JPS6225300A - Method of dissolving oxide - Google Patents

Method of dissolving oxide

Info

Publication number
JPS6225300A
JPS6225300A JP16416685A JP16416685A JPS6225300A JP S6225300 A JPS6225300 A JP S6225300A JP 16416685 A JP16416685 A JP 16416685A JP 16416685 A JP16416685 A JP 16416685A JP S6225300 A JPS6225300 A JP S6225300A
Authority
JP
Japan
Prior art keywords
potential
oxides
decontaminated
decontamination
dissolving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16416685A
Other languages
Japanese (ja)
Other versions
JPH0672954B2 (en
Inventor
一郎 片岡
大角 克己
小林 政人
俊雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP60164166A priority Critical patent/JPH0672954B2/en
Publication of JPS6225300A publication Critical patent/JPS6225300A/en
Publication of JPH0672954B2 publication Critical patent/JPH0672954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、金属表面に付着した酸化物の溶解法に関する
もので、特に原子カプラントの機器・部品等に付着した
放射性核種を含む酸化物を効果的VC溶解除去すると共
に構成材の腐食損傷を抑制することができる酸化物の溶
解法に関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a method for dissolving oxides attached to metal surfaces, and in particular to dissolving oxides containing radionuclides attached to atomic couplant equipment and parts. The present invention relates to a method for dissolving oxides that can remove target VC and suppress corrosion damage to constituent materials.

〔発明の背景〕[Background of the invention]

原子カプラントでは稼動期間の経過とともに。 For nuclear couplants, as the operating period progresses.

−次冷却水系内の機器・配管等に放射性核種(”Co、
”Mn等)を含む酸化物が付着し、放射能が増加する傾
向にある。このため、プラント運転時及び定期定検時に
運転員及び作業員の被曝線量が増大する傾向があり、放
射性核種を含んだ酸化物を溶解除去する除染技術が必要
となっている。
- Radionuclides ("Co,"
There is a tendency for oxides containing ``Mn, etc.'' to adhere and increase radioactivity.For this reason, the exposure dose of operators and workers during plant operation and periodic inspections tends to increase, and radionuclides are There is a need for decontamination technology that dissolves and removes the contained oxides.

再使用する機器・部品の除染を行う場合、除染時の構成
材料の腐食を抑制して酸化物を効率的に溶解除去するこ
とが要求される。
When decontaminating equipment and parts to be reused, it is necessary to suppress corrosion of constituent materials during decontamination and efficiently dissolve and remove oxides.

一般的に、金属表面に付着した酸化物を除去する方法と
して、対極を設は構成材料に直接電流を流し電解する方
法、すなわち電解研磨法が知られている。この方法は、
高電流を流し、構成材料とともに酸化物を溶解・剥離さ
せるものであり、vs構成材料腐食抑制の点においては
適していない。
Generally, as a method for removing oxides adhering to a metal surface, a method is known in which a counter electrode is provided and a current is applied directly to the constituent material to cause electrolysis, that is, an electrolytic polishing method. This method is
A high current is applied to dissolve and peel off the oxide along with the constituent materials, so it is not suitable in terms of suppressing corrosion of the constituent materials.

また、化学薬品を用いる化学除染法は、特開昭53−7
31号知代表されるように酸及び錯化剤を主成分とする
ものであり、これらの除染液は。
In addition, the chemical decontamination method using chemicals was published in Japanese Unexamined Patent Publication No. 53-7
As typified by No. 31, these decontamination solutions mainly contain acids and complexing agents.

pHが比較的低いため、酸化物の溶解には効果的である
。しかし、構成材料も溶解する危険性がある。特に原子
カプラントでは、高度な安全性が要求されるため1前記
の除染法は再使用機器・部品に対し必ずしも適したもの
ではなかった。これ知対し中性溶液の除染液を使用し、
構成材料の腐食を緩和すると共て、除染液を電解し、除
染液すなわち還元剤の再生を行い、除染対象物の表面に
付着し九酸化物を溶解させる方法が発明された。この方
法を使用した除染法の一つに特開昭57−85980号
がある。この除染法は、除染対象物に直接カソード分極
すること、でより電子を注入し。
Since the pH is relatively low, it is effective in dissolving oxides. However, there is a risk that the constituent materials may also dissolve. Particularly in nuclear couplants, a high level of safety is required, so the decontamination methods described above are not necessarily suitable for reusable equipment and parts. Knowing this, use a neutral solution decontamination solution,
In addition to alleviating corrosion of constituent materials, a method was invented in which the decontamination solution is electrolyzed to regenerate the decontamination solution, that is, the reducing agent, and to dissolve nona-oxides that adhere to the surface of the object to be decontaminated. One of the decontamination methods using this method is JP-A-57-85980. This decontamination method injects more electrons by directly cathodically polarizing the object to be decontaminated.

