Dissolution of iron oxide adherent on surface
JPH0255520B2 (en)
JP3165273B2 (en) Water quality control method and fuel assembly for nuclear power plant
JPS59162496A (en) Method of removing iron oxide film
US20160196889A1 (en) Method for reducing the radioactive contamination of the surface of a component used in a nuclear reactor
JPS61118700A (en) Method and device for slowly cooling oxide film
JPH03267797A (en) Nuclear reactor stopping method
JPH0220080B2 (en)
JP4959196B2 (en) Nuclear power plant replacement member and nuclear power plant member handling method
JPS60123800A (en) Method of decontaminating nuclear plant
JPS6286200A (en) Method for adjusting dissolution rate in reduction decontamination
JPH0784090A (en) Method and device for injecting metal ion into reactor primary coolant
JPS62207898A (en) Method and apparatus for forming corrosion resistant oxide film on inside surface of piping
JPH0640153B2 (en) Decontamination method using divalent chromium ion reducing regenerant
JPS613094A (en) Decontamination method
JPH0240200B2 (en)
JPH0117120B2 (en)
JPS6225300A (en) Method of dissolving oxide
JPS59154398A (en) Method of recovering radioactive deconamination liquid waste
Fujita et al. REDOX Decontamination Technique Development,(II) Redox Decontamination System Using Pilot Plant
JPS6193999A (en) Method of decontaminating part for nuclear power plant