酸化物を溶解させる方法と、除染液側から電子を注入し
溶解させる方法があるが、この操作は、除染対象物を構
成材料の防食電位まで低下させるものであるため過電圧
が大きくなり、エネルギー効率的に好ましくない。また
、除染終了時の判定も不明確であった。さらに、類似技
術として特開昭59−83800号が挙げられる。この
技術は、除染対象物の電位を−1,0Vvs−8CE以
下にして酸化物を溶解させるものであり、簡易に除染が
行える等の利点を有しているうしかし、前記方法と同様
カソード分極する際過電圧が大きくなり、エネルギー効
率的に好ましくない。
There are methods of dissolving oxides and methods of dissolving them by injecting electrons from the decontamination liquid side, but this operation lowers the object to be decontaminated to the anti-corrosion potential of the constituent materials, resulting in a large overvoltage. Unfavorable in terms of energy efficiency. Furthermore, the determination at the end of decontamination was also unclear. Further, as a similar technique, Japanese Patent Application Laid-Open No. 59-83800 can be mentioned. This technique dissolves oxides by lowering the potential of the object to be decontaminated to -1.0 V vs -8 CE, and has the advantage of being easy to decontaminate. However, it is similar to the method described above. When the cathode is polarized, the overvoltage increases, which is not desirable in terms of energy efficiency.

以上のように従来の除染法は、金属表面に付着した酸化
物を溶解させることはできるが、除染時における構成材
料の腐食の問題があり、好ましいものではなかった。ま
た、除染終了点も明確でなかった。
As described above, conventional decontamination methods are capable of dissolving oxides adhering to metal surfaces, but are not preferred because of the problem of corrosion of constituent materials during decontamination. Also, the end point of decontamination was not clear.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、原子カプラント等において。 The object of the present invention is to provide an atomic couplant, etc.

機器・部品等に付着した酸化物を、I−4成材料の腐食
を抑制しつつ電気化学的に溶解・除去すると共に、除染
終了点も明確にできる酸化物の溶解法を得ることにある
To obtain a method for dissolving oxides that electrochemically dissolves and removes oxides attached to equipment, parts, etc. while suppressing corrosion of I-4 constituent materials, and also allows for a clear decontamination end point. .

〔発明の概要〕[Summary of the invention]

本発明の特徴は、金属長面に付着している酸化物の溶解
法において1.酸化物を有した除染対象物を電解液に浸
漬し、前記対象物より卑の電位を有する犠牲電極を前記
対象物に電気的に接触あるいは接続するか、または外部
から定電圧電源を前記対象物と対極との間に接続するこ
とにより、前記対象物の電位を自然電位から活性碧解域
に達しない電位の間でカソード分極を行い、前記対象物
の表面に付着した酸化物を還元溶解させることにある。
The features of the present invention are as follows:1. An object to be decontaminated containing an oxide is immersed in an electrolytic solution, and a sacrificial electrode having a lower potential than the object is electrically contacted or connected to the object, or a constant voltage power source is applied from an external source to the object. By connecting between an object and a counter electrode, the potential of the object is cathodically polarized between the natural potential and a potential that does not reach the active decomposition range, and oxides attached to the surface of the object are reduced and dissolved. It's about letting people know.

〔発明の実施例〕[Embodiments of the invention]

本発明は、特に原子カプラントの機器・部品等の表面に
付着した放射性核種(60Cr+r  ”Mn等)を含
んだ酸化物を効果的に溶解すると共に除染対象物の電位
変化を検出し、除染終了点を判定するものでちる。
The present invention effectively dissolves oxides containing radioactive nuclides (60Cr+r''Mn, etc.) attached to the surfaces of atomic couplant equipment and parts, and detects potential changes of objects to be decontaminated. It is used to determine the end point.

原子カプラントの一次冷却水系内の機器・部品等の表面
に付着している酸化物はFe3O4(マグネタイト)、
α−Fe203 (ヘマタイト)が主成分であり、これ
らの酸化物の形成時に線量率知寄与する放射性核種(”
Co、”Mn等)を含有している。この上うに1表面の
酸化によって生成した酸化物と酸化物内に含有されてい
る放射性核種は、酸化−還元反応を利用することにより
イオン状に溶解し除去することができる。酸化物は、電
子を受けること(′4L元されること)、すなわち電位
を下げることにより溶解できる。しかし、酸化物の溶解
時に、構成材料の腐食を抑制するためには、前記電位を
構成材料が腐食しない領域に設定しておく必要がある。
The oxides adhering to the surfaces of equipment and parts in the primary cooling water system of the atomic couplant are Fe3O4 (magnetite),
α-Fe203 (hematite) is the main component, and radionuclides ("
In addition, the oxide produced by oxidation of the surface of the sea urchin and the radioactive nuclide contained within the oxide can be dissolved into ionic form by using an oxidation-reduction reaction. Oxides can be dissolved by receiving electrons (being converted), that is, by lowering the potential.However, when dissolving oxides, in order to suppress corrosion of the constituent materials, It is necessary to set the potential in a range where the constituent materials do not corrode.

本発明では、除染対象物により卑の電位を有する炭素鋼
を電気的に接触させ、炭素鋼との間に電池を形成させる
。これによシ、除染対象物の電位を低下させ1表面の酸
化物を還元し溶解するものである。炭素鋼接触時の除染
対象物の電位は、炭素鋼の電位との混成電位を示し、炭
素鋼との面積比に依存するもので1面積比調整により除
染対象物の電位を制御することができる。構成材料がス
テンレス鋼の場合、−0,65V〜−0,75Vの間に
金属均一溶解領域をもって有して訃シ、これ以下の電位
においては過電圧が大きくなり、エネルギー効率上好ま
しくない。本発明は、材料が溶解しない領域でかつ酸化
物が溶解する領域(−0,3V〜−0,65V (VS
 5CE)に電位を制御するものであり、除染対象物に
対し炭素鋼の面積を0.2〜1,5倍にすることKより
電位を制御する。また。
In the present invention, carbon steel having a base potential is brought into electrical contact with the object to be decontaminated to form a battery between the object and the carbon steel. This reduces the potential of the object to be decontaminated and reduces and dissolves the oxides on the surface. The potential of the object to be decontaminated when in contact with carbon steel shows a hybrid potential with the potential of carbon steel, and depends on the area ratio to the carbon steel.The potential of the object to be decontaminated when in contact with carbon steel is controlled by adjusting the area ratio. I can do it. When the constituent material is stainless steel, it has a uniform metal melting region between -0.65V and -0.75V, which causes overvoltage to increase at a potential lower than this, which is unfavorable in terms of energy efficiency. The present invention deals with areas where materials do not dissolve and where oxides dissolve (-0,3V to -0,65V (VS
5CE), and the potential is controlled by increasing the area of carbon steel by 0.2 to 1.5 times the area of the object to be decontaminated. Also.

除染対象物によっては、@記対象物に対し、対極を設け
、外部を源によりt鱗を行い酸化物を溶解する。
Depending on the object to be decontaminated, a counter electrode may be provided to the object to be decontaminated, and oxidation may be performed using an external source to dissolve the oxide.

さらに、炭素鋼を除染対象物に接触させた場合。Furthermore, when carbon steel comes into contact with objects to be decontaminated.

対象物表面の酸化物溶解に伴って、対象物の電位は低下
する。この除染操作は除染目的に応じ金属均一溶解域に
入る−0.65Vで終了する場合とこの領域に電位が入
っても除染を続行し、金属表面を均一に溶解させ、放射
化された表面及び放射性a種を完全に除去する場合かあ
る。以上のよりに、除染操作に関しては、再使用の機器
・部品等に適用する場合と、廃棄処分とする機器・部品
に適用する場合に上記方法で適用可能となっている。
As the oxide on the surface of the object is dissolved, the potential of the object decreases. Depending on the purpose of decontamination, this decontamination operation may end at -0.65V, which enters the metal uniform dissolution region, or may continue decontamination even if the potential enters this region, uniformly dissolving the metal surface and preventing activation. In some cases, contaminated surfaces and radioactive A species may be completely removed. Based on the above, the above method can be applied to decontamination operations when applied to equipment and parts that are to be reused and when applied to equipment and parts that are to be disposed of.

除染液は、誹化削、有機酸を成分とする溶液からなり、
pH5〜7の中性溶液を使用する。適用に際して、除染
液は不活性ガスにより十分に脱気すると共に60〜90
tK加温して[e用する。
The decontamination solution consists of a solution containing decontamination and organic acids.
A neutral solution with a pH of 5-7 is used. When applying, the decontamination solution should be sufficiently degassed with an inert gas and at a temperature of 60 to 90%
Heat for tK and use [e].

次に、具体的実施列を挙げ以下説明する。Next, specific examples will be listed and explained below.

第1図及び第2図は原子カプラントの機器・部品等の酸
化物の溶解法を示す図である。
FIGS. 1 and 2 are diagrams showing a method for dissolving oxides of equipment, parts, etc. of atomic couplants.

第1図は炭素鋼の犠牲電極2を除染対象物3に接続し、
f元操作を加えた場合の実施例を示している。対象物3
の酸化物は電極2の溶解に半い除去される。除染液4は
AfあるいはN2ガスを注入管5より注入し脱気すると
共に加熱用ヒータ6により昇温される。
Figure 1 shows a carbon steel sacrificial electrode 2 connected to a decontamination object 3.
An example is shown in which an f-element operation is added. Object 3
Half of the oxide is removed by dissolving the electrode 2. The decontamination liquid 4 is degassed by injecting Af or N2 gas through an injection pipe 5, and its temperature is raised by a heating heater 6.

除染槽1には、除染液を攪拌するために循jlj!ライ
ン7、循環ポンプ8を備えている。また、ドレンロ9.
ベント10も備えている。除染時−には、除染対象物の
酸化物が進行するにしたがい、を位が変化するため基準
電Illを除染槽内に設置し。
In decontamination tank 1, there is circulation to stir the decontamination solution. It is equipped with a line 7 and a circulation pump 8. Also, Drainro 9.
It is also equipped with a vent 10. During decontamination, a reference voltage is installed in the decontamination tank because the level changes as the oxides of the object to be decontaminated progress.

電位差計12で監視する。電位監視により、対象物が活
性溶解域に入ったか否かを判断し、除染終了時を判定す
る。この操作は、除染の目的により異なυ、再吏用を目
的とし腐食させたくない機器・部品等に対してはt−m
が活性溶解域に達した時点で除染を終了とする。また、
腐食が許容限度内で許される機器・部品等は、活性溶解
域に達しても、除染を続行し金属表面を均一に溶解させ
(数μm)、放射性核種並びに放射化された表面層を取
り除く。
Monitored with potentiometer 12. By monitoring the potential, it is determined whether the target object has entered the active dissolution zone, and the end of decontamination is determined. This operation varies depending on the purpose of decontamination.
Decontamination ends when the active solubility range is reached. Also,
For equipment and parts that are allowed to corrode within acceptable limits, even if they reach the active dissolution zone, decontamination should continue to uniformly dissolve the metal surface (several μm) and remove radionuclides and activated surface layers. .

第2図は、外部からの電源13で電解を行い。In FIG. 2, electrolysis is performed using an external power source 13.

除染対象物の酸化物を溶解する場合の実施例である。こ
の場合も第1図と同様に、腐食させたくない対象物に対
しては活性溶解域より責な電位で。
This is an example in which oxides of an object to be decontaminated are dissolved. In this case as well, as in Figure 1, for objects that you do not want to corrode, use a potential lower than the active dissolution range.

かつ酸化物の溶解する電位で電解する。この場合の電位
は、錯化剤及び有機酸を成分とし、  pH5〜7の中
性溶液において、基準電極の飽和甘コウ電極(SCE)
で−0,3〜−〇、 65 Vにする。これにより第4
図の方法と同様に、除染対象物の腐食を抑制し、酸化物
のみを溶解させることができる。
and electrolyzes at a potential that dissolves the oxide. In this case, the potential is determined by the reference electrode saturated sweet electrode (SCE) in a neutral solution containing a complexing agent and an organic acid and having a pH of 5 to 7.
to -0,3 to -〇, 65 V. This allows the fourth
Similar to the method shown in the figure, corrosion of the object to be decontaminated can be suppressed and only oxides can be dissolved.

また、廃棄を目的とした除染対象・吻に対しては。Also, for the proboscis, which is subject to decontamination for the purpose of disposal.

1力1表面線量を低減させることが必要であるため、対
象物の電位を活性溶解域に設定し、酸化物並びに金属表
面を溶解させる操作を行う。
Since it is necessary to reduce the per-force per-surface dose, the potential of the object is set in the active dissolution region, and an operation is performed to dissolve the oxide and metal surfaces.

さらに、第1図の方法を実施する際には、炭素鋼電衡の
面積を設定する必要がある。接続する電極面積により、
除染対象物の電位が異なるためで。
Furthermore, when implementing the method shown in FIG. 1, it is necessary to set the area of the carbon steel electrobalance. Depending on the electrode area to be connected,
This is because the potential of the object to be decontaminated is different.

活性溶解域を避けて、酸化物を溶解させるには除染対象
物に対し炭素鋼面積を0.2〜1,5倍の間に設定する
In order to avoid the active dissolution zone and dissolve oxides, the carbon steel area should be set between 0.2 and 1.5 times the area of the object to be decontaminated.

以上のように本発明を原子カプラントの機器・部品等の
除染に使用した場合、効果的に除染効果を得ることがで
き、除染装置自体も簡易化できる。
As described above, when the present invention is used to decontaminate equipment, parts, etc. of an atomic couplant, an effective decontamination effect can be obtained, and the decontamination equipment itself can be simplified.

第3図は、除染対象物の構成材料並びに酸化物の溶解に
対する電位依存性を検討した試験装置を示す。この試験
装置は大別して、溶解槽14.定電位を源15.加熱用
ヒータ付きスターテから構成されており、除染液17は
脱気用散気管18より注入されたArガスで脱気を行う
。構成材料並びに酸化物の試験片19と対極20の間で
、基準電極の飽和甘コウt%21を基準とし、定電位で
カンード分啄を行った。凍用した除染液は、錯化剤及び
有機酸からなシ、5チ濃度溶液で、900て加温して行
った。改化物の溶解量は溶級中の鉄イオンを原子吸光光
度計により測定した。また。
FIG. 3 shows a test device in which the potential dependence of the constituent materials of the object to be decontaminated and the dissolution of oxides was investigated. This test equipment is roughly divided into 14. Constant potential source 15. The decontamination liquid 17 is degassed with Ar gas injected from the deaeration diffuser 18. Between the constituent materials and the test piece 19 of the oxide and the counter electrode 20, cand fractionation was performed at a constant potential, with the saturation ratio of the reference electrode being 21%. The frozen decontamination solution was heated at 900 °C with a 5% concentration solution containing no complexing agent and organic acid. The dissolved amount of the modified product was determined by measuring iron ions in the melt using an atomic absorption spectrophotometer. Also.

構成材料の溶解については、浸漬前後の重量減により溶
解量を求めた。その結果を第5図に示す。
Regarding the dissolution of the constituent materials, the amount dissolved was determined by weight loss before and after immersion. The results are shown in FIG.

縦軸に鉄溶解量(mg/−・h )、横軸に電位(Vv
s、5CE)を示している。構成材料の溶解は、−0,
65〜0.75Vに活性溶解域を有しているとと゛がわ
かる。これに対し、酸化物の溶解は電位が低下するにつ
れて、増加する傾向を示している。これより、構成材料
の溶解を抑制して、酸化物の溶解を促進するには6本条
件において。
The vertical axis shows the iron dissolution amount (mg/-・h), and the horizontal axis shows the potential (Vv
s, 5CE). The dissolution of the constituent materials is -0,
It can be seen that the active solubility range is between 65 and 0.75V. On the other hand, the dissolution of oxides tends to increase as the potential decreases. From this, six conditions are required to suppress the dissolution of the constituent materials and promote the dissolution of the oxide.

−0,3V〜−0,65Vの間に電位を設定すればよい
ことがわかる。酸化物を溶解するには、このように、外
部より電位を設定し行う方法と卑の電位を有する炭素鋼
等を電気的に接触させ適性な′電位まで低げる方法があ
るが、後者の方法で適性な電位に低げるには、接触させ
る炭素鋼の面積比を考えなければならない。これらの面
積比てよる電位の変化について検討した試験装置を第4
図て示す。
It can be seen that the potential should be set between -0.3V and -0.65V. To dissolve oxides, there are two methods: one is to set the potential externally, and the other is to lower the potential to an appropriate level by electrically contacting carbon steel, etc., which has a base potential. In order to lower the potential to an appropriate level using this method, the area ratio of the carbon steel to be brought into contact must be considered. The fourth test device was used to examine changes in potential depending on these area ratios.
Illustrated.

この試゛験装置fは溶解槽14の中に、炭!#422と
酸化物23を無抵抗trN、計24を介して接続したも
ので、電位の変化は、電位差計25で測定する。
This test device f has charcoal in the melting tank 14. #422 and oxide 23 are connected via a non-resistance trN, total 24, and changes in potential are measured with a potentiometer 25.

第6図はこの結果を示したものであり、縦軸に電位(V
vs−S CE ) =横動に酸化物(Fe304)と
炭素鋼の面積比を示している。この試験条件は。
Figure 6 shows this result, with the vertical axis plotting the potential (V
vs-S CE )=The area ratio of oxide (Fe304) and carbon steel is shown in the lateral movement. What are the test conditions?

前記実施例と同様である。第5図及び5g6図かられか
るように、炭素鋼接触による電位低下において、構成材
料を抑制し、酸化物を溶解させる領域を保持するために
は、酸化物す々わち除染対象物の表面積に対し、炭素鋼
の表面積を0.2〜1.5倍にする必要がある。
This is the same as in the previous embodiment. As can be seen from Figures 5 and 5g6, in order to suppress the constituent materials and maintain a region where oxides can be dissolved when the potential decreases due to contact with carbon steel, oxides, that is, objects to be decontaminated, must be It is necessary to increase the surface area of carbon steel by 0.2 to 1.5 times the surface area.

本発明の有効性をさらに実証するために、原子カプラン
トの配管から撤去したものを試験片として使用し、第4
15Aに示す試験装置を使用して1前記基礎試験時と同
一の除染条件で実験した。除染対象物に接続した炭素鋼
の面積は、対象物と同−面積とした。また、試験片の放
射能をQe(Li)半導体検出器で測定し、60Coの
除去率で評価した。その結果を第7図に示す。図におい
て、縦軸は60coの除去率(%)、横軸は除染時間を
示す。
In order to further demonstrate the effectiveness of the present invention, a specimen removed from the piping of an atomic couplant was used as a test piece.
An experiment was conducted using the test equipment shown in 15A under the same decontamination conditions as in the basic test 1 above. The area of the carbon steel connected to the object to be decontaminated was set to be the same area as the object. In addition, the radioactivity of the test piece was measured using a Qe(Li) semiconductor detector and evaluated based on the 60Co removal rate. The results are shown in FIG. In the figure, the vertical axis shows the removal rate (%) of 60co, and the horizontal axis shows the decontamination time.

60 COけ、約7時間程1度で飽和した状態になり。60 CO and reached a saturated state at 1 degree for about 7 hours.

表面の酸化物がほぼ溶解・除去されたことを示している
。この様に、炭素鋼を電気的に接続し、適性な電位に保
持することにより、高い除染効果が得られる。
This shows that most of the oxides on the surface have been dissolved and removed. In this way, by electrically connecting carbon steel and maintaining it at an appropriate potential, a high decontamination effect can be obtained.

また、除染対象物は1表面の酸化物溶解に伴い刻々と電
位が変化し、犠牲電極(炭素鋼)の電位に近づき、第5
図に示す活性溶解域(金礪均−溶解域)に入る。これに
対し、溶解時、対象物の電位をモニターし、活性溶解域
に入る醒位点を材料り溶解を抑えだい場合は終了とする
。また、腐食力y許容できる場合は材料表面を溶か17
、さらに効果をあげるため続行することができる。
In addition, the potential of the object to be decontaminated changes moment by moment with the dissolution of oxides on the first surface, approaches the potential of the sacrificial electrode (carbon steel), and the fifth
It enters the active dissolution region (Kan-Kyun - dissolution region) shown in the figure. On the other hand, during dissolution, the potential of the object is monitored, and if the awakening point reaches the active dissolution region and the dissolution is suppressed, the dissolution is terminated. In addition, if the corrosive force y is permissible, the surface of the material may be melted17.
, can be continued for further effect.

以上の電位制御方法の他に、除染対象物を直接カソード
分極し、適性電位に設定して酸化物を溶解除去する方法
も適用できる。
In addition to the potential control method described above, a method of directly cathodically polarizing the object to be decontaminated, setting it to an appropriate potential, and dissolving and removing oxides can also be applied.

以上のように電位を設定することにより、構成材料の腐
食を抑制し、酸化物を効率的に選択溶解することが可能
となる。
By setting the potential as described above, it becomes possible to suppress corrosion of the constituent materials and efficiently selectively dissolve oxides.

本実施例によれば、金属の表面に付着した酸化物、特に
原子カプラントの機器・部品に付着した酸化物を、除染
目的に応じ電位を設定し、効率的に溶解させることがで
きる。例えば、除染後再演用を目的とし、腐食させたく
ない除染対象物に対しては、対象物の電位を浸漬電位か
ら活性溶解域に達しない電位でカソード分極する。また
、腐食が許容される対象物に対しては、その許容限度内
で対象物の電位を外部電源によって活性溶解電位に設定
するか、あるいは酸化物の溶解に伴い活性溶解域に入っ
た状態で除染を続行する場合とに分けられる。本発明で
はカソード分極操作を、外部から定電位N源で設定する
方法、忰よび卑な電位を有する犠牲電極を電気的に接解
させ対象物の電位をコントロールする方法をとっている
。この様に、除染目的に応じ、上記方法で電位をコント
ロールするため、効果的に酸化物を溶解・除去すること
ができると共に材料の健全性が維持できる。
According to this embodiment, it is possible to efficiently dissolve oxides adhering to metal surfaces, particularly oxides adhering to atomic couplant equipment and parts, by setting the potential according to the purpose of decontamination. For example, for a decontaminated object that is intended for reuse after decontamination and is not to be corroded, the potential of the object is cathodically polarized from the immersion potential to a potential that does not reach the active dissolution range. In addition, for objects that are allowed to corrode, the potential of the object should be set to the active dissolution potential by an external power supply within the allowable limit, or the potential of the object should be set to the active dissolution potential due to the dissolution of the oxide. This can be divided into cases where decontamination continues and cases where decontamination continues. In the present invention, the cathode polarization operation is performed by externally setting a constant potential N source, or by electrically dissociating a sacrificial electrode with a low potential to control the potential of the object. In this way, since the potential is controlled by the above method according to the purpose of decontamination, oxides can be effectively dissolved and removed, and the integrity of the material can be maintained.

本発明は、原子カプラントのみならず、他のプラントに
も適用でき、鋼板等の前処理にも吏用可能であり、多方
面に利用できる。
The present invention can be applied not only to atomic couplants but also to other plants, and can also be used for pretreatment of steel plates, etc., and can be used in many fields.

従って1本発明を用いることにより、原子カプラントの
機器・部品等の除染が容易に行うことができ、原子力機
器の分解・点検に際して、容易化すると共に作業員の被
曝低減にもつながり、原子カプラントの信頼性の向上が
計れる。
Therefore, by using the present invention, it is possible to easily decontaminate the equipment and parts of the atomic couplant, which facilitates the disassembly and inspection of nuclear equipment, and also reduces radiation exposure for workers. The reliability of the system can be improved.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば6機器や部品等に付着した酸化物を
、構成材料の腐食を抑制しつつ電気化学的に溶解・除去
することができる。また1本発明によれば除染終了点も
明確になるという効果がある。
According to the method of the present invention, oxides adhering to devices, parts, etc. can be electrochemically dissolved and removed while suppressing corrosion of constituent materials. Another advantage of the present invention is that the end point of decontamination becomes clear.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明方法を実施する装
置の系統図、第3図および第4図はそれぞれ本発明の有
効性を実証するための試験装置を示す概略図、第5図は
鉄溶解量と電位との関係を示す線図、第6図は酸化物と
炭素鋼との面積比による電位の変化を示す線図、第7図
は本発明の有効性を確認した試験結果を示す線図であり
、除染時間と60Co 除去率との関係を示すものであ
る。 1・・・除染槽、2・・・炭素鋼、3・・・除染対象物
、5・・・ガス注入管、6・・・加熱用ヒーター、8・
・・循環ポンプ、11・・・基準[i、12・・・電位
差計、13・・・外″t0・            
                ど−一\1、(〕 代理人 弁理士 小川勝男 −ノ 第 1 固 $5 固 e  イE   (V ys、 51:E)茅 6 固 Fe3θ4−戻雫σ 茅 7 囚 θ           5          /ρ
障栄吟町 (FL)
FIGS. 1 and 2 are system diagrams of an apparatus for carrying out the method of the present invention, FIGS. 3 and 4 are schematic diagrams showing a test apparatus for demonstrating the effectiveness of the present invention, and FIG. Figure 6 is a diagram showing the relationship between the amount of dissolved iron and potential; Figure 6 is a diagram showing changes in potential depending on the area ratio of oxide and carbon steel; Figure 7 is a diagram showing the test results confirming the effectiveness of the present invention. 2 is a diagram showing the relationship between decontamination time and 60Co removal rate. DESCRIPTION OF SYMBOLS 1... Decontamination tank, 2... Carbon steel, 3... Decontamination target object, 5... Gas injection pipe, 6... Heating heater, 8...
...Circulation pump, 11...Reference [i, 12...Potentiometer, 13...Outside''t0・
Do-ichi\1, () Agent Patent attorney Katsuo Ogawa -No 1 Hard $5 Hard e IE (V ys, 51:E) Kaya 6 Hard Fe3θ4-Return drop σ Kaya 7 Prison θ 5 /ρ
Shoeigincho (FL)

Claims (1)

【特許請求の範囲】 1、金属表面に付着している酸化物の溶解法において、
酸化物を有した除染対象物を電解液に浸漬し、前記対象
物より卑の電位を有する犠牲電極を前記対象物に電気的
に接触あるいは接続するか、または外部から定電圧電源
を前記対象物と対極との間に接続することにより、前記
対象物の電位を自然電位から活性溶解域に達しない電位
の間でカソード分極を行い、前記対象物の表面に付着し
た酸化物を還元溶解させることを特徴とする酸化物の溶
解法。 2、特許請求の範囲第1項において、酸化物の溶解に伴
う除染対象物の電位変化を監視し、溶解終了点を判定す
ることを特徴とする酸化物の溶解法。 3、特許請求の範囲第1項において、電解液は錯化剤及
び有機酸を主成分とし、pH4〜7であり、除染対象物
を飽和甘コウ電極基準で−0.3V〜−0.65Vvs
、SCE間の電位に設定することを特徴とする酸化物の
溶解法。 4、特許請求の範囲第1項において、犠牲電極は炭素鋼
であることを特徴とする酸化物の溶解法。 5、特許請求の範囲第1項において、炭素鋼の電気的な
接触あるいは接続によるカソード分極は、除染対象物の
表面積に対し炭素鋼表面積を0.2倍〜1.5倍にする
ことを特徴とする酸化物の溶解法。 6、特許請求の範囲第1項において、除染対象物の浸漬
電位が−0.65Vvs、SCEになつた時点を溶解終
了とすることを特徴とする酸化物の溶解法。
[Claims] 1. In a method for dissolving oxides attached to metal surfaces,
An object to be decontaminated containing an oxide is immersed in an electrolytic solution, and a sacrificial electrode having a lower potential than the object is electrically contacted or connected to the object, or a constant voltage power source is applied from an external source to the object. By connecting between an object and a counter electrode, the potential of the object is cathodically polarized between the natural potential and a potential that does not reach the active dissolution region, and the oxide attached to the surface of the object is reduced and dissolved. A method for dissolving oxides characterized by the following. 2. A method for dissolving oxides according to claim 1, characterized in that a change in potential of the object to be decontaminated as the oxides are dissolved is monitored to determine the end point of dissolution. 3. In claim 1, the electrolytic solution mainly contains a complexing agent and an organic acid, has a pH of 4 to 7, and has a voltage of -0.3 V to -0. 65V vs.
, a method for dissolving oxides, characterized in that the potential is set between SCE and SCE. 4. The method for dissolving oxides according to claim 1, wherein the sacrificial electrode is made of carbon steel. 5. In claim 1, cathodic polarization by electrical contact or connection of carbon steel increases the surface area of the carbon steel by 0.2 to 1.5 times the surface area of the object to be decontaminated. Characteristic method of dissolving oxides. 6. The method for dissolving oxides as set forth in claim 1, characterized in that the dissolution is completed when the immersion potential of the object to be decontaminated reaches -0.65V vs. SCE.
JP60164166A 1985-07-26 1985-07-26 Dissolution method of oxide Expired - Lifetime JPH0672954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60164166A JPH0672954B2 (en) 1985-07-26 1985-07-26 Dissolution method of oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60164166A JPH0672954B2 (en) 1985-07-26 1985-07-26 Dissolution method of oxide

Publications (2)

Publication Number Publication Date
JPS6225300A true JPS6225300A (en) 1987-02-03
JPH0672954B2 JPH0672954B2 (en) 1994-09-14

Family

ID=15787979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60164166A Expired - Lifetime JPH0672954B2 (en) 1985-07-26 1985-07-26 Dissolution method of oxide

Country Status (1)

Country Link
JP (1) JPH0672954B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102790A (en) * 2009-10-16 2011-05-26 Jfe Steel Corp Method for speedily evaluating corrosion resistance to contents of can molding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210200A (en) * 1982-06-02 1983-12-07 Hitachi Ltd Method for dissolving iron oxide film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210200A (en) * 1982-06-02 1983-12-07 Hitachi Ltd Method for dissolving iron oxide film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102790A (en) * 2009-10-16 2011-05-26 Jfe Steel Corp Method for speedily evaluating corrosion resistance to contents of can molding

Also Published As

Publication number Publication date
JPH0672954B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
KR100566725B1 (en) Chemical decontamination method
JPH052960B2 (en)
US6147274A (en) Method for decontamination of nuclear plant components
CA2236146C (en) Method for decontamination of nuclear plant components
US5877388A (en) Apparatus and method for electrochemical decontamination of radioactive metallic waste
US11342092B2 (en) Electrolyte for electrochemical decontamination and preparation method and application thereof
JPS6225300A (en) Method of dissolving oxide
US7384529B1 (en) Method for electrochemical decontamination of radioactive metal
JPS59162496A (en) Method of removing iron oxide film
JPS61231496A (en) Method of decontaminating radioactive metallic waste
JPH05297192A (en) Decontaminating method for radioactive metallic waste
Partridge et al. Chemical decontamination of metals
JPH0222597A (en) Chemical decontamination method for radioactive metal waste
JPS603598A (en) Electro-reduction decontaminating system
JPS60106998A (en) Electrolytic decontamination method
JPH06242295A (en) Method and device for decontaminating radioactive metal waste
JPS647359B2 (en)
JP3010943B2 (en) Reduction chemical decontamination method for radioactive metal waste
JP2549165B2 (en) Decontamination method for radioactive waste
JPH03158800A (en) Electrolytic decontamination method for radioactive metallic waste
JPS6267500A (en) Method and device for chemically decontaminating radioactivecontaminant
JPH0868894A (en) Decontamination device and method for radioactive metal waste
JPS63188799A (en) Decontaminating method of radioactive metallic waste
JPS60123800A (en) Method of decontaminating nuclear plant
JPS62211597A (en) Method of decontaminating piping